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A Generalized Asymptotic Extraction Solution for
Antennas in Multilayered Spherical Media

Salam K. Khamas

Abstract—An efficient model is developed to accelerate the convergence
of the dyadic Green’s function’s (DGF) infinite summation when the
source and observation points are placed in different layers of a dielectric
sphere, thereby expediting computational analysis. The proposed proce-
dure is based on asymptotic extraction principles in which the quasi-static
images are extracted from the spectral domain DGF. The effectiveness
of the approach is demonstrated in a method of moment model where a
microstrip antenna as well as a conformal dipole array have been studied.

Index Terms—Dyadic Green’s function, method of moments (MoM),
spherical antennas.

I. INTRODUCTION

Efficient computation of the dyadic Green’s function for a multilay-
ered dielectric sphere has been investigated in numerous research ar-
ticles, where several approaches have been proposed to accelerate the
convergence of the infinite series such as Watson or Shanks transfor-
mations [1]-[3], finite difference approximation [4], a large perfectly
conducting (PEC) sphere consideration using Kummer’s transforma-
tion [5], as well as incorporating the image theory of a planar structure
in the solution [6]. Asymptotic extraction is a well-known procedure
that has been extensively used for the efficient computation of the Som-
merfeld type integrals in planar and cylindrical media [7], [8]. In a re-
cent study [9], the asymptotic extraction approach has been introduced
for spherical media, which has expedited the series convergence con-
siderably when the field and observation points are located in the same
layer. In many applications, the DGF needs to be computed when the
field and source points are in different layers but still in the vicinity
of each other. Examples include; patch antennas excited by a feed in
a different layer, stacked arrays, three dimensional antennas, and volu-
metric arrays that penetrate a dielectric boundary.

In this article the asymptotic extraction introduced in [9] has been
broadened to consider the problem of source and observation points
positioned in different layers. The efficiency of the presented formula-
tion has been confirmed by employing the proposed solution in a mo-
ment method model, where structures involve field and source points in
adjacent layers have been studied. Two configurations have been con-
sidered including a probe-fed circular patch antenna, and a conformal
dipole array.

II. FORMULATION

For an antenna radiating next to a multilayered dielectric sphere, the
DGF can be represented as a superposition of two components, the
first, Ggﬁs), corresponds to radiation in an unbounded media and the
second, C_-‘r(gﬂs), accounts for waves scattering owing to the presence of
the sphere, i.e., [10]-[12]

GI*(r,x') = GV (r,x)85 + G (r,x) 1
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Fig. 1. A layered dielectric sphere.

where the superscript fs refers to the layers of field and source points,
r and r’, respectively, and &, is the Kronecker delta. It is well-known
that Gg{:’g) can be expressed in a closed form as [13]

~ o ok R
G(fs) N — I il v vii
o (r,r’) < + ]\ir vv ) R 2)

whereas GV is represented as an infinite summation of spherical
eigen modes as shown in the Appendix [12]. The summation can be
truncated using a finite number of terms depending on the distance be-
tween the field and source points as well as other geometrical factors
such as sphere radius and number of layers. When the field and source
points are located in the same layer, then using (2) in conjunction with
the asymptotic extraction approach [9] can enhance the computations
of Gf* significantly. However, when the source and evaluation points
are in different layers but in the proximity of each other, the computa-
tion efficiency of (1) degrades substantially as Gé’;s) is undefined and
the asymptotic extraction is valid only for the source and field points
within the same spherical layer. Therefore, a large number of summa-
tion terms must be added to accomplish convergence, which increases
the computation time significantly and necessitates the computation of
larger order Bessel and Hankel functions that may produce numerical
under flows, or over flows. This article presents a methodology to en-
hance the computation efficiency of (1) when f # s using an asymp-
totic extraction technique, where the quasi-static images have been iso-
lated from the infinite expansion.

A. Asymptotic Expansion Coefficients

Fig. 1 illustrates a spherical structure that consists of L layers, where
each layer has a permittivity of ¢; and a permeability of 1, which has
been assumed to be the same as that of free space, i.e., fto. When the
source and field points are located in different layers, the asymptotic
DGF can be attained by deriving expressions for the transmission and
reflection coefficients when n — oo. This can be achieved by em-
ploying the large order spherical Bessel and Hankel functions principal
asymptotic expressions [14], that is

1
1 ckr \"t2
in (k1) =
Jn(kr) \l 2kr(2n+1) <2n+ 1) (a)
1
; 2 ekr \ 2
WP (k) = | : 3b
e (kr) & kr(2n+1) <2n,+1> (3b)
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Following a procedure similar to that presented in [9], in which (3)
is substituted in the reflection and transmission coefficients given by
(18) in [12]. The resultant asymptotic expressions have then been
substituted in the infinite series coefficients Aﬁ,l\,, B{j N C{j ~ and
D;{jy - Therefore it can be shown that when f < s the following
expansion coefficients contributions persist as n increases

O™~ Tian| -+ Ty
f—1 T
XZ F(f 1)| |a R (4)
V a
TP(} ' TP1|a,
A~ Ty T#’f ®)
B£7<S ~ = T}Ys—l : lef
e R
< | RE| 4+ Y e Rps ©)

v v
1=s+1 TP(z |, 'TPs|a

whereas contributions of the other coefficients decline rapidly and
asymptote to zero for larger n. In the above equations

TV gn (kigras) v B (Rigrai)
pi~y —ti——————=, Ty~ —ti— =,
Jn(kiu‘i) hgl )(L a; )
2,/ZiE; ; D (kia;
foo 2VEEHL gy e Rid)
Si+1 + & Jn(kia;)

Jn (Ria;) _ Si— Eigl

R};z ~ W; — 5
b (kiai)

With the help of (3), it can be shown that when n — oo, the following
relations can be attained

. k n+1
Tl""'mfl e Tl""z ~ _(_l)m_z(tm—l e t‘) <l. - ) (73)
1% 1% m—1t km "
Tppey - Tp; ~—(-1) (tm—1--t;) <k—> (7b)
and
- n+1 .
<Ak_) RSE (kid) ~ B (kad) (8a)
Ea\" .
<kv ) )nu"id) N)n(kmd)- (8b)
Substation of (7)—(8) in (4-6) provides
f-1 (2)
5 — hn (ksai)
CL= o —(=1)" (ot w; —— T O)
. (=1 (o m; iolran)
. o | n+1
AL~ (1) (1) <kf) (10)
rL—1 ; (A @)
f<s s—f n
BLS ~ (1) (famy o ty) Z D horar) (11)

In these equations, the structure has been divided into three regions:
the first corresponds to interfaces outer of the field layer,i.e.,i =1 —
f — 1; the second represents inner boundaries that are surrounded by
the field and source layers, i.e., 7 = f — s — 1; and the last accounts
for interfaces of layers located between the source and the innermost
layers, that is, ¢ = s — L — 1. Multiple reflections contributions are
generally smaller than their local counterparts for larger » and decay
rapidly as n increases; hence, they have been omitted.

Following a similar procedure, the required asymptotic expansion
coefficients when f > s may be derived as

LoD Y (k)

Cf>s !
N tr_1---ts P ‘ ],,(kfa,')

12)
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f75 n f—1
f>s _(_1) ks 2
DY ~tf_17t<k7 1—;M (13)
o DTS (R
B S a4
N e (kfa,,

B. Asymptotic Dyadic Green’s Functions

The asymptotic DGF components can be accomplished by substi-
tuting the coefficients of (9)—(11) in (22) to get

Jj=nr

G(‘f<'§) ’
es (r7 r ) 4,1_]/ f

VV Z (2n 4+ 1)P, (cos~)

n=0

k
X (to—1---ts) {— <k—’> WP (kpr)jn (ker')
e
Iy’ (ksa;)
- (1-2) Zw' n(k

1-s" = Jn(ksai)
+( - S);w W (kgai)

where, P,(cos~) is the Legendre polynomial of degree n, and
cosy = cosfcosf’ + sinfsin b’ cos(¢ — ¢). It should be noted
that the addition theorem of Legendre polynomial has been used to
reduce the double summations of (22) to a single summation [15].
Furthermore, the vector operator VV' has been introduced to develop
a unified asymptotic DGF expression as described in [9].

With the help of (3), (8), (15) may be expressed as

J(=1"
4T]<'f

Jn(lw”)]n(k )

h?(krr’)h&?%kgr)} (15)

G (rr) ~ ‘vv Z (2n + 1) P, (cos )

X (ts—1---ty) {—hgz)(ks'r)jn(ks'rl)

F-1 )
(1=85) D wi (%) b2 (hudi)in(kr’)
=1

+(1—05)Liwi(%) o (kesdi )R (L,)}

1=s

(16)

in which d; = (a?)/(r). In the first term of (16), waves traveling be-
tween the upper boundary of the field layer and the lower boundary
of the source layer have been represented as waves traveling in an un-
bounded media that has a propagation constant of k. Such waves have
then been weighted by the corresponding transmission coefficients to
take account of the existence of inner interfaces that are surrounded
by the source and field layers. Reflections of these waves at dielectric
boundaries exterior to the aforementioned layers, i.e., wheni < f — 1
or: > s, have been incorporated in the model using the second and the
third terms of (16).
Similarly, it can be shown that

G(f>’)(r r') ~ J=0 VV Z(Zﬂ—l—l) P, (cosv)

dmky
n=0
Xﬁ{ <I—Zw>]nk7 D (kar')
s—1
(1= ws (“T) R (eudi ) (kor')
L
(1—@%) wi (“ )],,(k AR (Jer )}. (17)
i=f
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A unified expression of (16), (17), which is also valid when f = s, can
be attained as
—j(=1)7'T

GUD (p ')~
es (I‘/I‘), C 4Tfkf

x VV' Z (2n + 1)P,.(cos )

n=0

x{ﬁAmMMP@JW
1

w; (&) }LE?)(L"sdi)jn(ksrl)
r

mq

+ (1 - 671"1)

TiM
i

1

- (1-05,) E:UH(T)LJMJJ%”%yU} (18)

t=mo

in which m; = min(f, s), m2 = max(f,s), and

v=1, T=te,--t; f<s (19a)

v=0, T=1 f=s (19b)
f-1 1

1= N 2 - 4

v =1 Z:M T FPS— f>s (19¢)

Closed-form representation of (18) can be accomplished by employing
the addition theorem of the spherical Hankel function [15] as

e _1)8*1" eIk R
G(fi) ~ ( _T vAva NV —_—
T Ankgk, vV
my—1 L—1
y T,
+@—%Jz—@—%)z>
=1 i=mo
o —rks kR,
()
where the separation distances are given by R =

\/7"2 + 72 —2r'rcosv, and, R; = \/7"2 +d? —2r'd; cos .
Therefore, a generalized and computationally efficient representa-
tion of (1) can be achieved as

G/o(r.x) = GV (r, )65 + G2

n— oo

+{G ) - G )} @D

where G{/*).. and G.g’;s)(r, r')n_ o are given by (20) and (18), re-
spectively.

III. RESULTS

The developed expressions have been employed in a MoM model,
where four-layer geometry has been considered. The first layer has
been assumed to be a free space, the second is a spherical superstrate
that has a permittivity of 2, the third is a spherical substrate with a
permittivity of £3, and the innermost layer is a PEC spherical core.

A probe-fed circular patch antenna with a radius of 1.88 cm has been
modeled using substrate and superstrate thicknesses of 0.32 cm and rel-
ative permittivities of .3 = 2.47 and €,» = 5. A PEC spherical core
radius of 5 cm has been chosen. The feeding probe is placed in the
spherical substrate and connected at its lower end to the PEC core and
to the patch antenna at the other end. The configuration has been mod-
eled twice: first assuming the conformal patch is printed on the sub-
strate side of the interface, and then assuming the patch is printed on
the superstrate side of the interface. In the former case, the patch and the
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Fig. 2. Input impedance of a spherical circular patch antenna placed on the
interface between layers 2 and 3 and fed by a probe located in layer 3.
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Fig. 3. Convergence of the input impedance of a spherical patch located at the
superstrate side of an interface and fed by a probe positioned at the adjacent
substrate.

probe are located in the same layer, while in the latter they are placed
in different layers. Fig. 2 illustrates the computed input impedances for
the aforementioned cases. As expected, the same results have been ob-
tained regardless of what side of the interface is the patch located at,
which validates the presented formulation. The slight discrepancy be-
tween the two sets of results can be explained as a result of numerical
computations of Hankel functions using different arguments. The con-
vergence of the input impedance at 2.47 GHz is demonstrated in Fig. 3
when the patch and the probe are in different layers, where it can be
observed that the proposed model provides convergence using 40 sum-
mation terms. This is to be compared to more than 180 terms when the
asymptotic extraction is applied only for source and field points that
are located in the same layer.

As another example, an array of two ¢-directed half-wavelength
center-fed dipoles is considered. The structure consists of a PEC spher-
ical core with a radius of 1.5\¢ that is covered by a substrate with
cr3 = 2.5 and a thickness of 0.1Aq. The spherical superstrate relative
permittivity has been chosen as .2 = 1, and the dipoles centers are
separated by an arc distance of d. The correctness of the formulation
has been validated by comparing the mutual impedance between the
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Fig. 5. Convergence of the mutual impedance between conformal dipoles
printed on opposite sides of a spherical interface when their centres are
separated by an arc distance of d = 0.5A¢.

dipoles when they are both printed at the same side of the dielectric in-
terface to that when each is printed at a different side of the same inter-
face. Fig. 4 presents the mutual impedance when the dipoles are placed
on the interface of the second and the third layers. As expected, the
results are identical irrespective of whether the conformal dipoles are
printed on the same side or opposite sides of the interface. Fig. 5 illus-
trates the convergence of the mutual impedance for dipoles printed on
opposite sides of a dielectric boundary, where the present and the pre-
vious [9] methods are compared. The advantage of the present formu-
lation is evident as the convergence has been accelerated significantly
when the asymptotic extraction is applied in computing the coupling
between the source and field points that are located in different layers.

IV. CONCLUSION

The asymptotic extraction for antennas in a spherical media [9] has
been extended to consider the problem of a source and an observation
points that are positioned in different layers. As a result, an efficient
solution has been developed by isolating the quasi-static images from
the infinite summation. The effectiveness and correctness of the pre-
sented method have been confirmed using a moment method model,
where input and mutual impedances have been computed for various
structures. The convergence speed has been accelerated by several folds
when the proposed model is adopted, which improves the computation

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 11, NOVEMBER 2010

efficiency significantly. The presented formulation is unified, hence it
can be used in the analysis of arbitrarily located source and field points,
i.e., when f # s as well as when f = s.

APPENDIX
The DGF component, Gﬁ?ﬁs), is given by [12]
=(F2) n_ Jks . 0
Gy =" Y (2-60)

nn=0 m=0
2n4+1 (n—m)!

n(n+1) (n+m)!
x { MM (k) (22 ALMY, (k)
+ A BIM ()
+ AN (kp) (B2 AN (K)
+Aa BN (k) )
+ AaMon () (2 CfM, (k)
+2a DIM (1) )
+ ANy (k) (2205 N ()
+2s DN (k) ) |

where M,,, and N,,, are the well-known spherical vector
eigen-functions of the transverse electric, TE,,,, and transverse
magnetic, TM,,,,,, modes, respectively, the superscript (2) refers to
the second type spherical Hankel functions, A; = (1 — ﬁf ), Ay =
(1—61),A3 = (1—65),and Ay = (1 - 6}). Explicit expressions
for the scattering DGF coefficients Afj N B {f s C {/f ~ and D{f N
are reported in [12].

(22)
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Lack of Rotation Invariance in Short-Pulse Communication
Between Broadband Circular-Polarization Antennas

H. D. Foltz, J. S. McLean, A. Medina, and J. H. Alvarez Jerkov

Abstract—There are many antenna designs capable of producing high
quality circular polarization over very wide bandwidth. One of the benefi-
cial attributes of circular polarization seen in narrowband applications is
that one or both of the antennas in a link can be rotated around the bore-
sight direction without significantly affecting the received signal. However,
this does not apply to a broadband system, in which the received pulse shape
will change under rotation. Calculations of maximum possible correlation
between the rotated and unrotated pulse shapes as the antenna is rotated
are presented, along with an experimental example. It is also shown that in
general it is not possible to have the pulse shape and amplitude invariant
under rotation for a broadband signal, even if completely general polariza-
tions and antenna transfer functions are allowed.

Index Terms—Circular polarization, pulse antennas, ultra-wideband.

1. INTRODUCTION

Perfect circular polarization requires that the two orthogonal
components of the radiated electric fields be in quadrature at all
frequencies. This also applies to the components of the vector effective
length [1], [2], or equivalently, the vector antenna transfer function
[3]-[6] since the radiated field is proportional to both of these quan-
tities. In particular

e—]@’R

27 Reg”

E(w; R,0,6) = —jw/oH (w6, 6)

= _jy_vIe V- Zo
Zo + Za(w)

A(w)
—JBR

hest (w36, 6) 55— A(w) (1)

where H is the vector antenna transfer function, Z4 is the antenna
input impedance, and h.q is the antenna effective length. Neither H
nor h.¢ have R dependence since the far field is assumed. The quan-
tity A(w) = V*T(w)/\/(Zo) is the normalized incident wave at the
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input to the antenna. If the vector antenna transfer function is defined
in spherical coordinates as

H(w;f,¢) = Ho(w; 0, 0)ag + Hy(w; 8, d)ag ?2)

then for right hand circular polarization (RHCP) at all frequencies we
need

Hp(w;8,0) = jsgn (w)Hy (w6, 9) (3)
and for LHCP at all frequencies we need
Hy(w; b, 6) = jsgn (w)Ho(wi,0). “

A recent comprehensive analysis of the time domain behavior of cir-
cular polarization antennas was published by Shlivinski [7], in which it
is pointed out that multiplication by j sgn (w) in the frequency domain
is equivalent to Hilbert transformation in the time domain. Therefore,
in the case of true broadband circular polarization, the components of
the antenna impulse response ho(t; 6, ¢) = F~'{Hg(w;6,¢)} and
hg(t;8,6) = F 1 {Hg(w;6,6)} form a Hilbert transform pair. This
is independent of whether the other characteristics of the antenna, such
as the pattern or input impedance, are broadband. The Hilbert relation-
ship also applies to the components of the electric field, regardless of
the form of the input signal A(w).

One of the attractive features of circular polarization in narrowband
applications is rotational invariance, specifically, the ability to rotate
either the transmit or receive antenna about the boresight direction
without significantly changing the received signal. This applies to cases
where one or both of the antennas are circularly polarized. In the nar-
rowband case the signal can be represented by a bandpass model; for
example, if the ¢ component of the electric field in a particular direc-
tion is modeled by

E4(t) = m(t) cos(wot) )
then for a RHCP antenna the § component will be given by

Ey(t) = —m(t)sin(wot) (6)

the key assumption being that the baseband signal m(¢) has a band-
width that is small compared to the carrier frequency wo. Many narrow-
band communication systems are not sensitive to the absolute value of
the carrier phase, and thus the change from cosine to sine in the carrier
is irrelevant. In a broadband system this assumption no longer holds.

II. CHANGE OF PORT-TO-PORT TRANSFER FUNCTION
UNDER ROTATION

To simplify the analysis we initially assume communication between
two antennas capable of perfect RHCP over their operating bandwidth,
located along the z-axis, with the direction of propagation in the +z-di-
rection, as shown in Fig. 1(a). The transmit antenna polarization is:

Hi () = %HT(M(jsgn(w)am +a,). @)

The receive antenna polarization is

1 .

Hr(w) = EHR(-‘J)(_] sgn (w)a, +ay). (3

The direction of the x-component is reversed because the receive

antenna is rotated about the y-axis to face the transmit antenna. The

port-to-port transfer function S»; (w) can be written in general as
—5pd

S21(w) = jwHyp(w) - Hr(w) ©)
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