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Abstract

This paper presents an automated system for the quantification of inflammatory
cells in hepatitis-C-infected liver biopsies. Initially, features are extracted from
colour-corrected biopsy images at positions of interest identified by adaptive thresh-
olding and clump decomposition. A sequential floating search method and principal
component analysis are used to reduce dimensionality. Manually annotated train-
ing images allow supervised training. The performance of Gaussian parametric and
mixture models is compared when used to classify regions as either inflammatory or
healthy. The system is optimized using a response surface method that maximises
the area under the receiver operating characteristic curve. This system is then tested
on images previously ranked by a number of observers with varying levels of exper-
tise. These results are compared to the automated system using Spearman rank
correlation. Results show that this system can rank 15 test images, with varying
degrees of inflammation, in strong agreement with five expert pathologists.
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1 Introduction

The World Health Organisation (WHO) estimates that 170 million people,
3% of the world’s population, are currently infected with the hepatitis C virus
(HCV) [1]. This virus is usually transmitted by exposure to the blood or blood
products of an infected person. In the majority of cases infected people do not
develop symptoms for a number of years, leaving them totally unaware of
their situation [2]. Liver damage is not caused by the virus itself but by the
body’s immune response to the attack. This damage can be extremely serious,
resulting in liver failure and death of the patient. The current treatment for
HCV, according to the UK clinical guidelines, is with a combination therapy
of two drugs, Interferon–alpha and Ribavirin [3]. A major factor in prescribing
combination therapy is that both drugs produce side effects in most people [3].
The cost of combination therapy is between £3000 and £12000 per patient
per year [3]. It is generally thought that treating patients with expensive
drugs with potentially serious side-effects may be inappropriate unless there
is evidence of disease activity 1 . A liver biopsy is currently the only method
available to assess HCV activity. The biopsy, involves removing a small core
of tissue, approximately 15mm in length by 2-3mm in diameter. This core is
then processed in paraffin wax, cut into slices along its length and stained. At
this stage a trained histopathologist will examine the samples under a light
microscope and use his/her experience, combined with a detailed definition,
to assess the level of damage. The damage can normally be categorized into
two types and it is common to assign a numerical score relative to the level
of damage for each type. One of the most widely used scoring methods is the
Ishak system [5], which can be summarised as

(1) Inflammation: assigned a necroinflammatory 2 (activity) score from 0–18.
(2) Scarring: assigned a fibrosis 3 (stage) score in the range 0–6.

Scarring is an indication of long-term disease activity and as a result remains
relatively constant. For this reason, it is the assessment of inflammation that
is normally the determining factor for a patient to receive treatment. The scor-
ing process is time consuming and requires highly experienced and qualified
personnel. Studies have shown that it is often difficult for observers to agree
on activity and stage scores when evaluating the same samples, and it is com-
mon for the same observer to assign different scores at a later date [6]. This
inter- and intra-observer variability has been studied in depth in [6], which
found that observer agreement was far better for the assessment of fibrosis
(stage) than for inflammation (activity). This finding, together with emphasis

1 HCV is particularly likely to be associated with chronic disease[4]; for 20% of people with this form, liver
disease will slowly progress to cirrhosis of the liver during the first 10 to 20 years.
2 Cell death caused by the body’s inflammatory response.
3 The formation of fibrous tissue.
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on inflammatory activity when considering treatment, stresses the urgent need
for improved reliability in the assessment of inflammation. It is proposed that
an automated system could be developed using image processing and pattern
recognition techniques to assess, systematically, the level of inflammation in
liver biopsies.

There are many different approaches to image analysis of histological sections.
In this study we use a systems-based approach which does not seek exactly to
reproduce the presumed segmentation and cell-labelling that occurs during a
human assessment of a slide but does correlate with a recognized feature in the
slide (the amount of lymphocytic inflammation). This avoids, for instance, the
substantial computational burden incurred by popular techniques such as “ac-
tive contours” [7]. Other studies have used different approaches. Some have
used immunohistochemistry to label a specific element in a slide which has
some relationship to the disease process. A number of studies have used an
antibody against proliferating cell nuclear antigen to assess the proliferative
response of hepatocytes to the damage caused by the hepatitis virus [8–10].
Other investigators have used histochemical stains for fibrotic tissue to mea-
sure the amount of fibrosis in hepatitic liver biopsies [11,12]. These different
methodologies produce different information about the biopsies and are likely
to be complementary to each other but the aim in this initial study was to
automate currently accepted procedures using conventional haematoxylin and
eosin stained paraffin sections that are readily available in histopathology lab-
oratories worldwide. To introduce new methods would require a huge amount
of development work to validate them sufficiently as a test that could be used
in therapeutic decisions in the clinical context.

We present research on the design, optimization and testing of an automated
pattern recognition system, to quantify, reliably, the amount of liver inflam-
mation. Initially, the liver biopsy is examined in more detail with particular
consideration given to the colour variation in biopsy samples. Next, a new pat-
tern recognition system is presented and a method of system optimization is
then outlined. Finally, the optimized system is tested using images previously
evaluated by human observers.

2 Liver Biopsy Interpretation

This section introduces the image characteristics of an HCV-infected liver
biopsy and discusses the colour variation between biopsy samples. To under-
stand this investigation in more detail it is first necessary to consider the
histopathological elements of a normal liver biopsy and the different forms of
damage. A microscopic view of a standard liver biopsy from a healthy person
shows liver cells (hepatocytes) forming interconnecting walls created by the
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(a) (b)

Fig. 1. Microscopic (10× objective) view of a liver biopsy. (a) Healthy and inflam-
matory liver cells (b) A region of fibrous scarring.

close contact of cell membranes [13], as shown in figure 1(a). The nucleus is
the dark mass located at the centre of each cell. The array of hepatocytes
is only interrupted by other structural elements of the liver, such as portal
tracts 4 , hepatic veins 5 and bile ducts 6 (not shown). The damage caused by
HCV alters this structure and can normally be categorized into two types:

(1) Inflammation - Cell death (necrosis), caused by the viral attack, evokes an
inflammatory response which is manifested by the appearance of inflam-
matory cells. The majority of these inflammatory cells are lymphocytes
[14]. Figure 1(a) shows a region of lymphocyte cells. The lymphocyte cells
are generally smaller, with the cell nuclei smaller and darker than those
of hepatocyte cells.

(2) Fibrosis - The death of small groups of hepatocytes may leave the retic-
ulum (cell membrane system) intact and the resulting regeneration will
repair the damage. However if the reticulum is damaged, healing can only
occur by scar and will lead to fibrosis. If scars are produced throughout
the liver the lack of blood circulation leads to cirrhosis [14]. Figure 1(b)
shows an example of scarring. The remainder of the cells are lymphocytes.

As explained in section 1, the focus of this work is to measure the degree of
inflammation relative to the amount of other tissue, not including the back-
ground. This means the main task of this system is to group tissue into two
classes, inflammatory (C1) and healthy (C2). Scar tissue will therefore be clas-
sified as ‘healthy’ for our purpose.

4 A tract of the portal system of the liver, which is a network of veins that begin and end in capillaries.
5 Blood vessel in the liver that returns blood to the heart.
6 Pathway for the transportation of bile from the liver to the gallbladder.
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The biopsies used in this study are all stained using haematoxylin and eosin.
This usually causes lymphocyte nuclei to appear dark purple, the hepatocyte
nuclei to appear light purple and the background to appear white. Haema-
toxylin and eosin stain is commonly used by many pathology departments.
This method can produce high colour variability across different samples as
the stain mixture varies at different hospitals and laboratories. Another factor
producing image variability is the illumination at the time of image capture.
A system must be robust to these factors in order to interpret, adequately,
new images.

2.1 Colour Correction

Cardei et al [15] propose a method of colour correction to counteract illumina-
tion variability. This involves using the difference between the background of
images viewed under different illumination to colour-correct the whole image.
This simple technique can be expanded to correct colour variation in tissue
caused by stain and illumination change. In brief, a reference image is selected
by eye, using the natural human ability to determine mid-range colour at-
tributes. A raw image requiring colour correction is also selected. Qraw is the
raw RGB image reshaped into an N × 3 matrix, where N is the total num-
ber of pixels in the image. Similarly, Qcc is a matrix containing values of the
colour-corrected image. Applying the diagonal model of illumination change
[15] shows that

Qcc = QrawM (1)

where

M = diag

(
λR

ref

λR
raw

,
λG

ref

λG
raw

,
λB

ref

λB
raw

)
. (2)

Thresholding each image to remove the background leaves only the tissue
portion, a region whose elements are defined by Ri

j where i ∈ {R, G,B} and
j ∈ {ref, raw}. The mean values, λi

j, are then derived from the tissue portion
by

λi
j =

1

Mj

Mj∑

m=1

(Ri
j)

m (3)

where Mj is the number of pixels in each region and (.)m denotes the mth

value. Figure 3 shows the result of colour correction on the images presented
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(a) (b) (c) (d)

Fig. 2. A sample of the training images before colour correction

(a) (b) (c) (d)

Fig. 3. The images presented in figure 2 after colour correction

in figure 2. Qualitatively, the colour-corrected images can be seen to be more
similar than the raw images.

3 Pattern Recognition System

In this section we present details of the images used during the training process
and introduce a new pattern recognition system for identifying inflammation.

3.1 Training Images

To train the system, two sets of 86 colour images of liver biopsies are used.
Set 1 contains the raw images and set 2 contains an annotated version of
the raw images. Annotated images show regions of inflammation, as demon-
strated in figure 4(a). To simplify the time consuming manual annotation
process, inflammation was only annotated for close groups of six or more in-
flammatory (lymphocyte) cells. Each image is a 1000 × 1280 pixels bitmap of
red,green,blue (RGB) layers, taken at 10× objective magnification and shows
only a part of the whole liver biopsy. The images have been selected to show a
cross-section of inflammatory and healthy cells, with variation in stain and il-
lumination. The liver biopsy images were supplied and annotated by the third
author, SSC, a consultant pathologist in the Academic Unit of Pathology, at
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(a) (b)

Fig. 4. Method to generate the binary mask images for supervised training. (a)
Annotation showing regions of inflammation. Portal tract inflammation is bordered
with black and non-portal tract inflammation with blue. For this study, black and
blue regions are considered of equal interest.(b) The binary mask image derived
from the annotated image.

the University of Sheffield, UK. During pre-processing, the closed annotated
regions shown in figure 4(a) are converted into binary masks, as demonstrated
in figure 4(b). This is later overlaid on the raw image to supervise the training
process.

3.2 New Approach

After completing the pre-processing steps of colour correction and the creation
of the binary masks, the system is trained using the steps detailed in sections
3.2.1 to 3.2.4. The evaluation of new images using the trained system is then
discussed in section 3.2.5.

3.2.1 Thresholding

To determine the position and extent of the individual cells, the image is first
thresholded to highlight the cell nuclei. We call these the points of interest
(POI) within each region since they provide an initial estimate of the loca-
tion of whole cells. The method of thresholding uses histogram analysis. The
histogram of grey levels 7 taken across the whole image is either unimodal
or bimodal, depending on the amount of background included in the origi-
nal image. An example histogram derived from one of our samples is shown
in figure 5. The method uses the histogram lobe corresponding to the tissue
region to calculate the threshold level. Therefore, it is first necessary to iden-
tify the tissue lobe and tissue lobe maximum. This is done by hill climbing
a smoothed version of the original greyscale histogram, starting at the zero
greyscale value (left side of figure 5). Once a peak is found, a simple search of

7 Computed using the Matlab [16] function rgb2gray by transforming RGB to NTSC coordinates and
retaining only the luminence values.
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its immediate neighbourhood is performed to ensure this is the true lobe max-
imum. With the tissue lobe identified, thresholding at a suitable value within
the lobe allows the darker cell nuclei to be segmented from the other tissue.
Through experimentation, it was found that thresholding at 1.2 standard de-
viations (σ) below the tissue lobe maximum produces the best segmentation
of cell nuclei across all training images. This method is illustrated in figure
5. Because of the non-gaussian form of the original histogram, σ is calculated
by mirroring the lower half of the tissue lobe about the tissue lobe maximum
and assuming a gaussian distribution.

3.2.2 Clump decomposition

Thresholding produces a binary representation of the cell nuclei. These are
often touching or merged. This prevents identification of the true cell centroid
and makes it impossible accurately to quantify the number of cells. Clump
decomposition involves separating merged parts by analysis of the morphology
of combined or clumped parts [17]. In this study, a method of uniform recursive
erosion is implemented for clump decomposition, based on the well-known
watershed [18] technique. This method is used to identify merged or marginally
touching nuclei by splitting clumps at narrow points within the component.
This method is demonstrated in figure 6 and discussed in more detail below:

(1) Initially, the morphological opening operator (with a 3×3 uniform, square
structuring element) is used to remove noise from the thresholded image
(see figure 6(b)). An opening consists of an erosion followed by a dilation
[19].

(2) Each component (or clump) is then labelled using connected component
analysis (CCA) [20]. This means each pixel within the image is allocated
to an individual component and each component centroid is identified.

Fig. 5. Experiments show that thresholding at 1.2 standard deviations below the
tissue lobe maximum produce the optimum thresholding results.
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(a) (b)

(c) (d)

Fig. 6. Illustration of the clump decomposition technique. (a) Raw image. (b)
Thresholded image after opening. (c) After clump decomposition. The markers show
the new cell centroids and the patch-work effect illustrates the pixel allocation about
them. (d) A close-up of the erosion technique. The clump of cells is eroded until
the component disappears. Any resulting break-up of the component is used to gen-
erate new or ‘child’ components. Using these components, pixels from the original
thresholded image are then re-allocated to the closest centroid.

(3) The binary image is then uniformly eroded using the same 3×3 structur-
ing element. The erosion splits the components at narrow sections which
correspond to marginally touching cells. If a component splits by this pro-
cess, CCA is used to calculate the centroids of the newly created ‘child’
components. If a component does not split, the original ‘parent’ centroid
remains.

(4) The image is then recursively eroded, using the methods described in step
3, until no more components remain (see figure 6(d)).

(5) The final list of component centroids, containing the resulting mixture of
‘parent’ and ‘child’ details, is superimposed onto the image produced in
step 1. Each pixel in this binary image is then re-allocated to the nearest
component centroid, thus creating the patch-work effect illustrated in
figure 6(c).

Although more complex clump decomposition methods are available (see [17,21,22]),
this study has found the erosion technique effective and computationally effi-
cient.
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3.2.3 Extracting Image Features

Outputs from the clump decomposition process (the component centroids and
the surrounding patch-work) are used to identify the POI within the colour
biopsy image. Features are then calculated from image data extracted about
these POI, using one of two methods: (1) k×k×3 blocks of image data centred
on each component centroid; (2) all pixels belonging to the region supplied
by the surrounding patch-work. For this study, a collection of image features
is used to generate a D-dimensional feature vector to discriminate between
inflammatory and healthy tissue. The notation used to define the features
is presented in table 1 and the feature definitions are presented in table 2.
Because the hyper-volume of the feature space increases exponentially as a
function of dimensionality and most problems possess only a limited amount
of data this rapidly leads to sparsely populated, high-dimensional spaces which
are difficult to characterise [23]. For this reason, dimensionality reduction is
seen as a key step in any pattern recognition system. Our system uses two
main approaches to dimensionality reduction.

Table 1
Notation used for defining the image features in table 2

S = A region of RGB data de-
fined by a block of k×k×
3 pixels centred on each
POI.

L = A region of the image de-
fined by all pixels belong-
ing to a component, seg-
mented by clump decom-
position.

i ∈ {R, G, B} = Each layer of RGB data.

cell density(O, r) = The number of cells con-
tained within a circle of
radius r pixels, centered
at the centroid of O.

|O| = number of pixels in O.

O(x) = The value of O at x.

sort(O) = A sorted version of O

CH(O) = A binary image repre-
senting the convex hull of
O.

greyscale(O) = A grey scale representa-
tion of O.

ELL(O) = An ellipse with the same
second-moments as re-
gion O.

major axis(E) = The length in pixels of
the major axis of ellipse
E.

minor axis(E) = The length in pixels of
the minor axis of ellipse
E.
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Table 2
Feature definitions for i ∈ {R, G, B} (see table 1 for the notation used)

Feature No. Definition Description

1–3 µblock
i = 1

M

∑M

m=1
Sm

i , where M = k × k Block mean

4–6 σblock
i =

(
1

M−1

∑M

m=1
(Sm

i − µblock
i )2

) 1
2 Block standard deviation

7 A =
|L|
3

Component area

8 ECC =
major axis(ELL(L))
minor axis(ELL(L))

Component eccentricity

9 ED =
√

4A
π

Equivalent circle diameter

10 SOL = A
|CH(L)| Solidity

11 CD = cell density(L, r) Component density

12–14 µcell
i = 1

N

∑N

n=1
Ln

i , where N = A Component mean

15–17 θcell
i Component median

18–20 σcell
i =

(
1

N−1

∑N

n=1
(Ln

i − µcell
i )2

) 1
2 Component standard deviation

21 µgrey = 1
N

∑N

n=1
greyscale(L)n Grey scale mean

22 θgrey Grey scale median

23 σgrey =
(

1
N−1

∑N

n=1
(greyscale(L)n − µgrey)2

) 1
2 Grey scale standard deviation

3.2.3.1 Feature Selection In feature selection a subset of input fea-
tures is selected for its suitability to a classification problem. This reduces
dimensionality and the computational cost of feature gathering. The only
guaranteed method of finding an optimal subset of d features from an orig-
inal D-dimensional feature vector, is to perform an exhaustive search of all
D!/d!(D − d)! subsets of the reduced feature vector [24]. However, this is
impractical because the number of subsets grows combinatorially. A num-
ber of suboptimal selection methods are available which are discussed in [24].
Of these, Jain et al [25] found that the sequential forward floating search
(SFFS) [26] method produced the best results, performing close to the op-
timal, and demanding lower computational resources than other methods.
The SFFS method is a bottom-up search procedure, where the term floating
identifies that the number of features changes dynamically, with one feature
included and/or excluded, at each iteration. The SFFS method is used here.
To summarise the method, Xd = {xi|i = 1, 2, . . . , d, xi ∈ Y } is a subset of d
features taken from a set Y = {yj|j = 1, 2, . . . , D} of D available features.
J(Xd) is the criterion function used to evaluate the effectiveness of Xd. For
this study J is chosen to be AUROC – the area under the receiver operating
characteristic (ROC) curve, a commonly used test of classifier performance,
discussed in [27] and section 4.1. The algorithm is initialised with an empty
feature subset X0 = ∅. The most significant feature from Y , arg maxyj∈Y , is
then added to the subset X0. This step is then repeated once more, taking the
most significant feature from the remaining available features Y − X1. The
following steps are then performed:
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(1) The most significant feature from Y −Xd is added to the current subset,
Xd.

(2) The least significant feature, arg max J(Xd − {xi}), is conditionally ex-
cluded from the current subset, Xd. If the newly added feature is the least
significant or joint least significant with another feature, then step 1 is
repeated. Otherwise, the least significant feature from the current subset,
Xd, is excluded and step 3 is performed.

(3) This step is a continuation of the conditional exclusion in step 2. Once
again the least significant feature, xi, from Xd is located. If the resulting
subset Xd − {xi} is better than the previous best subset of the same
cardinality 8 , then feature, xi, is excluded from Xd and the current step
is repeated. Otherwise, the feature is retained and step 1 is repeated.

If the cardinality of Xd returns to 2 at either exclusion step (2 or 3), then the
algorithm goes to step 1. The algorithm terminates when the required cardi-
nality is achieved. Through experimentation, a final cardinality not exceeding
12 provides the best results here. Table 3 demonstrates the progression of the
SFFS algorithm and presents the final reduced subset of features in bold-face.

3.2.3.2 Feature Extraction Although, there are many feature extraction
techniques available (see [24] for a review), this study implements principal
component analysis (PCA) [28], one of the most widely used methods. The
dimensionality of the d -dimensional (d = 12) feature vector derived from

8 A record is kept of all previous subsets and their associated performance to enable this comparison.

Table 3
The feature subsets considered by the SFFS method. The final subset is in bold-
face, the previous subsets demonstrate the floating nature of the SFFS technique.
The features are defined in table 2

Iteration Feature subset
1 {4}
2 {4, 11}
3 {4, 11, 3}
4 {4, 11, 3, 16}
5 {4, 11, 3, 16, 1}
6 {4, 11, 3, 16, 1, 13}
7 {4, 11, 3, 16, 1, 13, 21}
8 {4, 11, 3, 16, 1, 13, 21, 22}
9 {4, 11, 3, 16, 1, 13, 21, 22, 6}

10 {4, 11, 3, 16, 1, 13, 21, 22, 6, 18}
11 {4, 11, 3, 16, 1, 13, 21, 22, 6, 18, 14}
12 {4, 11, 3, 16, 1, 13, 21, 22, 6, 18, 14, 7}
13 {4, 11, 3, 16, 1, 13, 21, 22, 6, 14, 7}
14 {4, 11, 3, 16, 1, 13, 21, 22, 6, 14, 7, 2}
15 {4, 11, 3, 16, 1, 13, 21, 22, 14, 7, 2}
16 {4, 11, 3, 16, 1, 13, 21, 14, 7, 2}
17 {4, 11, 3, 16, 1, 13, 14, 7, 2}
18 {4, 11, 3, 1, 13, 14, 7, 2}
19 {4, 11, 3, 1, 13, 14, 7, 2, 16}
20 {4, 11, 3, 1, 13, 14, 7, 2, 16, 21}
21 {4, 11, 3, 1, 13, 14, 7, 2, 16, 21, 22}
22 {4,11,3,1,13,14,7,2,16,21,22,20}
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feature selection is further reduced using PCA. PCA seeks to project the high-
dimensional input data into lower dimensional space [29]. In simple terms this
means that new features are created from a linear transformation of the input
features. The feature vector, ~x = (x1, . . . , xd)

T, is first normalised for all N
data points using

~yn = Φ−1(~xn − ~x), (n = 1, . . . , N) (4)

where ~x = (x1, . . . , xd); xi = 1
N

∑N
n=1 xn

i ; Φ = diag(σ1, . . . , σd) and σ2
i =

1
N−1

∑N
n=1(x

n
i −xi)

2. This normalisation is intended to counter the intolerance
of PCA to data with different orders of magnitude [29]. To conduct PCA, the
following are then computed for the normalised feature vector, ~yn.

~y =
1

N

N∑

n=1

~yn (5)

Σ =
1

N − 1

N∑

n=1

(~yn − ~y)(~yn − ~y)T (6)

The eigen-decomposition of Σ

Σ~ut = λt~ut, (t = 1, . . . , d) (7)

is then calculated and sorted according to decreasing eigenvalue. Owing to the
definition of Σ its eigenvalues are real and non-negative [29]. In most cases a
small number of eigenvalues will dominate, indicating the inherent dimension-
ality of the data [28]. By forming a matrix, U, whose columns are the pc < d
eigenvectors corresponding to the pc largest eigenvalues U = (~u1, . . . , ~upc), it
is possible to define ~z = UT(~y − ~y) a pc-dimensional vector of linearly trans-
formed variables. The choice of the number of principal components, pc, will
be discussed in section 4. Although, in principle, PCA should provide opti-
mal dimensionality reduction without feature selection. The prohibitive cost
of generating large numbers of features makes the inclusion of initial feature
selection desirable for this study.

3.2.4 Probability Density Estimation

The conclusion of the training process is to derive the class-conditional prob-
ability densities, p(~z|Cj). The density estimate can then be used for the
Bayesian classification discussed in section 3.2.5.1. The binary masks (see fig-
ure 4) can be overlayed onto the output from the clump decomposition process
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to provide the class (Cj, j = 1, 2) labels for each transformed feature vector,
~zj. As a result, we can approximate the required probability distribution for
each class. In this study two methods of density estimation are compared:

(1) Gaussian parametric model (GPM)—This is a parametric method where
a gaussian probability density function (PDF) is assumed. This technique
is easy to compute and simple to implement. For the multivariate case,
the PDF takes the form

p(~z|Cj) =
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(~z − ~zj)

TΣ−1
j (~z − ~zj)

}
(8)

where the class covariance matrix Σj and mean vector ~zj are estimated
from the transformed feature vectors of the training set.

(2) Gaussian mixture model (GMM)—This is a semi-parametric method [29]
where mixtures of gaussians are used to build more complex models e.g.
multimodal PDFs [28]. For the multivariate case, the probability density
function for each class is estimated by a linear combination of Kj (j =
1, 2) gaussian basis functions of the form

p(~z|Cj) =
Kj∑

k=1

Pjkpj(~z|k), (~z ∈ Cj) (9)

where

pj(~z|k) =
1

(2π)d/2|Σjk|1/2
exp

{
−1

2
(~z − ~zjk)

TΣ−1
jk (~z − ~zjk)

}
(10)

where Σjk is the covariance matrix for the kth gaussian for the jth class
and ~zjk is the mean vector for the kth gaussian for the jth class. Typically,
the GMM parameters are determined using the expectation-maximisation
(EM) algorithm [30] as is used here.

The performance of each estimator is evaluated during the optimization pro-
cess outlined in section 4.

3.2.5 Evaluating new images

When a new image is presented to the system, it is first necessary to perform
the following, previously discussed, steps:

• Colour-correct the new image (using the original reference image).
• Threshold the image.
• Apply clump decomposition.
• Extract the feature vector, ~x, from each POI.
• Apply PCA to produce ~z.
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The estimated densities (GPM or GMM) are then used to provide density esti-
mates of ~z, to give the likelihood of the region surrounding each POI belonging
to a particular class. Bayes theorem (11) can then be used to calculate the
posterior probability of class membership, which allows a decision to be made
regarding class membership of a particular region. This method is discussed
in more detail below.

3.2.5.1 Classification Bayes theorem permits the posterior probability,
P (Cj|~z), to be expressed in terms of the prior probability, P (Cj), the class-
conditional probability density function, p(~z|Cj), and a normalisation factor,
p(~z) [28], thus

P (Cj|~z) =
p(~z|Cj)P (Cj)

p(~z)
(11)

P (Cj) is the probability of each class occurring based on a priori knowledge of
the training set. p(~z|Cj) is the class-conditional probability density function.
In practice, an estimate of the probability density function for each class is
required, as discussed in section 3.2.4. By assuming that new regions belong
to one of the two classes C1–inflammatory or C2–healthy, then the posterior
probabilities obey

P (C1|~z) = 1− P (C2|~z) (12)

Each region may then be assigned class membership according to a user-
defined classification threshold, T , as follows

P (C1|~z) > T, then assign to C1

P (C1|~z) < T, then assign to C2

(13)

where 0 < T < 1. The method of selecting a suitable classification threshold
is discussed in section 4.1.

4 Optimization

The role of optimization in this study is to select a good set of the adjustable
system parameters: block size; number of priciple components; the method
of density estimation, and, for the GMM only, the number of mixture com-
ponents. To determine the optimum system performance it is necessary to
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evaluate images with pre-classified cells. As the training images discussed in
section 3.1 already provide pre-classified cells, the system is optimized by the
m-fold cross-validation (m = 10) of these training images. This simply means
the training images are randomly divided into m equally sized subsets [28].
With the remainder used for training, the system then evaluates one subset.
This operation is then repeated until all subsets have been evaluated. It can
be shown [28] that averaging m performance measures gives an estimate of
the true system performance. A method of quantifying system performance
from the results of m-fold cross-validation is discussed in section 4.1. The op-
timization method and the final optimized system parameters are presented
in section 4.2.

4.1 The Receiver Operating Characteristic Curve

System performance may be evaluated using contingency table data derived
from the m-fold cross-validation of the training set. The contingency table is
defined in table 4 and an example of the results obtained from cross-validation
of the training set is shown in figure 7.

Table 4
Contingency table definition. The observer results are derived from the annotated
test images and the test results are derived from cell classification at a particular
classification threshold.

Test results

Observer results Class 1 Class 2

Class 1 #True Positive (TP ) #False Negative (FN)

Class 2 #False Positive (FP ) #True Negative (TN)

For a two-class problem it is possible to evaluate the system more robustly
by plotting the receiver operating characteristic (ROC) curve, a technique
commonly used in medical imaging [31]. The ROC curve is constructed from
contingency table data by plotting sensitivity, TP/(TP + FN), against one
minus specificity, FP/(TN + FP ), as the classifier threshold varies from 0
to 1. The area under the ROC curve can be considered to be a measure
of the overall quality of the classification model [27]. Maximising the area
by changing important system variables leads to the optimum classifier. As
each point lying on the curve corresponds to a different threshold, the final
classification threshold may be chosen based on desired levels of sensitivity
and/or specificity. Using the Neyman-Pearson criterion (NPC) for this purpose
[27], a maximum false positive rate (one minus specificity) is specified by the
user, as shown in figure 8. The final classification threshold, T , is then selected
with the highest false positive rate less than the NPC. For the purpose of
illustration in this study, the maximum permitted false-positive rate is set at
0.1.
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(a) Raw image (b) Experimental result

Fig. 7. Experimental result for training image RAW00067 generated from 10-fold
cross-validation of the training set. Tissue classed as inflammatory is shown in black,
healthy in grey and the regions identified, by SSC, as inflamed, in blue. This result
shows that the majority of nuclei within the largest annotated region have been
classified correctly. However, classification is less successful in the outlying regions.

4.2 Response Surface Methodology

Response surface methodology (RSM) is a technique to reduce the cost of op-
timization by searching for combinations of variables (factors) that maximise
the performance of the system [32]. In this study RSM is used to maximise
the AUROC by searching for the optimum value of key system factors. The
first stage of this technique is to develop a strategy for gathering experimental
data, known as the ‘design of experiments’ (DoE) [33]. This involves identi-
fying factors that have a significant effect on the response of the system, a
procedure normally carried out by screening out insignificant factors during
the development process. Once identified, the factors are constrained to an
allowable range by identifying suitable upper and lower limits for each factor.
The range is then discretised at equal spacing to generate levels within the al-
lowable range. A common approach when considering a small number of input
factors (less than five) is to evaluate the system at all combinations of factors
and corresponding levels. This approach is known as a full-factorial design
[33]. The next stage of RSM is to develop a model of the system response.
This model can then be searched to find the maximum predicted response
and thus the optimal factor values. For an example with two factors, the full-
factorial design provides a 2-dimensional grid of system evaluation points. The
model can then be visualised as a response surface constructed on the grid.
Considering a system more formally
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y = f(~v)

where y is the system response, f is an unknown function and ~v = (v1, v2, . . . , vq)
is a vector of q independent factors. It is common to construct a model of this
system by fitting a low-order (either linear, quadratic or cubic) polynomial to
the experimental data. For a cubic polynomial with p combinations of factors
and levels, this takes the form

yn = b0 +
q∑

i=1

biv
n
i + · · ·

q∑

i=1

q∑

j=1

bijv
n
i vn

j + · · ·
q∑

i=1

q∑

j=1

q∑

k=1

bijkv
n
i vn

j vn
k (14)

where b0, bi, bij and bijk are the unknown polynomial coefficients. yn is the
experimental observed response value and n = 1, . . . , p. This model can be
written in matrix notation as ~y = V~b, where ~y = (y1, y2, . . . , yp),

~b = (b0, b1, . . . , bq, b11, . . . , bqq, b111, . . . , bqqq)

and V is the experimental design matrix constructed from p rows of ~̂vn, a
vector corresponding to the factor terms in 14, of the form

~̂vn = (1, vn
1 , . . . , vn

q , vn
1 vn

1 , . . . , vn
q vn

q , vn
1 vn

1 vn
1 , . . . , vn

q vn
q vn

q )

The coefficients, ~b, can then be estimated using the least squares method
~b = V†~y where V† is the pseudo-inverse of V [29]. The value of the input
variables that provide the maximum system response can then be derived
from the polynomial given by V~b. Considering the DoE for this study, the
following system factors have a significant effect on the system response.

(1) Block size (k)—Features 1–6 defined in table 2 rely on square blocks of
data extracted from around each cell centroid. This factor represents the
block size and is constrained between 1 and 81 pixels. The discretised
levels of this allowable range are {21, 41, 61, 81}.

(2) Number of Principal Components (pc)—This factor governs the num-
ber of dimensions that the reduced feature vector is mapped to and is
constrained between 1 and 12 (levels = {3, 6, 9, 12}).

(3) Density estimation method—Either GPM or GMM, as discussed in sec-
tion 3.2.4. For GMM only, the following extra factor requires optimiza-
tion:
(a) Number of basis functions (bf)—The number of gaussian basis func-

tions to fit the data. This is constrained to be between 1 and 8
(levels = {2, 4, 6, 8}).
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Table 5
Table showing the optimized system factors for both GPM and GMM density esti-
mation methods and the corresponding AUROC.

Factor Value (GPM) Value (GMM)

Block size (k) 55 53

Number of principal
components (pc)

5 6

Number of gaussian ba-
sis functions (bf)

N/A 5

AUROC 0.9559 0.9619

The final cardinality of the feature selection method, discussed in section
3.2.3.1, should also be treated as a factor. However, this is impractical ow-
ing to the high computational cost of combining the SFFS technique with the
full-factorial design. To compare the GPM and GMM density estimation (DE)
methods, two response surfaces are generated. This allows the system to be
independently optimized for each DE method. The optimized systems are then
compared for the maximum system response by re-evaluating the AUROC. A
cubic polynomial is used to model the response in both cases. With this in
mind, the two forms of DE will now be considered.

• GPM—only variables k and pc are applicable. Evaluating these variables
using a full-factorial design requires 16 evaluations of the AUROC.

• GMM—variables k, pc and bf are applicable. Evaluating this set using a
full-factorial design requires 64 evaluations of the AUROC.

As all the factors under discussion can take only integer values within the con-
straints discussed previously, the maximum predicted response may be derived
by evaluating the model at all variable combinations between the upper and
lower bounds for each variable. Although this is a combinatorial problem, the
task of evaluating the model is computationally trivial in comparison to eval-
uating the AUROC. Searching each model for the maximum response using
this method provides the factor values listed in table 5. Evaluating the AU-
ROC at these parameters shows that GMM provides the optimum DE method.
However the improvement gained by using the GMM method rather than the
computationally more efficient GPM method is only marginal (0.65%). As the
intended end-users of this system are pathologists, it is thought that adopting
the conceptually simpler GPM method will aid the understanding and trust
of this system by medical professionals who may not be familiar with pattern
recognition theory. Therefore the GPM method is focused on in what follows.

The ROC curve for the optimum GPM configuration is illustrated in figure 8.
By applying the NPC technique discussed in section 4.1, the final classification
threshold of 0.22 can be derived from the curve.
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5 Testing

It is common to test a system of this type against a ‘gold standard’, a set
of universally accepted accurately quantified test images. However, no ‘gold
standard’ exists for liver biopsy inflammation. The closest alternative is the
Ishak scoring system [5] discussed in section 1, but as previously stated, this
suffers from high inter- and intra-observer variability. With this in mind, our
system is tested using a separate group of 15 test images previously evaluated
in a study by Cross at al [34]. In this study, 25 observers (including 5 con-
sultant pathologists, 4 trainee pathologists and 16 control observers – medical
students with no previous experience of histology or pathology) were asked to
compare 15 liver biopsy images with varying degrees of inflammation. It can
be assumed that consultant pathologists have the most experience in identi-
fying cell inflammation, followed by the trainee pathologists and finally the
16 control observers. The images are named ‘mild1, . . . , mild5, mod1, . . . ,
mod5, sev1, . . . , sev5 ’ but this only indicates a preliminary approximation of
the level of inflammatory activity. Each of the 15 images is compared to each
other image producing 105 pairs. The observers are then asked to identify
the image containing the most inflammation from each pair. A rank order of
images is then produced for each observer using a ranking algorithm normally
used to rank competitive chess players [35]. Finally, Spearman rank correla-
tion (SRC) [36] is used to assess, statistically, the level of agreement between
the observers. As the results show good inter-observer agreement (SRC=0.95)
using this comparison technique, it is proposed that image ranks from each
observer can be used to test the proposed, automated system.

Fig. 8. ROC curve for the optimized system. For the purpose of illustration the
maximum false-positive rate is set at 0.1.
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Initially, the optimized system is trained on all 86 training images. Each test
image is then processed using the methods outlined in section 3.2.5 and using
the classification threshold determined by NPC (see figure 8). The test images
are the same size and magnification as the training images. Quantification of
the inflammation is carried out by counting the number of regions classified
either C1–inflammatory or C2–healthy. The proportion of inflammatory tissue
is then computed. The time taken to process, fully, each new image is variable
and dependent on a number of factors. The two most significant of these, are
the number of clumped nuclei and the final number of fully segmented nuclei.
For the test images, the mean computational processing time per image and
standard error is 57.31 ± 4.51 seconds. This system was developed using the
Matlab software environment [16] and the test was performed on a standard
desktop PC (Pentium P4 - 1.6 GHz processor) using the Microsoft Windows
XP operating system (Microsoft Corporation, WA).

Quantifying the inflammation in percentage form, allows the images to be
placed in rank order of severity and compared to the image ranks from the
previous study [34]. As in [34], SRC can then be used to assess the level of
agreement between the image rank produced by this automated system and
the image ranks produced by the 25 observers. The SRC coefficient is defined
by

rs = 1− 6
∑N

n=1 d2
n

N(N2 − 1)

where dn is the difference between each pair of ranks and N is the number of
paired observations. The resulting values of rs show good agreement between
the observers and the automated system. Using a null hypothesis that there is
no correlation between any of the ranks, the significance of each rs value can
be determined by calculating the probability (P -value) that this hypothesis is
true [36]. For N > 10 (N = 15 in this case), rs has an approximately Normal
distribution with a mean of zero and a variance of 1/(n− 1) [37]. To test the
significance of rs, the z value is first calculated as follows [36]

z =
rs√

1
(n−1)

= rs

√
(n− 1)

The P -value is then determined from z, using tables of the area under the
Normal distribution curve [37]. Table 6 shows the rs values corresponding to
the relationship between consultant pathologists and the automated system.
The probability that the null hypothesis is true, for each of these rs values, is
P < 10−3. P -values were also calculated for all other observers (not shown).
P < 10−3 is also the maximum when considering the correlation between our
system and the trainee pathologists. However the P -value rises to P < 10−2,
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(a) Raw image
(‘mod 1’)

(b) Test result (‘mod
1’). Showing 22.3%
inflammation.

(c) Raw image
(‘mild 1’)

(d) Test result (‘mild
1’). Showing 49.4%
inflammation.

(e) Raw image
(‘mild 4’)

(f) Test result (‘mild
4’). Showing 57.1%
inflammation.

(g) Raw image (‘sev
3’)

(h) Test result (‘sev
3’). Showing 53.2%
inflammation.

Fig. 9. A sample of the experimental test results. Inflamed cells are shown in black
and healthy cells are grey.

when considering the correlation between control observers and our system.
Historically P < 10−2 or a ‘one percent probability level’ suggests that the null
hypothesis may be rejected [38]. Although, this means that the null hypothesis
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Table 6
The SRC coefficients relating the automated system (computer) and five consultant
pathologists. For SRC: -1 = systematic disagreement; 0 = no connection; 1 = strong
agreement. The significance (P -value) of all the results shown is P < 10−3.

Consultant 1 Consultant 2 Consultant 3 Consultant 4 Consultant 5 Computer

Consultant 1 1.000 0.946 0.936 0.936 0.971 0.943

Consultant 2 0.946 1.000 0.950 0.968 0.971 0.989

Consultant 3 0.936 0.950 1.000 0.911 0.943 0.971

Consultant 4 0.936 0.968 0.911 1.000 0.975 0.964

Consultant 5 0.971 0.971 0.943 0.975 1.000 0.971

Computer 0.943 0.989 0.971 0.964 0.971 1.000

may be rejected for all observer groups, the low P -values between consultants
and this system, suggest a strong correlation. It can also be shown that con-
sultants have the lowest inter-observer variability with each other [34]. This
means our system can rank 15 test images in correlation to five consultant
pathologists, who in turn agree more strongly with each other than with the
other observers, indicating this system has an expert capability in this test.

For completeness the above tests were also conducted using the GMM den-
sity estimation method discussed in sections 3.2.4 and 4. Although the GMM
method produces a better system performance (greater AUROC) when con-
sidering 10-fold cross-validation of the training set, results here show a similar
performance to the GPM method when considering the correlation between
our system and the three observer groups. This confirms the decision, made
in section 4.2, to adopt the GPM for density estimation on the basis of its
simplicity.

6 Conclusions

An effective and systematic method of evaluating the liver biopsies of patients
with hepatitis C will become increasingly important owing to the large number
of people currently infected with the disease. Previous approaches to similar
cell classification problems do not adequately address the specific issues as-
sociated with the automatic segmentation and classification of inflammatory
cells in HCV-infected liver biopsies. The system outlined in this study offers
a fully automatic pattern recognition solution to quantify the amount of in-
flammatory tissue. The simplicity of the pattern recognition techniques used
aids the understanding and trust of this system by pathologists and facilitates
the implementation of this system on a standard desktop PC in a pathology
laboratory. Important steps forward have been made in: (1) colour-correcting
images for stain and illumination variability, (2) the segmentation of individ-
ual cells via clump decomposition and (3) the application of feature selection
and extraction methods to reduce the cost of feature gathering and the di-
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mensionality of the feature vector.

The comparison of two commonly used density estimation methods, GPM and
GMM, shows that the simpler GPM technique provides an equivalent system
performance when considering novel images. The implementation of the GPM
method shows the system can rank a set of 15 previously unseen test images
in correlation to five consultant pathologists and four trainee pathologists
with a level of significance of P < 10−3. Although the level of significance is
reduced when considering the relationship between this system and the control
observers (P < 10−2), the consultants have the lowest inter-observer variability
and have the most experience of interpreting biopsy images. Therefore, the
correlation between consultants can be considered to be the closest thing to a
‘gold standard’ for this test.

The results of this study show that the system has a capability which is at
least as good as the current scoring systems which are applied subjectively
by consultant histopathologists. It may be that the system has a performance
which exceeds that of the consultants but it has not been possible to identify
a ‘gold standard’ with which the system can be compared. A future study
could include using this system on a retrospective series of biopsies where
the outcome of disease progression (as measured by the amount of fibrosis in
a subsequent liver biopsy) was known and then to examine how accurately
the system predicts this outcome on a test series of cases. Since the current
system shows promise for a clinically-useful system then consideration needs
to be given as to how such a system would integrate into working practices.
The level of agreement in assessment of liver inflammation between consultant
histopathologists using the current scoring systems is relatively low so it is
not difficult to justify the use of an automated image analysis system if its
performance is more accurate and/or reproducible. The current system needs
to be developed so that it would measure inflammation in an entire biopsy,
rather than an isolated field of view, but there is currently available scanning
technology that would allow this to be done.
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