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Low-Complexity RLS Algorithms Using
Dichotomous Coordinate Descent Iterations

Yuriy V. Zakharov, Member, IEEE, George P. White, and Jie Liu

Abstract—In this paper, we derive low-complexity recursive least

squares (RLS) adaptive filtering algorithms. We express the RLS

problem in terms of auxiliary normal equations with respect to

increments of the filter weights and apply this approach to the

exponentially weighted and sliding window cases to derive new

RLS techniques. For solving the auxiliary equations, line search

methods are used. We first consider conjugate gradient iterations

with a complexity of � �� operations per sample; being the

number of the filter weights. To reduce the complexity and make

the algorithms more suitable for finite precision implementation,

we propose a new dichotomous coordinate descent (DCD) algo-

rithm and apply it to the auxiliary equations. This results in a

transversal RLS adaptive filter with complexity as low as � mul-

tiplications per sample, which is only slightly higher than the com-

plexity of the least mean squares (LMS) algorithm (� multi-

plications). Simulations are used to compare the performance of

the proposed algorithms against the classical RLS and known ad-

vanced adaptive algorithms. Fixed-point FPGA implementation of

the proposed DCD-based RLS algorithm is also discussed and re-

sults of such implementation are presented.

Index Terms—Adaptive filter, conjugate gradient, DCD algo-
rithm, dichotomous coordinate descent, FPGA implementation,
line search, RLS.

I. INTRODUCTION

I
N adaptive filtering, the recursive least squares (RLS) al-

gorithm is known to possess fast convergence, but also to

have a high complexity of operations per sample (

being the filter length) [1], [2]. There has been much research

interest in the reduction in complexity of the RLS algorithm.

It is desirable to find a solution that has complexity similar to

that of the least mean squares (LMS) algorithm, i.e., mul-

tiplications per sample. In [2], fast RLS algorithms are summa-

rized in terms of complexity. The fixed-order adaptive filters, ex-

ploiting the shifted structure of data vectors, have a complexity

of . The fastest among them in terms of multiplications is

the fast Kalman filter that requires multiplications [2]. The

fixed-order algorithms suffer from numerical instability in fi-

nite precision implementation. This problem is partly overcome

by using stabilization techniques. However, these make the al-

gorithms more complicated, and, even with such techniques,

they can still exhibit instability [2]. Another group of fast adap-
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tive algorithms is the lattice algorithms. However, lattice algo-

rithms do not provide the filter weights required in many appli-

cations, and their complexity is still high; the techniques consid-

ered in [2] require at least multiplications and divisions per

sample. Recently, the KaGE RLS algorithm was introduced [3];

it uses the shifted structure of data vectors, generates the filter

weights, and its complexity is , more specifically,

multiplications per sample. However, the KaGE al-

gorithm also requires divisions.

Many adaptive algorithms require division and square root

operations, which are complex for implementation, especially

in hardware, i.e., they require a significant chip area and high

power consumption. Although simpler than divisions, multipli-

cations are still significantly more difficult for implementation

than additions. Therefore, it is important to design algorithms

that have no division, no square root operations, and as few mul-

tiplications as possible.

Many fast adaptive algorithms are based on matrix inversion

which results in instability in finite precision implementation.

An alternative approach based on solving the normal equations

[4] often results in stable adaptive algorithms. Such an approach

is used in the direction set (or line search) based adaptive al-

gorithms. These techniques have either a good RLS-like per-

formance but a high complexity of , e.g., the conjugate

gradient [5]–[8] or Euclidean direction search (EDS) [9] adap-

tive algorithms, or a low complexity of but a low perfor-

mance, e.g., the fast EDS algorithm [9]–[11] or the stochastic

line search algorithm [12].

The contributions of this paper are as follows:

1) A new formulation of the RLS problem in terms of a se-

quence of auxiliary normal equations with respect to in-

crements of the filter weights is proposed (Section II). This

formulation, though simple, results in adaptive filtering al-

gorithms with high performance.

2) Two new general structures of adaptive filters for the expo-

nentially weighted and sliding window RLS problems are

introduced (Sections II-A and -B, respectively), and further

specified for transversal adaptive filters (Section II-C).

3) 3) New RLS adaptive filtering algorithms based on conju-

gate gradient (CG) and coordinate descent (CD) iterations

are proposed (Sections III-A and -B, respectively), whose

particular implementations correspond to known adaptive

algorithms.

4) A new dichotomous coordinate descent (DCD) algorithm

is proposed (Section III-C).

5) New DCD-based RLS algorithms, in particular, DCD-

based transversal RLS algorithms with complexity as low

as multiplications per sample are proposed.

1053-587X/$25.00 © 2008 IEEE
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6) FPGA design of DCD-based adaptive RLS algorithms is

described, that significantly outperforms FPGA designs of

known RLS algorithms, such as the QRD-RLS algorithm

(Section IV).

The rest of the paper is organized as follows. In Section IV,

we consider practical issues of implementing the proposed al-

gorithms. Section V presents simulation results that show the

performance of the proposed algorithms against the classical

RLS algorithm and other known adaptive algorithms. Finally,

Section VI gives conclusions.

A part of the material of this paper, namely those related to the

exponentially weighted DCD-based RLS algorithm, was pre-

sented at the conference Asilomar 2007.

Notations: In this paper, we use capital and small bold fonts

to denote matrices and vectors, respectively; e.g., and . Ele-

ments of the matrix and vector are denoted as and .

denotes transpose of . A th column of is denoted as .

The variable is used as a time index, i.e., is the matrix

at time instant . The variable is used as an iteration index.

Only real-valued adaptive filtering is considered in this paper;

the extension to the complex-valued case is straightforward.

II. PROBLEM STATEMENT AND RECURSIVE SOLUTION OF THE

RLS NORMAL EQUATIONS

In the RLS problem, at every time instant ,

an adaptive algorithm should find a solution to the normal

equations

(1)

where is assumed to be a symmetric positive-definite (cor-

relation) matrix of size and are - length

vectors. The matrix and vector are known, whereas

the vector should be estimated. Direct methods for solving

the system are too complex for most applications of adaptive fil-

tering, especially if is high; e.g., the Cholesky decomposition

finds the solution with a complexity [13]. In the clas-

sical RLS algorithm, the solution is represented in the form [2]:

, where ; can be computed

recursively with a complexity of [2]. We adopt another

approach, which is based on transforming the original sequence

of normal equations (1) into a sequence of auxiliary normal

equations that are then solved by using iterative techniques.

Let, at time instant , a system of equations

be approximately solved, and the ap-

proximate solution is . Let

(2)

be a residual vector for this solution. At time instant ,

the system (1) is to be solved. We denote

, and

(3)

Our aim is to find a solution of (1) by exploiting the previ-

ously obtained solution and residual vector .

Equation (1) can be rewritten as

(4)

TABLE I
RECURSIVELY SOLVING A SEQUENCE OF SYSTEMS OF EQUATIONS

and represented as a system of equations with respect to the

unknown vector

(5)

Instead of solving the original problem (1), one can find a solu-

tion of the auxiliary system of equations

(6)

where

(7)

and obtain an approximate solution of the original system (1) as

(8)

It is seen from (7) that this approach requires the residual vector

for the solution to the original system (1) to be known

at each time instant . After some algebra, we obtain that the

residual vector for the solution to the auxiliary system

(1) is also equal to , i.e.,

(9)

(10)

Thus, we can now formulate a recursive approach for solving a

sequence of systems of equations as presented in Table I. This

approach allows us, at each time instant , instead of solving the

original problem (1) with respect to the filter weights , to

deal with an auxiliary problem (6) with respect to the increment

of the filter weights . The system (6) takes into account

the accuracy of the previous solution through the residual vector

, as well as the variation of the problem to be solved

through the increments and . If a true solution

to the system (6) is found then is the true solution to the

problem (1) as well.

When using direct methods for solving the normal equations,

both approaches would require approximately the same compu-

tational load. However, when using iterative techniques, the new

approach is preferable, since it corresponds to solving the orig-

inal problem with (implicit) initialization by the solution of the
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problem for the previous time instant. Therefore, with the same

accuracy of calculating the vector , the proposed approach

will typically require a smaller number of iterations. If, in ad-

dition to finding a solution vector , the iterative equation

solver produces the residual vector at a low computational

cost, and a simple way of computing the product

also exists, the complexity of adaptive filtering based on the new

approach will be lower than that with the original approach.

Below, the new approach is applied to the exponentially

weighted (Section II-A) and sliding window (Section II-B)

RLS problems. The new algorithms obtained provide both the

filter output and filter weights updated at every time instant .

The most computationally demanding steps of the algorithms

are the updating of the correlation matrix and the solution

of the auxiliary equations. The shifted structure of the input data

allows the complexity of the matrix updating to be significantly

reduced (Section II-C). Notice that, at step 3, a technique for

solving the auxiliary equations should provide both a solution

and the residual vector ; such techniques are con-

sidered in Section III.

A. Exponentially Weighted RLS Algorithm

The exponentially weighted RLS (ERLS) problem deals, at

every time instant , with a -length data vector and a

scalar desired signal . An adaptive algorithm should find a

vector that minimizes the error [2]

(11)

where is a regularization matrix and is a forgetting

factor. The regularization matrix is usually chosen as a diagonal

matrix , where the regularization parameter is

a small positive number and is the identity matrix

[1], [2]. The vector can be found by solving the normal

equations (1) with the system matrix and the right-hand vector

given by [1]

(12)

(13)

To apply the method in Table I to this problem, the vector

should be expressed in terms of and . From (12) and

(13), we obtain

(14)

(15)

By using (2) and (14), we obtain

(16)

where is the adaptive filter output at time instant

(17)

TABLE II
EXPONENTIALLY WEIGHTED RLS ALGORITHM

Using (16), we obtain step 2 for the method in Table I:

(18)

where is the a priori estimation error

(19)

Finally, the exponentially weighted RLS algorithm is summa-

rized in Table II, which also shows the complexity of different

steps of the algorithm in terms of multiplications and additions.

Notice that the complexity of step 5 depends on the technique

used for solving the normal equation. We denote the number

of multiplications and the number of additions required by

the technique; these figures will be given in Section III.

B. Sliding Window RLS Algorithm

The sliding window RLS (SRLS) problem, at each sample ,

deals with finding a vector minimizing the error

(20)

where is the sliding window length. Solution to this problem

is equivalent to solution of the normal equations (1) where the

matrix and vector are updated as [2]

(21)

(22)

To find the vector , we notice that

(23)
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TABLE III
SLIDING WINDOW RLS ALGORITHM

where , and

(24)

From (23) and (24), we obtain step 2 for the method in Table I:

(25)

where . Finally, the

sliding window RLS algorithm is summarized in Table III.

C. Transversal RLS Algorithms

The RLS algorithms described in Tables II and III can be

used in applications with arbitrary data vectors , i.e., data

vectors with no specific structure. The classical example of such

applications is antenna array beamforming [1], [2].

For shift-structured input data

where is a discrete-time signal, updating the correlation

matrix is significantly simplified. The lower-right

block of can be obtained by copying the

upper-left block of . The only

part of the matrix that should be directly updated is the

first row and first column. Due to symmetry of the matrix, it is

enough to only calculate the first column. The updating for the

exponentially weighted RLS problem is described as

(26)

TABLE IV
EXPONENTIALLY WEIGHTED TRANSVERSAL RLS ALGORITHM

TABLE V
SLIDING WINDOW TRANSVERSAL RLS ALGORITHM

and, for the sliding window RLS problem

(27)

The transversal ERLS and SRLS algorithms are presented in

Tables IV and V, respectively.
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TABLE VI
EXACT LINE SEARCH METHOD

III. LINE SEARCH METHODS

Many techniques can be used for solving the auxiliary normal

equations (6). We are interested here in iterative algorithms as

opposed to the direct solution algorithms because of lower com-

putational complexity of the former. Specifically, we will con-

sider line search methods that provide both a solution vector

and the residual vector , which are required for applying the ap-

proach described in Table I. In this section, for clarity we omit

the time index from matrix and vector notations.

Solving the normal equations (6) is equivalent to minimizing

the quadratic function

(28)

In a line search method, at each iteration , the solution is

updated in a direction that is chosen to be non-orthogonal to

the residual vector , i.e., . The step size minimizing

the function is ; this step size

corresponds to the exact line search method [14]–[16]. A gen-

eral description of the exact line search method [13] is given in

Table VI, where denotes the number of iterations.

The conjugate gradient (CG) [13] and coordinate descent

(CD) algorithms considered below in Sections III-A and -B,

respectively, are examples of the exact line search method.

Inexact line search methods, though not providing the max-

imum decrement for a particular iteration, can improve the

convergence speed in a sequence of iterations [15], [17]. The

dichotomous coordinate descent (DCD) algorithm presented in

Section III-C, is an inexact line search method.

A. Conjugate Gradient Algorithm

An efficient variant of the line search method is the CG al-

gorithm [13] shown in Table VII. At the first iteration, ,

the direction vector is the residual vector: . At other iter-

ations, , the direction is updated to guarantee -con-

jugacy of the direction vectors. Due to its fast convergence, the

CG method has already been used for adaptive filtering for a

long time (e.g., see [5], [7], [18], [8] and references therein).

Although, the CG algorithm shows fast convergence (as will be

seen from simulation results in Section V), its complexity is too

high for fast adaptive filtering. In general, the complexity of the

TABLE VII
CONJUGATE GRADIENT ALGORITHM

algorithm is per update. The algorithm also requires di-

visions at steps 1 and 3.

It can be shown that the CG adaptive algorithm as described

in Tables V and VII for the particular case produces

the same filter weights and output signal as the affine projection

algorithm [2] of projection order and the CG adaptive algo-

rithm proposed in [5].

B. Coordinate Descent (CD) Algorithm

If the directions are chosen as Euclidean coordinates, i.e.,

, where all elements of the vector are zeros, except

the th element that is equal to one, the iterations are signifi-

cantly simplified. In this case, for the exact line search,

is the th column of the correlation matrix . Thus,

the most complicated step of the line search method (step 2 in

Table VI), requiring the matrix-vector multiplication of com-

plexity , is completely eliminated. Moreover, the other

steps are also simplified ,

and . If the directions are chosen in a cyclic

order , we arrive at Gauss-Seidel iterations, and

the EDS algorithm of complexity [11]. However, such

choice is not efficient in our case, as it requires at least itera-

tions at a time instant, resulting in high complexity. Attempts to

distribute the Euclidean directions in time by assigning one

direction to one time instant has led to the fast EDS algorithm

[11], [9]. The maximum complexity of the fast EDS algorithm

(including the filtering) is multiplications per time

instant [11]. However, the convergence of the fast EDS algo-

rithms is slow [11], [19]. Moreover, our simulation results (not

presented here) show that the fast EDS algorithm is sensitive to

the order of updating the filter weights and experiences insta-

bility at the initial part of the learning process. A more efficient

method for selecting the leading index is therefore important

to speed up the convergence.

For the exact line search method in Table VI, we have [13]

(29)
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TABLE VIII
COORDINATE DESCENT (CD) ALGORITHM

The (nonnegative) term shows how quickly

the function decreases at an update. For an exact coordi-

nate search, we have

(30)

If the matrix is calculated by averaging over a relatively long

time interval, are approximately constant over . There-

fore, the coordinate direction chosen according to

(31)

at a particular iteration, will provide the largest decrement of

. The CD algorithm with the leading index (31) is presented

in Table VIII. One update in the algorithm requires only mul-

tiplications and additions. Note that the CD algorithm is also

known as Southwell’s relaxation method [20], [17]. Its conver-

gence to the optimal solution for the normal equations follows

from the following.

Theorem [17]: If the leading index of a relaxation coordi-

nate descent process

for a linear system of equations with a positive-definite matrix

is chosen such that, at each iteration

and if , then the process converges to

the optimal solution of the system and there exists a number

, such that .

In our case, for all , we have and . There-

fore, the theorem can be directly applied to the CD algorithm in

Table VIII.

It can be shown that the RLS algorithm based on the CD

iterations with the leading index (31) produces the same filter

weights and output signal as that of the recursive adaptive

matching pursuit (RAMP) algorithm proposed in [21].

TABLE IX
DCD ALGORITHM

C. Dichotomous Coordinate Descent (DCD) Algorithm

The DCD algorithm [22] is presented in Table IX. It updates

the solution in directions of Euclidean coordinates in the cyclic

order . Such choice of directions is used in the

EDS algorithm. However, in the DCD algorithm, the step-size

is chosen in a different way—it takes on one of prede-

fined values corresponding to binary representation of elements

of with bits within an amplitude range . The

algorithm starts the iterative search from the most significant

bits of elements in . As the most significant bits have been

updated, the algorithm starts updating the next less significant

bit, and so on. Due to the quantized step-size, there are ‘un-

successful’ iterations (decided at step 3) without updates of the

solution and “successful” iterations where the solution and the

residual vector are updated (steps 4 and 5). The DCD algorithm

as described above can be found in [23].

The complexity of the DCD algorithm depends on the imple-

mentation platform. In [23], it is estimated for software imple-

mentation, which usually requires an extra operation for calcu-

lating at step 3. For a hardware implementation, in which

we are interested here, step 3 can be considered as one addition

since calculation of can be incorporated in an adder used for

the comparison. The complexity can be considered as a random

number with an upper bound corresponding to a worst-case sce-

nario as follows. For an th bit, , within

one pass there is one “successful” iteration and

then, in another pass, “unsuccessful” iterations; this will re-

quire additions. For the last (least significant)

bit, , there are passes each with one “suc-

cessful” iteration; this will require addi-

tions. Thus, the worst-case complexity is

additions. Notice that the average complexity will be lower.
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TABLE X
DCD ALGORITHM WITH LEADING ELEMENT

However, in hardware implementation one should take into ac-

count the worst-case complexity.

If , the complexity of the DCD algorithm in

Table IX is approximately upper bounded by . However,

if the number of updates is small (which is the case that

we are interested in here), the term will dominate in the

DCD complexity. A computationally more efficient variant of

the DCD algorithm can be proposed that eliminates this term.

This new version of the DCD algorithm finds a ‘leading’ ( th)

element in to be updated similarly to the CD algorithm

in Table VIII. The new DCD algorithm is shown in Table X.

It is seen that one update in the DCD algorithm requires

bit-shifts, additions, and comparisons; the latter can be

counted as additions. With updates, the complexity of

the DCD algorithm is upper limited by

additions. This corresponds to a worst-case scenario when

the algorithm in Table X performs all updates, i.e., the

condition at step 3 is never satisfied. The important property

of the DCD algorithm is that it requires no multiplication,

no division, and no square root operations. Note also that the

parameter defines a maximum number of filter weights that

can be updated at a time instant. Thus, adaptive filtering based

on coordinate descent search and, in particular, on the DCD

algorithm, implements a selective partial update [24].

It is seen from the algorithm description that, in any it-

eration at step 4, the step size satisfies the relationship

which results in .

Strictly speaking, this means that conditions of the convergence

theorem in Section III-B are not satisfied at every iteration

. However, as step 4 in Table X describes a quantization

process, we can assume that the parameter is uniformly

distributed on [1, 2) and, therefore, with probability 1, these

conditions will be satisfied. Note that the decrement of the cost

function (28) at every iteration is given by

(32)

which shows that the cost function decreases at every iteration.

TABLE XI
COMPLEXITY OF PROPOSED AND KNOWN TRANSVERSAL

ADAPTIVE ALGORITHMS

If, in the DCD algorithm described in Table X, step 4 is re-

placed with , we obtain

which results in . In this case, the con-

vergence theorem is satisfied for . However, this

choice slows down the convergence. Multiple experiments have

shown that the DCD algorithm with , presented in

Table X, is preferable over that with .

IV. PRACTICAL ISSUES

In this section, we address some practical issues related to

implementation of the proposed adaptive algorithms.

For the exponentially weighted RLS algorithm in Table II, the

matrix update, in the general case, requires multiplications

and additions. However, if the forgetting factor is chosen as

with a positive integer , then the multiplication by

in step 1 can be replaced by addition and bit-shift operations,

thus giving the total number of multiplications and additions

and , respectively. Similar approach is also applicable to the

exponentially weighted transversal RLS algorithm in Table IV,

thus reducing the number of multiplications to and increasing

the number of additions to . Moreover, calculation of

at step 4 is also simplified to multiplications and addi-

tions. However, even if is chosen differently, it is not difficult

to accurately approximate it by a number making the multipli-

cation by simple for implementation.

In the transversal adaptive filters, the direct copying of the

matrix block would require significant pro-

cessor time. To avoid the copying, a simple memory address

modification can be performed, when the block does not change

its position in the memory and only the row and column ad-

dresses are updated. This address update was used in our FPGA

design described here.

Table XI shows the complexity of the proposed and known

transversal adaptive filters; the complexity for the RLS and

NLMS algorithms is from [2]. The complexity for the ERLS

algorithms takes into account the choice of the forgetting factor

as with a positive integer . For additions, we

only show figures that are or and ignore figures

that are or . It is seen that the transversal
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TABLE XII
FPGA RESOURCES FOR ERLS-DCD ALGORITHMS

ERLS-DCD algorithm requires only multiplications per

sample and no division. The transversal SRLS-DCD algorithm

requires multiplications and no division.

The ERLS-DCD algorithms have been implemented on a

Xilinx Virtex-II Pro Development System with a XC2VP30

FPGA running at 100 MHz.1 VHDL was used to describe the

design, and the Xilinx ISE 8.1 was used for synthesizing and

downloading the design to the target platform.2 The input data

are represented in 16-bit fixed-point Q15 format [25].

The desired signal is represented by 32 bits in the Q15

format. The matrix and vectors , and are

represented by 32 bits in the Q15 format. When computing the

filter output , each multiplication results in 47 bits in the

Q30 format; after accumulation, is truncated to 32 bits in

the Q15 format. The error signal is then represented by

32 bits in the Q15 format. The forgetting factor is chosen as

, where is an integer; thus, the multiplications

and are replaced by bit-shifts and additions.

The FPGA resources for four designs are presented in

Table XII. Two figures are shown for every resource: number

of elements used and the percentage of the resource available

on the FPGA device. The ERLS-DCD algorithm as described

in Tables II and X was implemented for the cases and

with . This design is suitable for arbitrary

data vectors , e.g., it is applicable for adaptive antenna

beamforming. For an 8-element antenna we obtain the update

rate 205 kHz which is approximately 60 times higher than that

of a design based on the QRD-RLS algorithm for 9-element

antenna and with approximately the same chip area [26], [27].

The transversal ERLS-DCD algorithm with is im-

plemented by using a serial design of the DCD algorithm [28]

with (100 MHz) cycles for one update. The update rate

can be increased by reducing and/or using a parallel design

of the DCD algorithm [27]. It is seen that the whole design

requires at most 10% of the resources available on the FPGA

device. More details on FPGA implementation of the proposed

adaptive filtering algorithms will be presented in a separate

paper. We have carried out many numerical experiments with

these designs, in particular, a long-time experiment where

1[Online] Available: http://www.xilinx.com

2See footnote 1.

vectors were processed. No instability problem was

observed during the experiments.

V. NUMERICAL RESULTS

Here, we present results obtained by computer simulation.

We compare the mean squared error (MSE) performance of

the proposed adaptive algorithms against the classical exponen-

tially weighted RLS algorithm, NLMS algorithm, and a recently

proposed efficient conjugate gradient control Liapunov func-

tion (CG-CLF) algorithm with complexity [8]. Only

scenarios with the time-shifted structure of input data, corre-

sponding to the transversal adaptive filter, are considered. The

input data are generated according to

(33)

where is the additive zero-mean Gaussian random noise

with variance . The vector

contains either a real speech signal or autoregressive

correlated random numbers given by

(34)

where is the autoregressive factor and

are uncorrelated zero-mean random Gaussian numbers of unit

variance. The MSE in a simulation trial is calculated as

(35)

The MSEs obtained in trials are averaged and plotted

against the time index . Results in Figs. 1 to 5 below are

obtained by floating point simulation. Fig. 6 compares floating

and fixed point simulation results.

Fig. 1 shows the MSE performance of the ERLS-CG and

ERLS-DCD algorithms against the RLS, NLMS, and CG-CLF

algorithms. All elements of the impulse response are kept

constant over the first 1000 samples; the elements are inde-

pendent random numbers uniformly distributed on .

At time instant , a new vector is generated and

kept constant over the remaining samples. It is seen that, in the

case of , the ERLS-DCD algorithm outperforms the

ERLS-CG algorithm, but is inferior to the CG-CLF algorithm.

For , the ERLS-DCD and CG-CLF algorithms demon-

strate similar performance, whereas the ERLS-CG algorithm

converges faster. For , the ERLS-DCD and ERLS-CG

algorithms outperform the CG-CLF algorithm. For a fixed ,

the ERLS-CG algorithm converges faster than the ERLS-DCD

algorithm. However, this is achieved at the expense of a sig-

nificant increase in the complexity (see Table XIII). Under a

fixed complexity, the ERLS-DCD algorithm provides signifi-

cantly faster convergence than the ERLS-CG algorithm. Fig.

1(b) shows that after a change of the impulse response, only

two updates are enough for both the ERLS-CG and

ERLS-DCD algorithms to approach the RLS performance. The

results for are not shown as they are not distinguishable

from that of the classical RLS algorithm.

Fig. 2 compares the performance of the ERLS-CD and

ERLS-DCD algorithms. It is seen that, with increase in ,

the ERLS-CD algorithm approaches the RLS performance.
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Fig. 1. MSE performance of the ERLS-CG and ERLS-DCD algorithms against
the RLS, NLMS, and CG-CLF algorithms; � � ��� � � � � ������ �
������ � � �� �� � ��� � ��� 	 � ���� 
 � ������ � ���. (a)
Initial convergence. (b) Convergence after a change of the impulse response.

However, the performance of the ERLS-DCD algorithm is

superior to that of the ERLS-CD and, as seen from Table XIII,

it requires a significantly fewer number of multiplications.

Fig. 3 shows the MSE performance of the SRLS-CG and

SRLS-DCD algorithms against the RLS and NLMS algorithms.

Although the SRLS-DCD algorithm has a slightly higher com-

plexity than the ERLS-DCD algorithm, it achieves the same

steady-state MSE more quickly, after a change of the impulse

response. Therefore, for some applications, it will be benefi-

cial to use the SRLS-DCD algorithm. In similarity to results

for the ERLS algorithms, the SRLS-DCD requires more up-

dates than the SRLS-CG algorithm to achieve the same conver-

gence speed. However, the SRLS-DCD algorithm has signifi-

cantly lower complexity.

The results in Fig. 4 correspond to the application of

adaptive filtering to acoustic echo cancellation with a long

impulse response, . Elements of the impulse response

, are independent zero-mean random

Fig. 2. MSE performance of the ERLS-CD and ERLS-DCD algorithms against
the RLS and NLMS algorithms; � � ��� � � � � ������ � ������ � �
�� �� � ��� � ��� 	 � ���� 
 � ������ � ���. (a) Initial conver-
gence. (b) Convergence after a change of the impulse response.

numbers with variance , which corresponds

to a typical acoustic impulse response [29]. The vectors

contain a real speech signal sampled at a frequency of 8 kHz.

It is seen that with , the ERLS-DCD algorithm sig-

nificantly outperforms the NLMS algorithm. With increase

in , the MSE performance of the ERLS-DCD algorithm is

significantly improved and, in the steady state, for ,

it outperforms the RLS algorithm. Table XIV shows the com-

plexity of the three algorithms. It is seen that the complexity of

the ERLS-DCD algorithm is significantly lower than that of the

RLS algorithm and it requires only 50% more multiplications

than the NLMS algorithm.

Fig. 5 shows the tracking performance of the ERLS-DCD al-

gorithm in a time-varying environment. The th element

of the impulse response varies in time according to

(36)
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Fig. 3. MSE performance of the SRLS-CG and SRLS-DCD algorithms against
the RLS and NLMS algorithms;� � ��� � � �������� � ����� (for RLS),
� � �� �� � 	��� � ��� � ��� 	 � ���� 
 � ������ � ���.
(a) Initial convergence. (b) Convergence after a change of the impulse response.

where are independent random numbers uniformly dis-

tributed on are independent zero-mean Gaussian

random numbers of unit variance, and is the variation rate.

It is seen that as increases, the MSE performance of

the ERLS-DCD algorithm is approaching that of the RLS

algorithm.

Fig. 6 shows the performance of a fixed-point implementa-

tion of the ERLS-DCD algorithm against the ERLS-DCD and

classical RLS algorithms implemented in floating point. For rep-

resentation of all variables in the algorithm, including the input

data and , elements of the matrix and vector , etc.,

bits are used ( or ). It can be seen that the

accuracy of both the fixed-point ERLS-DCD and floating-point

ERLS-DCD algorithms depends on the parameter that de-

fines the number of bits for representation of the solution vector

. As increases, the steady-state MSE approaches that of the

RLS algorithm. For the fixed-point ERLS-DCD algorithm, for a

fixed , the steady-state MSE depends on . In this scenario,

Fig. 4. Echo cancellation experiment with a real speech signal. MSE perfor-
mance of the ERLS-DCD versus RLS and NLMS algorithms:� � 	��, SNR =
30 dB,� � �����
�� � �����	�� � ����	�� � ��� � ���� � �.

Fig. 5. The tracking performance of the ERLS-DCD algorithm in a
time-varying environment: � � �� � 	 � ���� 
 � ������� � �
� � �
����	� � � �� � � � �.

for , the parameter limits the algorithm per-

formance, while provides enough accuracy to achieve

the floating-point performance.

VI. CONCLUSION

In this paper, we have derived low-complexity RLS adaptive

filtering algorithms. The RLS problem is represented as a se-

quence of auxiliary normal equations which are then approx-

imately solved by using iterative line search methods. A new

variant of the DCD algorithm is proposed; the use of the DCD

algorithm as a line search method has led to implementation

of the exponentially weighted and sliding window transversal

RLS algorithms by using only and multiplications per

sample, respectively. Simulation results show that the perfor-

mance of the proposed adaptive algorithms can be made arbi-

trarily close to that of the classical RLS algorithm. The conver-

gence properties of the proposed algorithms were discussed. A
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Fig. 6. The MSE performance of a fixed-point implementation of the
ERLS-DCD algorithm against the floating point ERLS-DCD and classical RLS
algorithms: � � ��� � � �� � � � � � ��� � ������ � � � �

�� � � � �� � � ��� � �.

TABLE XIII
COMPLEXITY OF ADAPTIVE ALGORITHMS 	� � ��


TABLE XIV
COMPLEXITY OF ADAPTIVE ALGORITHMS 	� � ���


more detailed analysis of the algorithm performance will be pre-

sented in another publication. A fixed-point FPGA implementa-

tion of the exponentially weighted DCD-based RLS algorithms

has also been described, which shows that the proposed algo-

rithms are simple for finite precision implementation, require

small chip resources, and exhibit numerical stability.
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