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An Improved Real–Space Genetic Algorithm for Crystal Structure and Polymorph Prediction

N.L. Abraham and M.I.J. Probert
Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom

Existing Genetic Algorithms for crystal structure and polymorph prediction can suffer from stagnation during

evolution, with a consequent loss of ef£ciency and accuracy. An improved Genetic Algorithm (GA) is intro-

duced herein which penalizes similar structures and so enhances structural diversity in the population at each

generation. This is shown to improve the quality of results found for the theoretical prediction of simple model

crystal structures. In particular, this method is demonstrated to £nd three new zero–temperature phases of the

Dzugutov potential that have not been previously reported.

PACS numbers: 02.70.-c, 61.50.Ah

I. INTRODUCTION

Genetic algorithms (GAs) are emerging as a useful tool in

the theoretical prediction of crystal structures (see Abraham

and Probert1, and references therein)2–4. During a GA calcu-

lation it is possible that the system will stagnate. When stag-

nation occurs, one or more local minima dominate the search

and the method is unable to £nd the global minimum solu-

tion. In this communication we improve the convergence to

the global minimum solution of the CASTEP–GA1 through

the use of a £tness function which is able to differentiate struc-

tures during the course of a GA minimization.

Binary–encoded GAs such as the method of Hart et al.5,

Blum et al.6 are able to directly compare the binary strings

that make up their population members and determine if two

populations members are the same. In this way it is possi-

ble to remove any highly prevalent local minimum from the

population, and prevent its creation in future mating opera-

tions. While this method is not possible in the frame–work of

the CASTEP–GA, we have developed an alternative approach

that signi£cantly reduces the stagnation rate and also forces

the system to explore new minima. This alternative approach

is also broadly transferable to a wide range of other GAs.

II. METHOD

Our GA method1 is a real–space encoded technique for

crystal structure prediction which takes advantage of the pe-

riodicity of the simulation supercell to improve the speed and

accuracy of convergence to the global minimum free-energy

crystal structure. There is a population of structures (or mem-
bers) which are bred together to produce new members, such

that with each subsequent generation the population evolves

in an attempt to determine the global minimum structure. The

£tness function of the GA is used to determine how good

(“£t”) a structure is and this is then used to weight the prob-

ability of survival of that structure and its probability to pro-

duce offspring.

While this method has been very successful in the past,

we wanted to reduce the stagnation rate and thereby improve

the quality of the solutions produced during a GA structure

search. Since this is a real–space based approach it is not pos-

sible to directly compare the atomic co–ordinates of two pop-

ulation members to determine if they are the same structure.

In our previous work1, the enthalpy of the structure was used

to calculate the £tness. In this work, we propose augment-

ing this £tness function with an additional function which is

able to determine the similarity of two structures. We shall

illustrate the effectiveness of this new approach by £rst study-

ing the Lennard–Jones crystals for comparison with our previ-

ous results and then the high pressure phases of the Dzugutov

potential7.

The enthalpy–based £tness function is

�✂✁☎✄✝✆✟✞✡✠☞☛✍✌✏✎✒✑✔✓✖✕✘✗ ✁ ✠✙✞✛✚✢✜
✕ (1)

with the variable ✗ ✁ being de£ned by

✗ ✁ ✄ ✣ ✁ ✠✤✣✦✥ ✁✟✧
✣✦✥✡★✪✩✫✠✬✣✦✥ ✁✟✧ (2)

where ✣✦✥✡★✪✩ is the enthalpy of the highest enthalpy member

of the population, ✣✦✥ ✁✟✧ is the enthalpy of the lowest enthalpy

member and ✣ ✁ is the enthalpy of the member ✭ being consid-

ered. The £tness of each member ✭ is
�✏✁

and this is a function

which varies between zero and one. Population members with

a £tness close to zero are less “£t”, and members with a £t-

ness close to one are more “£t”. Population members are then

selected (using roulette–wheel selection) for reproduction or

are removed from the population based on this £tness value.

This should mean that only £t members are selected to re-

main in the population, or are allowed to breed (crossover). It

is often very likely that during the course of a calculation mul-

tiple copies of population members are made. In a bit–string

represented GA duplicate members are very easy to spot but in

a real–space encoded GA it is very hard to tell if two members

are the same during the course of a calculation, since the crys-

tal structure may be orientated or translated in any way within

the simulation cell (due to use of periodic boundary condi-

tions). This is even harder if the simulation cell parameters

are also allowed to vary during the course of a calculation.

Hence we need a simple measure of structural similarity

so that we can detect when duplicate structures exist within a

population. Whilst this is encouraging from the point of view

of ultimate structural convergence, in the early stages of the

GA minimization we want to ensure as much structural diver-

sity as possible to enable a broad search of possible solutions

and so we want to penalise similar structures.
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Since we are using this routine to differentiate between like

and unlik✮ e structures, rather than any form of comprehensive

structural analysis, we can simplify this comparison some-

what. If we are performing a calculation in which we allow

the number of atoms to vary, then we can make an educated

guess that two structures with different numbers of atoms are

different (or rather in this case any offspring produced in the

crossover procedure will have a greater number of degrees of

freedom to explore the potential energy surface), so we will

have no need to compare these structures. We also do not

need to compare each structure with all other structures, since

we are merely trying to prevent stagnation rather than give a

de£nitive structural comparison, and so we can simply com-

pare all structures with the minimum enthalpy structure which

has the same number of atoms as itself that exist in the current

generation. We will de£ne a comparison function between

structures which returns zero if the structures are the same and

one if the structures are suitably dissimilar. We also want to

keep the fact that lower enthalpy structures are “better” than

higher enthalpy ones, so we further weight the value that any

given structure has by the value of
�✂✁

of the £ttest member in

that “set” which is made up of members with the same num-

ber of atoms. Here we de£ne our improved £tness function

as

✯ �✱✰✁ ✄ ✓✍✞✡✠✳✲✴✚ ✯ �✂✁✶✵ ✲ ✯ �✂✷✸✁✺✹✱✻ ✞ ✭✡✼ � ✭✾✽✿ ✓✢❀❁✓❃❂❅❄❆✚❇✚ ✭❉❈✼ � ✭✾✽ (3)

where the left–superscript ❊ above denotes comparing be-

tween groups with the same number of atoms only,
�✂✁

is as

de£ned in equation 1, ❋ is a weighting value between zero

and one and
✿ ✓✢❀●✓❃❂ ❄ ✚✍✚ is a function which compares mem-

ber ✭ of the set of atoms ❊ with the £ttest member in that set (as

de£ned by equation 1). This means that the £tness of the £ttest

member of each group (
✯ �✂✷❅✁✟✹

) will be unchanged from its en-

thalpy value, and all other values in the group will be scaled

accordingly. If the value of the £tness weight, ❋ , is set to ✞
then the maximum value of

✯ � ✰✁
that any member could have is

the same value of the £ttest member of the group,
✯ � ✷✸✁✟✹

. If ❋ is

set to zero then this function reduces to that given in equation

1. The comparison function
✿ ✓✢❀❁✓❍❂✘❄✏✚✍✚ is

✿ ✓✢❀❁✓❃❂✘❄✏✚❇✚ ✄ ■❅❏▲❑ ❀ ✰ ✓❍❂✘❄✏✚▼✠●❀❁✓❍❂✘❄✏✚ ❑
■✸❏ ❀ ✰ ✓❃❂ ❄ ✚ (4)

where consideration of the spherically averaged scattering in-

tensity leads to

❀❁✓❃❂❅❄✏✚ ✄❖◆◗P ❘❚❙✧❅❯❲❱ ✗ ✰ P ✓✟❳❲✚ ✵ (5)

✕ ❙✧❅❯❨❱ ❙
✥❉❩ ✧ ✗

✰ P ✓✺❳❨✚✸✗ ✰ P ✓✟❬✤✚✱❭✛❪ ❫ ❴✘❵❛❂✘❄ ❑❝❜ ✧ ✠ ❜ ✥ ❑
which is positive–de£nite (and is based on the Debye scat-

tering formula8) . In equation 5, there are
❘

ions within the

simulation cell which has a volume
◆

, ✗ ✰ ✓✺❳❲✚ is the scattering

factor of ion ❳ which has the atomic real–space co–ordinate

❞✪❡❇❢❤❣ ✐✦❥ ❦♠❧♥♦❣ ✐ ❥ ❦ ❧

✐✦❥ ❦q♣sr

t✉ ✈

✇②① ③✇②① ✇✇④②① ⑤④②① ⑥④②① ③④②① ✇④

④
⑦②① ⑧
⑦

⑨ ⑦②① ⑧

⑨ ④

Figure 1: (Color online) Comparision of the Lennard-Jones and

Dzugutov pair-potentials.

⑩ ❶ ❷ ❸ ❹ ❺ ❻
16 5.82 1.1 1.87 1.28 0.27 1.94

Table I: Table of parameters used in the Dzugutov potential (equation

6).

of ❜ ✧ , and ❭✛❪❨✓✺❼❽✚ is a Bessel function. The function ❀❁✓❃❂✘❄✏✚ of

a population member ✭ of each group ❊ is tested against the

function ❀ ✰ ✓❃❂✘❄✏✚ of the £ttest member in the group ❊ contain-

ing the same number of atoms as member ✭ . Equation 4 is

then used to compare these two functions and returns a single

number between zero and one. In a variable–supercell calcu-

lation it is possible for this function to become greater than

one when the structures are highly dissimilar, in which case

we set the value of
✿ ✓✖❀❁✓❃❂✘❄✏✚✍✚ to one.

III. RESULTS

The results presented here will use two different empirical

potentials, the Lennard–Jones potential9,10 and the Dzugutov

potential7 which is de£ned as❾ ✓ ✿ ✁ ✯ ✚ ✄ ❾ ❱ ✓ ✿ ✁ ✯ ✚ ✵ ❾ P ✓ ✿ ✁ ✯ ✚ (6)

where

❾ ❱❿✄ ➀ ✿❉➁ ✥✁ ✯ ✠✤➂ ➃➅➄✱➆ ➇➈✔➉❝➊ ➁ ★ ✿ ✁ ✯➌➋➎➍➏ ✿ ✁ ✯➑➐❿➍ (7)

❾ P ✄ ➂➒➃✂➄➓➆ ➔➈✔➉q➊ ➁♦→ ✿ ✁ ✯➌➋❿➣➏ ✿ ✁ ✯➑➐↔➣ (8)

with the constants de£ned in table I. A comparison of these

two potentials is shown in £gure 1. The Dzugutov potential

was originally formulated to simulate liquid systems, however

it has also been shown to have some interesting solid phases11,

and can also be used to form quasi–crystals7.

The Dzugutov potential is designed such that the force on,

and energy of, an atom moving within the potential go to zero

at ➣✪↕✛➙ . As is reported in Roth and Denton11 the Dzugutov

potential has three known stable phases at varying pressures:

BCC, the ➙ –phase and FCC.
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➛➜➝➟➞
➠➟➞➡❅➢s➤❍➥②➦

➧➩➨ ➫❝➤❍➦✟➭♠➭❅➯▼➦✺➨ ➥②➲✾➫

➳ ➵➸➺ ➻
➼ ➽➾➚ ➪
➸ ➶➹
➘ ➴➷ ➬
➮ ➱✃❐

❒s❮ ❒s❒ ❒②❮ ➠s❰ ❒s❮ ❰②❒ ❒s❮ Ï②❰

Ð Ñ ❮ ❰s❰
Ð Ñ ❮ Ñ ❰
Ð Ñ ❮ Ïs❰
Ð Ñ ❮ Òs❰
Ð Ñ ❮ Ós❰

Figure 2: (Color online) Summary of the enthalpies of the different

Lennard-Jones structures found for different £tness weights, which

controls how much the comparison factor is considered during selec-

tion for update and crossover. The values for Ô✙Õ×Ö✒Ø Ö are those from

Abraham and Probert 1. All points are averaged over 15 independent

calculations.
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õsó
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Figure 3: (Color online) Summary of the convergence times for the

results shown in £gure 2. The values for Ô÷Õ❿Ö✒Ø Ö are those from

Abraham and Probert 1. All points are averaged over 15 independent

calculations.

A. Results from the Lennard-Jones potential

The use of the comparison factor in the selection procedure

has a marked effect on the quality of the results produced as

seen in £gure 2. While the global minimum structure is hexag-

onal close packed (HCP) this structure is nearly degenerate

with the face-centred cubic structure (FCC) (with an energy

difference of less than
➏ùø ✞ûú 12). There are also a number of

other stacking–fault structures which exist in-between FCC

and HCP. The use of the comparison factor encourages the

system to explore and hence escape from these local minima

and £nd the HCP structure. With a £tness weight of ❋ ✄ ➏✒ø✖ü➩ý
£nding a HCP structure is much more likely.

The effect on convergence is interesting as seen in £gure

3. There is little increase in the mean number of generations

required for convergence, although there is a greater spread in

the values.

Figure 4 shows the results from a calculation performed

with ❋ ✄ ➏ùø✖ü➟ý
. We have included these results in particu-

lar because it shows the system going from an FCC structure

to a HCP structure through two intermediate stacking–fault

þ✱ÿ✁�✄✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎✏✑✡✌✒✞✓ ✔✖✕☛✔✗✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎
✘✚✙✌✛✢✜ ✡✌✣ ✛ ✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎

✏✑✓ ☎☛✓ ✔✖✕☛✔✤✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎

✥✧✦✩★✫✪✫★✫✪✩★✫✪

✬ ✦✫★✫✪✩★✆✭✩★✫✪
✮✠✦✩★✫✪✩✭✩★✆✭✩✪

✯ ✦✩★✰✭✱✪✫★✆✭✩✪

✲✳✛ ☎ ✛✢✜ ✡✌✝✠✓ ✴✌☎✶✵✚✕✷✔✹✸ ✛✢✜

✺ ✻✼✽ ✾
✿ ❀❁❂ ❃
✼ ❄❅
❆ ❇❈
❉❊ ❋
●❍

■✌❏❑✌▲❑✌■❑◆▼❑✌❖❑✌❏▼✌▲

P ■❘◗ ▲✌▲✌❏
P ■❘◗ ▲✌▲❚❙
P ■❘◗ ▲✌▲✌❖
P ■❘◗ ▲✌▲✌❯
P ■❘◗ ▲✌▲✌▼
P ■❘◗ ▲✌▲✌❑
P ■❘◗ ▲✌▲✌■

þ✱ÿ✁�✄✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎✏✑✡✌✒✞✓ ✔✖✕☛✔✗✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎
✘✚✙✌✛✢✜ ✡✌✣ ✛ ✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎

✏✑✓ ☎☛✓ ✔✖✕☛✔✤✂✆☎✞✝✠✟☛✡✌☞ ✍✞✎
✲✳✛ ☎ ✛✢✜ ✡✌✝✠✓ ✴✌☎✶✵✚✕✷✔✹✸ ✛✢✜

✺ ✻✼✽ ✾
✿ ❀❁❂ ❃
✼ ❄❅
❆ ❇❈
❉❊ ❋
●❍

■✌❏❑✌▲❑✌■❑◆▼❑✌❖❑✌❏▼✌▲

P ■❘◗ ▲✌▲✌❏
P ■❘◗ ▲✌▲❚❙
P ■❘◗ ▲✌▲✌❖
P ■❘◗ ▲✌▲✌❯
P ■❘◗ ▲✌▲✌▼
P ■❘◗ ▲✌▲✌❑
P ■❘◗ ▲✌▲✌■

❱❳❲✧❨❱❳❨✧❨❩✧❨❬✧❨❭ ❨❲✧❨❨
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Figure 4: (Color online) Plot showing convergence to HCP mini-

mum structure for a Lennard-Jones calculation with Ô❿Õ●Ö✒Ø❳❛✫❜ . The

stacking patterns of the minimum enthalpy solutions are shown next

to their appearance during the course of the simulation. The system

converged to a HCP structure in 55 generations, and by the ❝✩❞✩❛ th

generation all members were the same.

Fitness

Weight

Pure HCP Intermediate

HCP–FCC

Pure FCC

Ö✒Ø Ö❅Ö Ö ❡ Ö
Ö✒Ø❳❞✫❜ ❢ ❢ Ö
Ö✒Ø❳❜✍Ö ❢ ❡ Ö
Ö✒Ø❳❛✫❜ ❡ ❢ Ö

Table II: Table comparing the number of each ordered structure type

of the lowest enthalpy structure found (i.e. ignoring higher–enthalpy

structures found during the course of a GA minimization) for differ-

ent values of the £tness weighting factor Ô . Numbers given are out

of a total of 15 calculations.

structures.

These results are summarized in table II. The results from❋ ✄ ➏ùø ➏✏➏
are those presented in Abraham and Probert1.

B. Results from the Dzugutov potential

For results obtained using this potential an additional mod-

i£cation was made to the GA in the crossover step. Previously

the atom–number could either be kept £xed or be allowed to

vary in an unconstrained manner. For these Dzugutov calcu-

lations a third option was added, which is to allow the atom

number to vary within an allowed percentage of the original

number of atoms within the simulation supercell.

While this is not necessary in a £xed–cell size/shape calcu-

lation, for a variable–cell calculation it is essential. Without

this constraint it would be possible for the number of atoms to

keep decreasing with the cell getting smaller and smaller un-

til the minimum image convention is violated, at which point

the calculation will stop. It might also allow a calculation to

keep adding atoms at the crossover stage and then allow the
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Figure 5: The unit cell of the Dzugutov potential ❣ –phase looking

down the ❤ Ö✸Ö❥✐❝✷❦ direction.

Number of Each Phase Found

Lowest Higher Lower

Pressure Enthalpy Enthalpy Enthalpy

(MPa) Phase ❧ Phase BCC ❣ FCC Phase ♠
0 BCC 13 8 1 0 0

50 BCC 2 16 1 0 3

100 ❣ 1 9 11 0 1

150 FCC 1 0 0 15 6

❧ Data taken from Roth and Denton 11.♠ Where the term “Lower Enthalpy” refers to having lower enthalpy

than the phase in column 2.

Table III: Summary of results for 62–atom variable–cell, constrained

variable–atom–number calculations. 22 independent GA calcula-

tions were performed at each pressure.

cell to grow to accommodate them. In this way the calculation

would increase in size and take a longer and longer time for

each minimization step. This percentage cut–off keeps the ad-

vantages of a variable atom–number calculation without these

problems.

It is already known that the Dzugutov ➙ –phase has a com-

plicated 30–atom unit cell (see £gure 5) and so all calculations

had to have at least this many atoms. To prevent any bias of

the £nal results, we started each run with 62 atoms in the unit

cell and allowed the number of atoms to vary, in order to have

an unbiased search of a large enough phase space.

A summary of the Dzugatov results is given in table

III. Calculations were performed at four pressures, 0 MPa,

50 MPa, 100 MPa and 150 MPa which allows each of the three

structures suggested by Roth and Denton11 to be the most sta-

ble at at least one point during the experiment.

As can be seen in table III a number of GA minimizations

♥❴♦✩♦q♣❘rts✈✉◆✇②① ③✌④⑤ ♣❘rts✈✉◆✇②① ③✌④⑥✩♦✩♦q♣❘rts✈✉◆✇②① ③✌④⑦⑧✇②⑨t⑩ ❶✚❷✌❶❸♣❘rts✈✉◆✇②① ③✌④❹✆❺②❻❽❼ ✇✧❾ ❻ ♣❘rts✈✉◆✇②① ③✌④⑦⑧⑩ r◆⑩ ❶✚❷◆❶❸♣❘rts✈✉◆✇②① ③✌④

❿ ❻ r ❻➀❼ ✇✧s✈⑩ ➁②r✳➂✰❷✌❶✚➃ ❻❽❼

➄ ➅➆➇ ➈
➉ ➊➋➌ ➍
➆ ➎➏
➐ ➑➒ ➓
➔ →➣
↔

↕②➙➛ ➙➜ ➙➝✧➙➞ ➙➟ ➙➠ ➙➙

➝②➡ ➙
➟ ➡ ➙
➙②➡ ➙
➢ ➟ ➡ ➙
➢ ➝②➡ ➙
➢ ➛ ➡ ➙
➢ ➤ ➡ ➙
➢ ➠ ➙②➡ ➙

Figure 6: (Color online) Convergence plot of a variable–atom,

variable–cell calculation, starting from 62 atoms. This gives rise to

a previously unknown phase (labeled as phase “❸ ” in £gure 8). The

inset shows the complete calculation. The minimum–enthalpy struc-

ture found has 65–atoms and is shown in £gure 7.

Figure 7: The structure of the new phase “➥ ”, a 65–atom phase found

in generation 64 of the calculation shown in £gure 6.

found structures with a lower enthalpy than the previously

reported minimum enthalpy structure. In total three distinct

new structures were found. A plot showing the progress of a

GA minimization down to the new lowest–enthalpy structure

found is shown in £gure 6 with the structure itself shown in

£gure 7.

A plot comparing the radial distribution functions of all

the known and unknown phases of the Dzugutov potential

is shown in £gure 8, as well as the HCP phase. The three

new phases found are all signi£cantly different from the es-

tablished phases of this potential. Examination of these phases

suggests that the simulation cells correspond to primitive cells

and not supercells, but attempts to further characterize these

structures by space group have so far been unsuccessful. The

atomic co–ordinates of these structures are available online13

as supplementary material.

A plot showing the energy–volume curves for the six phases
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Figure 8: (Color online) Comparison of the radial distribution func-

tion, ÓÑÔ➀Õ×Ö , for the distinct lower–enthalpy structures found with

BCC, FCC, HCP and the ❣ –phase. The Dzugutov Potential is also

shown.

of the Dzugutov potential found in the course of this study is

shown in £gure 9. Phase “ ➍ ” is the most stable phase at all

positive pressures.

IV. CONCLUSIONS

In this paper we have developed a novel £tness function

that combines a traditional approach to £tness based upon en-

thalpy, with a simple structural comparison factor to £nd new,

more stable crystal structures within a GA for crystal struc-

ture prediction. This method penalises the presence of similar

structures within the population which prevents the GA stag-

nating in some local minimum. The GA method itself was

also extended to allow both the simulation supercell and the

Ø❚ÙtÚ✧Û✈Ü✖Ý Þ◆ßØ❚ÙtÚ✧Û✈Ü✖Ý à➻ßØ❚ÙtÚ✧Û✈Ü✖Ý á➻ßâ❘ã✩ã ä
å☛ã✩ã

æèç✢é êtë✚Ü❽ì✧í✱î❳ç✧ëðï✆ñí✰ò✈ó

ô õö÷ø
ùú ûü ý
þÿ �✁
✂✄ ö
☎✆

✝✟✞✠✟✡✠ ✞✡☛✡✡ ✞☞ ✡☞✟✞✌✟✡✌ ✞

✞☛✍ ✞

✎ ✞☛✍ ✡

✎ ✏ ✍ ✞

✎ ✏ ✍ ✡

✎ ✑ ✍ ✞

✎ ✑ ✍ ✡

✎ ✌ ✍ ✞

✎ ✌ ✍ ✡

Figure 9: (Color online) Energy–Volume curve for the Dzugutov po-

tential showing the three new phases calculated at zero pressure. The

curves for the ❣ –phase and structures “❸ ”, “❻ ” and “❷ ” were calcu-

lated assuming an isotropic expansion.

number of atoms within that supercell to vary. The number of

atoms must only be varied within £xed limits to prevent the

system size becoming too large or too small.

Studies using the Lennard–Jones potential showed the cal-

culation progressing through the FCC local minimum and

two other stacking–fault local minima before £nding the HCP

global minimum enthalpy structure. This was shown to be

repeatable and ef£cient.

When this new GA was used to study phases of the

Dzugutov potential at different pressures all the previously re-

ported zero–temperature phases were found, along with three

new phases, one of which is the most stable phase at all pos-

itive pressures. These new structures are markedly different

from the three previously–known phases. This clearly illus-

trates the power of this GA to £nd new crystal structures that

were hitherto unexpected.
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