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Stroboscopic wavepacket description of non-equilibrium many-electron

problems
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(Dated: March 18, 2008)

Abstract

We introduce the construction of a orthogonal wavepacket basis set, using the concept of stroboscopic

time propagation, tailored to the efficient description of non-equilibrium extended electronic systems.

Thanks to three desirable properties of this basis, significant insight is provided into non-equilibrium pro-

cesses (both time-dependent and steady-state), and reliable physical estimates of various many-electron

quantities such as density, current and spin polarization can be obtained. The use of this novel tool is demon-

strated for time-dependent switching-on of the bias in quantum transport, and new results are obtained for

current-induced spin accumulation at the edge of a 2D doped semiconductor caused by edge-induced spin-

orbit interaction.

PACS numbers: 71.15.-m, 72.10.Bg, 72.25.-b, 73.63.-b
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Wavepackets (WP) are a very useful concept when analyzing quantum mechanical scattering

processes, since they combine local and wave-like aspects on an equal footing. Some of their

more recent applications range from studies of the intrinsic spin Hall effect in semiconductors1,2,

spin-flip dynamics3, thermal averaging and its influence on interference patterns4 or transport of

an electron through Luttinger liquid5. However, the use of traditional WPs in degenerate fermionic

systems raises difficulties since the exclusion principle restricts the available eigenstates that are

superposed within a single WP. Stevens6 proposed wavepackets consisting of cut-off plane waves

which facilitated inclusion of the exclusion principle and have been used for various problems in

electronic transport7; however they do not directly relate to typical many-electron ensembles such

as the electronic ground state or moderate perturbations from it at zero temperature.

If we forego the time-dependent feature of WPs, the latter problem is conveniently resolved

with the introduction of Wannier functions8,9: by occupying a finite number of them, we locally

recover the exact eigenstates of a system of non-interacting electrons.

In this work we combine the advantages of Wannier functions for extended systems with the

time-dependent description of WP propagation. This is achieved by generalizing the orthogonal

WPs introduced by Martin and Landauer10 for ideal 1D leads. Our wave-packet basis set (WPB)

has following three properties: (1) each basis function (WP) is localized in space, (2) occupying a

subset of the WPB we recover the exact non-interacting many-electron ground state of a reference

Hamiltonian, (3) the WPB is generated by time propagation through successive time-steps, τ , of

an initial set of WPs, according to a reference Hamiltonian.

From the above properties it follows that we can view the whole basis set as a stroboscopic

pictures of a continuous time-evolution of a suitably chosen family of initial WPs (Fig. 1). Since

all WPs are orthonormal, each copy can be occupied by precisely one electron and in time τ each

electron will move into its neighboring’ WP. Similarly, if a single electron is in a superposition

of several WPs, in time τ it will be in the same superposition but of the WPs obtained from

the former by a single shift of the basis functions. This picture is valid as long as the reference

Hamiltonian is time-independent in the region where the concerned WPs are localized. We will

refer to this region as the bulk and to the rest, typically a much smaller region than the bulk, as

the scatterer. Similarly, the bulk (scattering) WPs are those WPs that are generated with the bulk

(bulk+scatterer) Hamiltonian.

To obtain the time-dependent dynamics in the scatterer one needs to perform a full time-

dependent simulation of the bulk WPs entering the scatterer. However, the scattering WPs will
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return into the bulk after some time, and there those WPs can once again be expanded into the

bulk WPB and propagated as moves of length τ between the bulk WPs, i.e. analytically. Hence,

the WPB offers a very simple interpretation of the processes as well as a framework to perform

numerical time-dependent simulations.

The consistency of the conditions (1) and (3) demands that the reference Hamiltonian posses

translational symmetry in the direction of propagation. Its eigenstates in the Bloch form will

be sufficient to create a basis such that each WP from the initial set will be spatially localized

and their time-propagated WPs will slowly disperse with increasing time. This property can be

satisfied only if the reference Hamiltonian is just that of the bulk. We may also construct the WPB

for the combined system where the reference Hamiltonian is that of bulk+scatterer, but it can be

easily seen to lead to very non-local (scattering) WPs, as demonstrated in Fig. 1. However, the

scattering-WPs’ basis can be easily expanded into the bulk WPB, a fact of which we will make

use later.

Definition of the WPB and its formal properties. To define the basis set let us take an ex-

tended system specified by the reference Hamiltonian Ĥ with a continuous spectrum of eigenen-
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FIG. 1: Two examples of an orthogonal stroboscopic wavepacket basis (shown are the squared amplitudes

of individual WPs). The white (scattering) WPs are obtained by propagation of the initial WP by a constant

time-step τ dependent on the width of the invovled energy band (inset). Due to the scatterer the WPs become

strongly delocalized (split). The alternative solid-green and green-meshed (bulk) WPs (right- and left-going

respectively) generate a WPB that is localized; the former can be easily expanded into the latter.
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ergies ε ∈ (ε0,∞).

Ĥ |ε,α 〉 = ε |ε,α 〉 .

To each eigen energy we will generally have a set of degenerate single-particle eigenstates26

|ε,α 〉 , α = 1,2, ...,Nε , forming all together a complete orthogonal whose normalization we

choose such that
〈

ε ′,α ′|ε,α
〉

= δ(ε − ε ′)δα ,α ′. (1)

From the above set we can generate an orthogonal and complete wave-packet basis set (WPB)

by first choosing the initial set of wave-packets

|n,0,α 〉=
1√
∆εn

∫ εα
n+1

εα
n

dε ′Uα ,α ′(ε ′)
∣

∣ε ′,α ′〉 , n = 0,1,2, ... (2)

for an arbitrarily chosen division of the spectrum into energy bands
{

(εα
n ,εα

n+1)
}∞

n=0
, α =

1,2, . . . ,Nα with bandwidths ∆εα
n = εα

n+1 − εα
n . The division into energy bands for each α must

cover the full spectrum of Ĥ but otherwise can be chosen so as to achieve good localization and

at the same time to suit the physical situation as discussed later. Uαα ′(ε) is a unitary, energy-

dependent matrix that may be further specified to lead to maximally localized initial sets of WPs,

in analogy with Wannier functions9, or to adopt the bulk WPB to the scattering process in the scat-

terer. In our present applications we will use Uα ,α ′(ε) = δα ,α ′ which is satisfactory and convenient

for our present purposes. All the functions {|n,0,α 〉}n are orthogonal by definition, since they are

linear combinations of eigenstates from disjunct energy bands.

The construction of the WPB is completed by forward and backward time propagation of the

initial set

|n,m,α 〉 = e−iĤmτn |n,0,α 〉 , m = ±1,±2, . . . (3)

by regular, band-dependent time steps τ α
n = 2π/∆εα

n . It is easy to verify that this choice of time

step guarantees orthonormality of consecutive wave-packets within each band

〈

n,m,α |n,m′,α
〉

= δm,m′. (4)

Due to the orthogonality of the WPs we can uniquely expand any eigenstate of the reference

Hamiltonian into the WPB with expansion coefficients (for ε ∈ (εn,εn +∆εn))

〈ε,α |n,m,α 〉 =
1√
∆εn

e−iεmτn. (5)
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Conversely, combining Eqs.2, 3 and 5 one obtains that

∑
m

|n,m,α 〉〈n,m,α |ε,α 〉= |ε,α 〉 , (6)

from which follows that the WPB is also complete since the original set of eigenstates is a complete

one.

It has been already pointed out that the division into bands can be exploited to optimize the basis

set to the particular physical problem. A typical choice of the energy bands is to take εα
n = EF

for a cetrain n and all α , where EF is the Fermi energy of the system. This way the ground-state

is described by occupying all of the WPs in the bands below EF . This means that we need to

consider only few WP or electrons even though we are describing the local ground state properties

of the infinite many-electron system exactly. Similarly, we can model non-equilibrium situation

by imposing different effective Fermi energies for WPs with different values of α .

We will now demonstrate the use of the WPB on several examples from two rapidly develop-

ing areas of condensed matter physics - time-dependent and/or ab initio simulations in quantum

transport, and spin accumulation due to spin-orbit coupling in 2D systems.

Time-dependent quantum transport. Understanding the quantum transport of charge through

nanojunctions made of individual atoms or molecules will be essential for progress in nanoelec-

tronics. Due to the short spatial scale and short times involved it is clear that transient phenomena

play an important role in understanding the functionality of nanodevices. At the same time, it has

been recognized that the correct treatment of interactions demandes a time-dependent formulation

of the density- or current-density functional theory11. While several exact methods have been put

forward12,13,14,15, due to their inherent complexity, they give restricted insight into the processes

involved. Here we show that the WPB can provide this insight in an elegant fashion, as well as

quantitative estimates for quantities of interest such as transient time, oscillations or steady-state

current.

As an example let us consider the simplest case possible - a 1D gas in which at time t = 0 a

finite potential difference is applied (Fig. 2). This system was studied previously within the non-

partitioning approach13. Anticipating the application of the bias ∆V , we split the occupied part

of the spectrum of a Hamiltonian for free electrons into occupied bands 0 to ∆V , ∆V to EF −∆V

and EF −∆V to EF , and two unoccupied bands EF to EF +∆V and EF +∆V to ∞. The continuum

eigenstates fulfilling Eq. 1 are energy-normalized plane-waves 〈x|ε,α 〉= eiαkx/
√

2πk, k =
√

2ε ,

and α = ± for right- and left- going states respectively. (The resulting WPs are then identical to
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V∆

EF

t<0 t=0 τt=2t=τ

FIG. 2: Abrupt switching on of the bias in a simple 1D model of quantum transport of electrons. The

three bands cover the occupied part of the spectrum. In response to the bias ∆V , the right-going WPs for

x > 0 (the previously unoccupied band) start to fill the WPs from the left and the occupied left-going WPs

for x < 0 become empty. The finite extent of each WP causes oscillations, with period τ , of the resulting

current measured at any fixed x.

those employed by Martin and Landauer in the analysis of quantum noise10.)

Switching on the bias ∆V at x = 0 and t = 0 will energetically align WPs from the highest

occupied band and localized in x < 0 with the WPs from the lowest unoccpied band and localized

in x > 0. A transient phenomenon for t < tEF
∼ 2π/EF < τ = 2π/∆V , which can be analyzed

only by actually performing a time-dependent simulation, will be related to dynamics of those

occupied WPs that had for t < 0 nonzero amplitude for both x < 0 and x > 0. Apart from that the

whole many-electron dynamics consists of consecutive filling of the empty right-going WPs for

x > 0 and depleting the left-going WPs for x < 0. From this it follows that the current at fixed

x0, e.g. x0 = 0+ will grow to its steady value I = 2e/τ = ∆V/π (factor 2 for spin degeneracy of

the WPs) in time tEF
, accompanied by oscillations with period T ∼ τ as the first WPs for x > 0

start to get occupied. The latter will decay as the tails of all WPs extending to x0 get occupied.

This behavior has also been obtained by with exact calculations based on non-equilibrium Greens

functions within a wide band model13.

The analysis of a system with a tunneling barrier at x = 0 (of transmission t(ε) ) can be ac-

complished in a similar way. This time, it will not be a single whole WP for x > 0 being filled,

but only a fraction of it, according to the expansion of the scattering WP into the bulk WPs (see

Fig. 1). Therefore, the steady current I = 2|〈t(ε)〉|2/τ = (T/π)∆V , where 〈 〉 means average over

the energies in the relevant band, and this steady value will be accompanied by oscillations decay-

ing in amplitude. Furthermore, the phase shift of the scattering WPs carries information about the

tunneling interaction time and density depletion/increase around the barrier. The use of the WPs’

phase shift is discussed further in the application to spin accumulation below.

This result is valid as long as t(ε) does not change significantly within the bands so that ex-
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pansion of a single scattering WP into one transmitted and one reflected bulk WP is satisfactory.

If this is not the case the scattering WPs, while still containing exactly one electron will be more

delocalized and the contribution to the current at x0 will have significant contributions from many

consecutive bulk WPs. Clearly, under such circumstances one can gain physical insight by sim-

ply introducing several narrower energy bands to suppress the energy variation of transmission

amplitude within these bands, so that the nonlinear character becomes apparent.

This discussion also indicates that the WPB representation can be used not only as a means

to understand the physics behind non-equilibrium transport, but also as a method to perform nu-

merical ab initio time-dependent simulations within the TDDFT framework, i.e. accounting for

time-dependent self-consistent field. The time-evolution of the bulk WP as they enter the scatter-

ing region needs to be done numerically, but as soon as the scattered WP leaves this region, by

expanding it into few bulk WPs one can perform its time evolution algebraically in a closed form.

The density, current density or any other many-electron property is obtained by summing contri-

butions from all stroboscopic images of the propagated WP. The implementation of this scheme

will be reported elsewhere16.

We also mention that within the WPB-based picture, the memory-loss theorem13,17, stating the

independence of the steady state on the transient changes in external potential, is very easy to

understand: from the moment when the potential attains its long-time static form, it takes only

a finite time until the WPs experiencing the transient potential leave the scatterer into the bulk,

never to return. After that the occupancies of all the WPs inside this region are determined by the

scattering of the bulk WPs within the long-time static potential.

Edge-induced spin Hall effect. It has been recently shown that the interplay between nonzero

Rashba-Bytchkov spin-orbit (SO) coupling, the scattering off the edge and nonzero electric current

along this edge leads to a universal spin polarization localized close to the edge of the 2D gas in

GaAs quantum wells18,19. In parallel, several other authors20,21,22 considered the spin-orbit (SO)

coupling due to nonzero gradient in potential in-plane,

VSO = −αE [σ̂ × ∇ V (r)] · p̂, (7)

where αE is the strength of the SO coupling, σ̂ is the operator of spin, V (rrr) is the confining

potential at the edge and p̂ the momentum operator27. The edge-SO scattering, analogous to the

mechanism behind impurity scattering in the bulk of the 2D gas, seems to lead to effects similar

to the Rashba-Bytchkov mechanism.
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Both of these effects can be understood and analyzed within the WPB description, but here we

concentrate on the edge-SO scattering. We consider a 2D electron gas confined in the xy(x > 0)

half-plane, with its edge being described by a model potential V (rrr) = Wθ(−x) where θ is the

step function. This model is appropriate for typical doping densities n ∼ 1022cm−2 where the

Fermi wavelength λF ∼ 20nm is much larger than atomic spacing, principally determining the

abruptness of the edge. The current is imposed in the y direction. Fourier transforming y → ky,

the SO term takes the form VSO = αE σ̂zWδ(x)ky, i.e. electrons with up and down spins in the

z direction experience different scattering potential at the edge. For each ky we construct a WP,

localized in the x direction and constructed from the eigenstates of a bulk 2D electron gas. If we

time-propagate an initial WPs with an average kx pointing towards the edge and identical for both

up and down spin states (left-going WP), the reflected WPs for up and down spins will have two

different phase shifts φ↑/↓, and hence a mutual spatial shift lS with respect to one other. For the

model described here the shift is

lS = 〈 d

dkx

(φ↑−φ↓)〉 = −4αE −8(2W −〈e〉)α 3
E +O(α 4

E), (8)

where the averaging is over the energy band of the considered WP and e = (k2
x + k2

y)/2. We know

that WPs separated by the time-step τ are orthogonal and we may place one electron in each WP.

The non-equilibrium situation can be set in the standard fashion: occupying the WPs with ky > 0

up to EF +∆V and those WPs with ky < 0 only up to EF . Deep inside the 2D bulk this WPs’ shift

will not contribute to any spin polarization because a series of occupied WPs within each band

gives homogeneous density. However, since the up- and down-spin WPs are shifted, this shift

must be directly related to the spin accumulation close to the edge so that to first order in αE

n↑−n↓ ∼
∫

occ

dky

2π
lSn(ky) ∼−2αE

π2

√

2EF∆V, (9)

where n(ky) =
√

2EF − k2
y/π is the number of initial WPs with momentum ky. The dependence

on the magnitude of the confinement, W comes only in the 3th order, which follows from Eq. 8

and 9
d

dW
(n↑−n↓) = −8α 3

E

π2

√

2EF∆V, (10)

and hence the actual magnitude of the confinement potential is rather unimportant. Both of the

results, Eqs. 9 and 10, agree very well with more involved and exact Green’s function based

treatments which will be reported elsewhere23, and demonstrate the usefulness of the WPB concept

not only for qualitative but also for reliable quantitative estimates.
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It is interesting to compare the edge-SO scattering with the Rashba-Bytchov mechanism. The

latter gives19 n↑− n↓ = −α 2
R(2EF)−3/2∆V/(12π2), where αR is the strength of the Rashba cou-

pling; in the 2D GaAs systems it attains values24 αR ∼ 1.8×10−10eV cm = 1.55×10−2a.u.∗. On

the other hand, the estimates for αE in GaAs quantum wells give25 αE ∼ 5.3Å2 = 5.53×10−4a.u.∗.

The smallness of both αE and αR justifies the lowest order expansions used above. Finally, taking

for the Fermi energy, EF = 36meV= 3.01a.u.∗ corresponding to densities n ∼ 1012cm−2 we find

that the Rasba-mechanism is three orders of magnitude smaller than the edge spin-orbit scattering.

In principle this might change at very low densities since the Rashba-mechanism increases while

the edge SO scattering decreases with decreasing the Fermi energy (or density) but for such low

densities the behavior will be dominated by localization and interactions effects.

In conclusion, our stroboscopic wavepacket basis permits both physical understanding and

quantitative predictions to be obtained for a variety of non-equilibrium processes in which an

extended system of electrons is subject to time-evolution while being coupled to bulk reservoirs.

The stroboscopic construction permits the time-evolution of the system to be described straight-

forwardly, while the energy-localisation of the wavepackets within precise energy bands ensures

that the Pauli principle is properly respected in coupling to the reservoirs.

The authors acknowledge fruitful discussions with Matthieu Verstraete. This work was funded

in part by the EU’s Sixth Framework Programme through the Nanoquanta Network of Excellence

(NMP4-CT-2004-500198).
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