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The charge density of semiconductors in the GW approximation
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t Department of Physics, University of York, Heslington, York YO1 5DD, UK
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We present a method to calculate the electronic charge density of periodic solids in the GW approx-
imation, using the space-time method. We investigate for the examples of silicon and germanium
to what extent the GW approximation is charge-conserving and how the charge density compares
with experimental values. We find that the GW charge density is close to experiment and charge
is practically conserved. We also discuss how using a Hartree potential consistent with the level of
approximation affects the quasi-particle energies and find that the common simplification of using

the LDA Hartree potential is a very well justified.

I. INTRODUCTION

Amongst the established methods to calculate the elec-
tronic properties of solids, Hedin’s GW approximation! is
notable for its unrivalled success in predicting the energy
gaps of semiconductors and insulators (e.g. Refs. 2-5).
Unlike alternative methods which are based on density
functional theory and describe ground state properties
by mapping the many-electron problem onto an effective
one-electron problem, it seeks to find a solution for the
exact one-particle Green’s function of the many-electron
system to which it is applied. With this knowledge, a
wide range of properties of the system under considera-
tion can be accurately described, among them the opti-
cal excitation spectrum, the density of states, the charge
density and the total energy.

As an exact solution of the many-electron problem re-
mains today as elusive as ever, any attempt to determine
the Green’s function has to rely on skilled approxima-
tions. The problem of finding the exact Green’s function
of a system is equivalent to finding its self-energy. In the
GW approximation, this quantity is approximated by the
product of GG, the Green’s function, and W, the screened
Coulomb interaction; hence the name.

GW calculations for semiconductors so far have con-
centrated on the optical excitation spectrum, the one
area where GW has had its most striking successes, but
other aspects of electronic structure have not been in-
vestigated with this method for real materials. This is
largely due to the prohibitively large numerical effort.
Recently, however, a new technique has been developed,
the GW space-time method,® that makes GW calcula-
tions much faster and allows a precise computation of the
energy dependence of the self-energy without recourse to
plasmon pole models. This opens up the way to new
applications for the GW formalism.

In this paper we will concentrate on the electronic
charge density” of semiconductors, present a new tech-
nique for extracting it from the Green’s function at GW
level and show for the first time results of GW charge
density calculations for real materials at the example of
Si and Ge, for which very careful analyses of the experi-

mental data are available for comparison.®? We also in-
vestigate the problem of charge conservation and the in-
fluence of using a Hartree potential consistent with the
level of approximation on the quasi-particle spectrum.

Atomic units are used throughout unless otherwise
noted.

II. THEORY

The central equation of the GW approximation is the
expression for the self-energy:

Y(r,r’;7) =iG(r,v’; )W (r,r'; 7). (2.1)

Full self-consistency in the GW approximation would
mean that the Green’s function that enters into Eq. (2.1)
were itself a solution of the equation

(—%Vz + Vet (r) + V9 () + ESC(r,r’;w)) G(r,r',w)
=—if(r,v’) (2.2)

where the superscript SC for ¥ and the Hartree potential
Vi indicates that these quantities have been determined
self-consistently. In the case of the Hartree potential this
means the charge density at GW level has to be known.
Such a self-consistent GW calculation has never been
done for a real system and there are indications'® that
self-consistency will destroy the good agreement between
the computed and experimental quasi-particle spectrum.

In this paper we employ the usual one-iteration non-
self-consistent GW approximation. However, we will de-
termine the charge density and thus the Hartree potential
self-consistently at a level where the self-energy is kept
fixed at its first-iteration value. The charge density itself
is an indicator as to whether such an approach is justi-
fied, as it has been shown by Baym and Kadanoff'!:!2
that generally only self-consistent approximations to the
self-energy conserve particle number strictly. We will
therefore monitor carefully whether our approach vio-
lates particle number.



The traditional way to set up and solve the GW equa-
tions has been to express and compute all quantities in
the reciprocal space and energy domain. This involves
sums scaling with the fourth power of the number of
plane waves N used to represent the wavefunctions. Ro-
jas, Godby and Needs® have shown recently that using
the most appropriate representation at the various stages
of the computation, either real space and time or recip-
rocal space and energy, and changing between represen-
tations by means of Fast Fourier Transforms, can bring
this scaling down to N2, thus leading to very significant
time savings.

Another point noted by Rojas et al. is that a detailed
calculation of all relevant quantities along the imaginary
time or imaginary energy axis is possible without recourse
to a plasmon pole or similar model. This is because on
the imaginary time axis the Green’s function, the po-
larisability and the self-energy are all rapidly decaying
smooth functions which can easily be represented on a
regular grid. Transformation to imaginary energy via an
FFT is straightforward. If the properties of ¥ on the
real energy axis are needed, analytic continuation with
the help of model functions is possible. However, for the
calculation of the charge density alone, the knowledge
of the self-energy on the imaginary energy axis only is
sufficient.

Having determined the self-energy ¥ on the imaginary
energy axis as described in Ref. 6, with

S(r,r'siT) = iGo(r, v’ i)W (v, 1’5 i7), (2.3)

where Gy is the Green’s function at LDA level, the
Green’s function G at GW level obeys the Dyson equa-
tion

G(iw) = Go(iw) + Go(iw) x
X (E(zw) +AVy — Ve — 60) G(’Lu)) (24)

where G, Go, X, AVy and V,. in this notation are to
be understood as matrices in a plane-wave basis and ma-
trix multiplication of the factors on the right hand side
is implied. AVy is the change in the Hartree potential
due to the density change and has to be determined self-
consistently, V. is the LDA exchange correlation poten-
tial and €p represents the shift in the Fermi level with re-
spect to the vacuum in the GW calculation from its value
in the LDA. The use of this shift ¢) was first proposed by
Hedin® but is often neglected in GW calculations. We
use it here to introduce an element of self-consistency
into the equations by ensuring that the Fermi energy is
the same before and after applying the GW correction.
Eq. (2.4) can directly be solved by matrix inversion.

The relationship between charge density p and Green’s
function is given by the equation

9 [0
p(r) = ——/ dwImG(r, r;w)
7T

—0oQ

(2.5)

where it is assumed that the zero of energy is chosen at
the Fermi level.

Since we know the charge density at the LDA level of
approximation we only need to evaluate the charge den-
sity difference Ap between the LDA and the GW result.
The Green’s function has poles in the second and fourth
quadrant of the imaginary plane, just infinitesimally off
the real axis. Using Cauchy’s Theorem and the fact that
for complex energy z AG(z) vanishes quadratically as
|z| — oo, where AG = G — Go, we know that the charge
density difference can just as well be calculated by an
integration along the imaginary energy axis:

0
Ap(r) = —%/ dwReAG(r,r;iw). (2.6)

This means that the knowledge of the Green’s func-
tion along the imaginary axis is sufficient to calculate
the charge density at GW level without the need for ex-
plicit analytic continuation to the real energy axis, which
would inevitably have to involve some sort of model.

In theory, the integration of AG(iw) according to Eq.
(2.6) is straightforward. In practice, in order to achieve
satisfactory convergence in a numerical integration, one
would have to include such a large number of energy
points in the integration, as to make it prohibitively ex-
pensive, because for each energy point the self-energy
would first have to be computed and the Dyson equation
solved. On the other hand, we know that the self-energy
as a function of imaginary energy decays quadratically
for large energies. This allows us for large w to make an
expansion of G(iw) in powers of 1/w and neglect terms
of order higher than 1/w?. The perturbatively treated
high-energy tail can be integrated analytically from some
energy wq to infinity, as we will show in the appendix.
Up to wy we integrate Eq. (2.6) numerically. wq is thus
treated as a convergence parameter.

For each new Ap we compute a new AVy and solve
Egs. (2.4) and (2.6) repeatedly until AVy is stable.

III. RESULTS

Before we can make comparisons to experimental re-
sults we have to account for the fact that we work in
the pseudopotential approximation. This means that the
charge density computed as described in the previous sec-
tion contains no contribution from the core electrons and
the contribution of the valence electrons is modified in the
core region as well.

We follow Nielsen and Martin'® in writing the total
charge density as the superposition of the atomic densi-
ties plus a deformation density pgef, which is defined in
reciprocal space as

pdcf(G) - psolid,ps(G) - S(G)patom,ps(G);

where G is a reciprocal lattice vector, S the structure
factor of the crystal and psoliq,ps the charge density gen-
erated by the pseudowavefunctions of the valence elec-
trons in the solid and patom,ps the same in the free atom.

(3.1)



The Fourier coefficients of the total charge density in the
solid are then computed according to

psolid(G) = S(G)patom(G) + pdef(G)7 (32)
where patom is the full charge density of valence and core
electrons of a free atom. This approach assumes rigid
cores, in line with the assumptions underlying the pseu-
dopotential method.

Where we find that the charge in the GW approxima-
tion is not strictly conserved, we normalise the density
by multiplying all structure factors computed according
to Eq. (3.2) by a constant that assures the overall correct
number of electrons per unit cell.

The results we present in this section come from LDA
calculations that were performed with pseudopotentials
generated by the Hamann method,'* a plane-wave cut-
off of 17Ry for Si and 20Ry for Ge and 10 special k
points. For Ge relativistic effects were included in the
pseudopotential but no spin-orbit coupling was taken into
account in the solid. A Ceperley-Alder exchange cor-
relation potential'® was used in the parametrisation by
Perdew and Zunger.'® In the GW space-time calculation
we used 65 bands truncated to 169 plane waves from
the LDA calculation. The time grid comprised 60 points
spaced at 0.314 a.u. which were zero-padded to 120 points
before transformation to imaginary energy, giving an wy
of 10 Hartrees. Other parameters of the GW calculation
were as described in Ref. 6.

Table I shows our computed structure factors of the
pseudo valence charge of silicon for several reciprocal
lattice vectors G. The second column shows the LDA
values and the third the GW correction Ap. Ap is ac-
tually the difference between the normalised GW den-
sity and the LDA density. Without normalisation the
GW valence density integrates to a total of 8.0233 elec-
trons per unit cell (instead of 8), a charge violation of not
quite 0.3%. This observation of a very small but finite
charge violation is in line with rigorous analytical results
by Schindlmayr for a model system.!” The fourth column
lists the (normalised) GW correction to the density that
results if the Hartree potential is kept fixed at its LDA
value. As one would expect, this unscreened correction is
larger. However, because contributions from all energies
are integrated over and we are looking at non-zero G the
screening effect is much weaker than one might naively
expect by scaling down with the dielectric constant. The
LDA structure factors of the pseudo valence charge are
themselves not very meaningful, as they depend to some
extent on the specific pseudopotential used. They are
only listed to give an idea of the relative magnitude of
the GW correction.

Table II shows the structure factors of the total den-
sity of Si for several reciprocal lattice vectors. The sec-
ond column lists the LDA values and the third the (nor-
malised) GW values. The biggest contribution comes
actually from the cores, as the comparison with the va-
lence structure factors in Table I shows, so that now the

difference between the LDA and the GW structure fac-
tors looks even less significant. Because of the weight
of the core contribution the lattice constant has a cru-
cial influence on the structure factors. We have used for
both the LDA and the GW calculation the experimental
value of 5.43A. In the last column we list experimental
static (zero temperature) structure factors for compari-
son. They are the Fourier transforms of a model fit'88
to experimental data. The agreement of both GW and
LDA with experiment is very good.

Table IIT gives the valence structure factors of germa-
nium and the GW correction to it. The raw GW valence
density integrates to 8.004 electrons per unit cell (instead
of 8), a charge violation of 0.05%. The values shown are
for the normalised density and values for the unscreened
correction are given as in Si. Table IV compares the full
LDA and GW density structure factors in bulk Ge with
experimental static structure factors from Ref. 9 (fit C
in their Table IIT). The agreement of both LDA and GW
values with experiment is again very good. We have used
a Ge lattice constant of 5.66A in LDA and GW calcula-
tions.

Note that the structure factors listed in the tables have
to be multiplied by the diamond lattice structure factors
S(G) to get the Fourier coeflicients of the charge density
in the crystal as expressed by Eq. (3.2).

Small though the differences between the LDA and
GW densities are, we can see that for both Si and Ge
the GW charge in real space is slightly less concentrated
near the atom sites and moves a little into the intersti-
tial and bonding regions. As a trend this goes into the
right direction since it is known that the LDA tends to
accumulate too much charge near the atoms. Figs. 1 and
2 show the charge density differences in Si and Ge along
the edge of a conventional cell between two atom sites.

We give a list of quasiparticle energies at several sym-
metry points for Si in Table V and for Ge in Table VI.
The second column gives the values with the Hartree po-
tential taken at LDA level and the third with a Hartree
potential which uses the GW density. One can see that
the influence of AVy on the quasi-particle energies is very
small.

IV. CONCLUSION

The results presented in the previous section show that
in the materials we have investigated the GW approxi-
mation can for most practical purposes be considered to
be charge conserving. It could be demonstrated that the
charge density is very close to experimental values and
also little different from the density at LDA level. This
gives support to the common practice of computing the
quasi-particle corrections to the LDA eigenvalues without
adjusting the Hartree potential. Adjusting the Hartree
potential to the GW density has only a small effect on
the quasi-particle energies.



V. APPENDIX

To show how we treat the high-energy tail of the inte-
grand in Eq. (2.6) let us rewrite Eq. (2.4) in the form
G(iw) = F~*

(iw)Go(iw), (5.1)

F(iw) = (1 — Go(iw) [Sgc(iw) + AV — Voo — €9]).
(5.2)
For large w, as G decays as 1/w, we can expand F~!

in powers of Gy, keeping in mind that ¥ itself contains
one factor Gg. To first order in G then

lim F~!

w——00

(iw) = 1 + Go(iw) [Se + AV — Vi — 0],
(5.3)

where 3, is the exchange part of the self-energy that does
not itself depend on the high energy tail of Gy,

Em (zw) = GO (0)‘/:3

where V. denotes the inter-electronic Coulomb interac-
tion.
To this order of approximation then

(5.4)

wlgrgo AG (iw)
= Go(iw) [Ez + AVy — ch] Go(iu)). (55)
After a few transformations we can find from this
lim ReAG(r,r;iw) =
S5 {Re [t Worir) P (1)) £330
k nn’
—Re [Wac(1) Wk (1) Paw (K] Fi (@i K) | (5.6)
where
M (1) — 1
frm (Wi k) = Re T r— (5.7)
@) 1
R e e A
k)= Y U(G)[2:(k, G, G
G,G’
+ AVE(G = G') = Voo (G = G')] U,k (GY). (5.9)

The advantage of this formulation is that the en-
ergy dependent parts can be integrated analytically. We
therefore split up the integration in Eq. (2.6) into two
parts, the first of which is performed numerically up to
some suitably chosen value wg and the remainder of the

integral from wy to —oo is evaluated analytically by using
the relationship

/ FD, (1) ()

1 |:a,rcta,n _wWo __
_ Wik —Wy 1/ W
1 wo/Wnk

Wik 1+(wo/wnk)?

arctan w“’—"k if Wik # Wik

if Wnk = Wn'k

and

wo 9
[ 200w
1 wgiwgkz if Wnk 7é Wn'k
nk 9
if Wnpk = Wn'k

1
— 2(w>2—w<?2)
1
2(w>2+w<?2)

>

with w= = min (Jwnkl, lwne ), w” = max (Jwnkl, lwne|)
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TABLE I.  Structure factors (absolute values) of the
pseudo valence charge density of Si [e/atom] at LDA level and
the correction from the GW approximation with and without
adjusting the Hartree potential.

G LDA valence Ap Ap




(Vi GW) (Vi LDA)
111 1.2487 -0.0054 -0.0076
220 0.0323 -0.0035 -0.0043
311 0.2429 -0.0023 -0.0023
400 0.1877 0.0009 0.0012
331 0.0601 0.0021 0.0023
422 0.0685 0.0008 0.0010
333 0.0755 -0.0003 -0.0001

TABLE II. Structure factors (absolute values) of the total
charge density of Si [e/atom].

G LDA aw Exp.
111 10.7210 10.7157 10.713
220 8.6536 8.6501 8.655
311 8.0205 8.0182 8.027
400 7.4414 7.4423 7.454
331 7.2256 7.2277 7.246
422 6.6984 6.6992 6.712
333 6.4086 6.4083 6.420

TABLE III.  Structure factors (absolute values) of the

pseudo valence charge density of Ge [e/atom] at LDA level
and the correction from the GW approximation with and
without adjusting the Hartree potential.

G LDA valence Ap Ap

(Vu GW) (Vg LDA)
111 1.3181 -0.0169 -0.0239
220 0.0035 -0.0086 -0.0107
311 0.2201 -0.0036 -0.0033
400 0.2052 0.0025 0.0037
331 0.0974 0.0037 0.0040
422 0.0865 0.0027 0.0033
333 0.0726 0.0017 0.0023

TABLE IV. Structure factors (absolute values) of the total
charge density of Ge [e/atom].

G LDA GW Exp.
111 27.5205 27.5036 27.453
220 23.6819 23.6734 23.677
311 22.1675 22.1639 22.138
400 20.3205 20.3230 20.273
331 19.4545 19.4582 19.509
422 18.0361 18.0388 18.066
333 17.2916 17.2939 17.315

TABLE V. Quasi-particle energies of Si [eV].

level LDA  GW + VEPA  qw + VgV Exp.
e -11.88 -11.91 -11.91 -12.50
Tasry 0.00 0.00 0.00 0.00
Tise 2.59 3.26 3.26 3.05
Ty, 3.26 4.05 4.03 4.1
X1v =777 -7.88 -7.88 -8.18
Xy -2.81 -2.92 -2.92 -2.9
Xic 0.62 1.24 1.25 1.25
Xae 10.11 11.00 10.99 10.95
Loy, -9.56 -9.64 -9.64 -9.3
L1y -6.95 -7.09 -7.08 -6.7
L, -1.16 -1.22 -1.22 -1.2
L. 1.46 2.14 2.14 1.65
L3 3.34 4.07 4.08 4.15
Lo, 7.73 8.34 8.36
Gap 0.49 1.10 1.11 1.17
TABLE VI. Quasi-particle energies of Ge [eV].
level LDA GW + VEPA  gw + vEW Exp.
Tic -12.63 -12.79 -12.79 -12.60
Tosre 0.00 0.00 0.00 0.00
Tore 0.01 0.66 0.63 0.89
Tise 2.61 3.11 3.14 3.21
X1y -8.83 -8.97 -8.98 -9.3
X -2.98 -3.11 -3.09 -3.15
Xic 0.68 1.08 1.12 1.3
Xae 9.56 10.32 10.32
Loy, -10.61 -10.76 -10.76 -10.6
L1, -7.54 -7.69 -7.68 -7.7
L, -1.35 -1.40 -1.40 -14
L 0.14 0.64 0.66 0.74
L3 3.77 4.29 4.32 4.3
Lo, 7.24 7.65 7.73 7.8
FIG. 1.  Difference between the GW and LDA charge

densities” of Si (atomic units) along the edge of a conventional
cell between two atom sites. Distance in Bohr radii. The GW
correction slightly increases the concentration of electrons be-
tween the atoms.

FIG. 2.  Difference between the GW and LDA charge
densities” of Ge (atomic units) along the edge of a conven-
tional cell between two atom sites. Distance in Bohr radii.
The GW correction slightly increases the concentration of
electrons between the atoms.
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