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Abstract

Time delays for an intense transverse electric (TE) wave propagating through a Kerr-type non-

linear slab are investigated. The relation between the bidirectional group delay and the dwell time

is derived and it is shown that the difference between them can be separated into three terms. The

first one is the familiar self interference time, due to the dispersion of the medium surrounding the

slab. The other two terms are caused by the nonlinearity and oblique incidence of the TE wave.

It is shown that the electric field distribution along the slab may be expressed in terms of Jacobi

elliptic functions while the phase difference introduced by the slab is given in terms of incomplete

elliptic integrals. The expressions for the field intensity dependent complex reflection and trans-

mission coefficients are derived and the multivalued oscillatory behavior of the delay times for the

case of a thin slab is demonstrated.
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INTRODUCTION

It is well known that tunneling represents a typically quantum-mechanical phenomenon.

Soon after the discovery of tunneling, Condon raised the question of the speed of the tunnel-

ing process (in 1931) [1]. The papers published in the nineteen fifties [2–4], have provided

analytical expressions for the time delays, suggesting those times to be very short but finite.

Since then, the matter of defining various delay times and the interpretation of obtained ex-

pressions, has been the focus of research of both theoretical and applied quantum mechanics,

which is illustrated by the large number of review papers on this subject [5–7].

On the other hand, given the deep analogy between the Schrödinger equation and the

Helmholtz equation, and the fact that the tunneling is present in the propagation of elec-

tromagnetic waves through optically heterogeneous media, a certain amount of attention

has been devoted to the problem of finding delay times in these conditions, as well. In

that respect, the following papers have been influental: a paper by E. Winful [8], and the

experimental work of Enders and Nimtz [9], Steinberg [10] and Spielmann [11].

In this paper, we apply the formalism of delay times to investigate the temporal aspects

of TE wave propagation through a nonlinear slab [12]. At perpendicular or only slightly

oblique incidence, such as assumed in this paper, the TE waves are always propagating

through the nonlinear slab (i.e. there is no evanescent decay) so, strictly speaking, there

is no tunneling phenomena. However, we believe that the delay times are a useful concept

even in this case since they cast more light on the very complicated dynamics of nonlinear

wave propagation.

THEORETICAL MODELLING AND NUMERICAL EXAMPLES

When illuminated by light of a very high intensity, such as a laser beam, some media

exhibit a highly nonlinear response. If the material may be considered isotropic, its relative

permittivity, ε, may be written as

ε = εL + αNL|E|2 (1)

with only the lowest order of nonlinearity taken into account. Consider a slab of thickness

L made of such a material, placed in a material with relative permittivity ε1 and irradiated

with a transverse electric (TE) wave as in Fig. 1. We shall label the axis perpendicular
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FIG. 1: Diagram shows a TE wave being obliquely incident on a Kerr-type nonlinear slab.

to the slab with x, let the electric field be pointed along the y-axis and assume that the

propagation constant along the z-axis is β =
√

ε1k0 sin θ, where θ is the angle of incidence

with respect to the x-axis. Further, assume that the angular frequency spectrum of the wave

is sharply centered around ω and, therefore, that the vacuum propagation constant of the

TE plane wave incident on the slab is k0 = ω/c. The Helmholtz equation within the slab

reads

d2Ey

dx2
+

(

κ2 + αNLk2
0 |Ey|2

)

Ey = 0, κ2 = εLk2
0 − β2,

0 <x < L,

(2)

with Ey being the complex amplitude of the y component of the electric field. Introducing

Ey = η exp(iφ(x)), with real η > 0 and φ, (2) can be separated into two equations involving

real functions. From the imaginary part, we obtain

η2dφ

dx
= C1 = 2ωµ0Px, (3)

where Px is the x-component of the time-averaged Poynting vector P. The real part of (2)

leads to
(

dη

dx

)2

= C2 − C1η
−2 − κ2η2 − αNL

2
k2

0η
4, (4)

with C2 given by

C2 =

(

γ2 + κ2 +
αNLωµ0

γ
Pxk

2
0

)

2ωµ0

γ
Px, γ =

√
ε1k0 cos θ. (5)
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We can rewrite (4) as

(

dη

dx

)2

= −αNLk2
0

2η2

(

η2 − I1

) (

η2 − I2

) (

η2 − I3

)

, I3 =
2ωµ0

γ
Px, (6)

with

I1/2 = −
(

κ2

αNLk2
0

+
I3

2

)

∓

√

(

κ2

αNLk2
0

+
I3

2

)2

+
2γ2

αNLk2
0

I3. (7)

Assuming that the Kerr-type slab is of self-focusing type (αNL > 0) and that it is optically

denser than the surrounding medium (εL > ε1), it is easy to verify that

I3 > I2 > 0 > I1 and I2 ≤ η2 ≤ I3, (8)

because η is real so the right-hand side of (6) must be positive. To integrate (6) we note

that for x < 0 we have Ey = Ei + Er and for x > L there is only the transmitted wave,

Ey = Et with

Ei = E0 exp(iγx), Er = RE0 exp(−iγx)

and

Et = TE0 exp(iγx), (9)

where we introduced the field intensity dependent reflection and transmission coefficients,

R = R(|E0|) and T = T (|E0|), respectively. To find η in the above equations, we need to

specify Px which is uniquely determined by the transmitted wave amplitude, |Et| = |TE0|.
The inconvenience of using boundary conditions in x < 0 stems from the fact that the

response of the slab depends on |E0| so a self-consistent problem needs to be solved. However,

for x > L there is only one plane wave component so the field magnitude is constant and

we can easily relate the field boundary conditions with the power flow in the x direction.

Therefore, using I3 = |Et|2 and integrating (6) from x = L to any given point x in the slab,

we can obtain the solution for η2 in a closed form as a function of parameter |Et|:

±k0A

√

αNL

2
(L − x) = A

∫

√
I3−η2(x)

0

du
√

(A2 − u2) (B2 − u2)
, u = I3 − η2 ≤ B2 < A2, (10)

with B2 = I3 − I2 and A2 = I3 − I1. Finally, the solution for η2 is given by

η2 = |Et|2 − B2sn2

(

Ak0

√

αNL

2
(L − x) ,

B

A

)

, (11)
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where sn(u, k) is the Jacobi elliptic function with argument u and modulus k [13]. Using this

result, we can integrate (3) to obtain the phase difference across the slab, ∆φ = φ(L)−φ(0):

∆φ = γ

(

Ak0

√

αNL

2

)−1

Π

(

B2

|Et|2
, F−1

(

Ak0

√

αNL

2
L,

B

A

)

,
B

A

)

, (12)

where Π (n, ϕ, k) is the incomplete elliptic integral of the third kind and F−1 (u, k) is the

inverse of the incomplete elliptic integral of the first kind.

To obtain R and T , we use the fact that Ey and ∂Ey

∂x
are continuous at x = 0 and x = L.

Denoting |Ey(x = 0)| by η(0) and ∂|Ey(x=0)|
∂x

by η′(0), we arrive at

R =
γη2(0) − γ|Et|2 + iη(0)η′(0)

γη2(0) + γ|Et|2 − iη(0)η′(0)

and

T =
2γη(0)|Et| exp(i∆φ)

γη2(0) + γ|Et|2 − iη(0)η′(0)
. (13)

Since we only specify the amplitude of the transmitted wave, |Et|, the phase of E0 is arbitrary,

i.e. our system is not sensitive to the phase of E0 because it is stationary. If we choose the

arbitrary phase so that φ(x = 0) = 0, E0 is given by

E0 =
1

2γ

(

γη(0) + γ
|Et|2
η(0)

− iη′(0)

)

. (14)

Note that both η(0) and η′(0) are found in closed analytic form using (11) and some

elementary properties of Jacobi elliptic functions. Since the values of R(|E0|), T (|E0|) and

|E0| itself are given in terms of parameter |Et|, in general, there will be more than one

value of R(|E0|) and T (|E0|) corresponding to a given value of |E0|. However, each of these

solutions will have a different power flow in the x direction.

Using (11) we can easily analyze the behavior of η = |Ey| inside the slab: η is a periodic

function with period of 2K
Ak0

√

2
αNL

where K is the complete elliptic integral of the first kind,

K = F (π
2
, k) with modulus k = B

A
. The peaks of η, ηmax = η(xm

max) = |Et|, are located in

points xm
max satisfying xm

max = L− 2m K
Ak0

√

2
αNL

, m = 0, 1, 2, ..., and starting from x0
max = L.

The minima of η, ηmin = η(xm
min) =

√
I2, are located in points xm

min = L−(2m+1) K
Ak0

√

2
αNL

,

m = 0, 1, 2, .... The condition of resonant transmission, |T | = 1, is that |E0| = |Et| with

zero reflected wave, i.e. η(0) = η(L) = |Et|, hence the condition is that there is a positive

integer m such that

L = m
2K

Ak0

√

2

αNL

. (15)
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FIG. 2: (Color online) a) Distribution of the normalized electric field magnitude,
|Ey|
|Et| , for three

different values of |E0|. b) Dependence of transmission magnitude, |T |, on |E0|. Points correspond-

ing to different curves in a) are labeled with arrows. The parameters are: θ = 10o, L = λ0 = 1µm,

ε1 = 1, εL = 2 and αNL = 1m2

V 2 .

To illustrate the dependence of wave reflection and transmission on the intensity |E0|
of the incident wave, we consider a slab with arbitrarily chosen εL = 2, αNL = 1m2

V 2 and

L = λ0 = 1µm (vacuum wavelength) placed in vacuum (ε1 = 1). Fig. 2 a) shows the field

distribution for three different values of |E0| and Fig. 2 b) shows the dependence of |T | on

|E0| with markers showing the points corresponding to curves in Fig. 2 a).

In the remainder of this paper, we derive the connection between two well-established

delay times, the bidirectional group delay and the dwell time. Finally, we use the above given

results to calculate the dependence of various delay times on the incident field intensity for

the slab from Fig. 2.

The overall electromagnetic energy, W , within the slab is obtained from the Poynting
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theorem assuming that the dispersion may be neglected in a narrow frequency band around

ω:

W =
Sε0

2

(
∫ L

0

|Ey|2εdx − ε1 cos θ

k0
|E0|2Im(R)

)

, (16)

where S is the cross-sectional surface of the structure, perpendicular to the x-axis. To

determine the delay times through the thin slab and the way they are interrelated, we use

the same procedure as in [14]. Starting from (2) and differentiating it with respect to ω and,

subsequently multiplying it by E∗
y , we obtain the first expression. Then, we conjugate (2)

and multiply it by ∂Ey

∂ω
to obtain the second expression which, when subtracted from the

first one, yields

∂

∂x

(

E∗
y

∂2Ey

∂ω∂x
− ∂Ey

∂ω

∂E∗
y

∂x

)

= −k2
0|Ey|2

(

2ε̃

ω
+

∂ε̃

∂ω

)

,

ε̃ = ε−ε1 sin2 θ.

(17)

Integrating (17) from x = 0− to x = L+, we arrive to

τ̃g + Im(R)
1

γ

∂γ

∂ω
=

k0

2ε1 cos θ|E0|2
∫ L

0

(

2

ω
ε̃ +

∂ε̃

∂ω

)

|Ey|2dx. (18)

The bidirectional group delay, τ̃g is defined by τ̃g = |T |2 ∂φ0

∂ω
+ |R|2 ∂φr

∂ω
, (φ0 = γL + φt)

while φr and φt are the arguments of the complex reflection and transmission coefficients,

respectively. By defining the dwell time as τd = W/Pin, where Pin =
S
√

ε1k0 cos θ

2ωµ0

|E0|2, is the

x component of the incoming power flux and using (16) we have

τd =
1

cε1 cos θ|E0|2
(

∫ L

0

ε|Ey|2dx − ε1 cos θ|E0|2
k0

Im(R)

)

, (19)

so (18) can be rewritten as

τ̃g = τd + Im(R)

(

1

ω
− 1

γ

∂γ

∂ω

)

+ τNL − τt, (20)

τNL =
k0

2ε1 cos θ|E0|2
∫ L

0

αNL|Ey|2
∂(|Ey|2)

∂ω
dx, (21)

τt =
sin2 θ

c cos θ|E0|2
(

ω

2ε1

∂ε1

∂ω
+ 1

)
∫ L

0

|Ey|2dx. (22)

The second term on the right-hand side of (20) is called the self-interference time, i.e.

τi = Im(R)
(

1
ω
− 1

γ
∂γ
∂ω

)

. It describes the effect of dispersion in the surrounding medium
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in analogy with the quantum tunneling case [14]. However, in the case of a dispersionless

surrounding medium, τi is equal to zero. This follows from the fact that within our model

the waveguide width in z-direction is not limited, yielding the propagation constant along

this direction β = k0 sin θ
√

ε1. Consequently, in the Helmholtz equation analogous to (2),

written for semi-infinite layers surrounding the slab, the term in parentheses becomes γ2 =

ε1ω2

c2
−β2 = ε1ω2

c2
cos2 θ. Thus, the self-interference term vanishes. However, if the waveguide

width in z-direction is limited (as described in [8]), then values of β become quantized in

terms of lπ
a

(where l is an integer and a is the waveguide width) and the self-interference

time τi remains finite.

The third term in (20), τNL, is the explicit contribution of the nonlinearity. The presence

of the fourth term, τt, can be explained by the following reasoning: when the wave-front

is tilted, any pulse to arrive to a point (xO, yO), will have been started off at some point

(xS, yS) lying on the same wavefront as (xP , yP = yO), whereas the expression for τ̃d assumes

that the pulse propagates from (xP , yP ) to (xO, yO) which is why it has to be reduced by

τt, a quantity accounting for the transversal propagation. Finally, the bidirectional group

delay, τ̃g, may be written in the familiar form

τ̃g = τd + τi + τNL − τt, (23)

with the last two terms going to zero for perpendicular incidence on a linear slab, αNL = 0.

In the case of previously considered slab in vacuum, the self-interference time goes to

zero, τi = 0. Figs. 3 and 4 show the dependence of τt, τNL and τ̃g, τd for several different

values of the angle of incidence. The oscillatory field behavior is reflected in the delay times,

as well. From Figs. 3 and 4 we see that the increased field intensity, |E0|, is followed by

an increased oscillation amplitude and multivalued behavior with several stable states. The

order of magnitude of |E0| leading to pronounced nonlinear behavior can be estimated by

finding the first occurrence of the resonant transmission given by (15) and m = 1. In case

of perpendicular incidence from a dispersionless surrounding medium on a linear slab, the

familiar result [14], τ̃g = τd, is recovered.

Reference [15] provides a general relation for traversal time of electromagnetic waves in

terms of transmission and reflection amplitudes, ascribing a real and an imaginary compo-

nent to this time. If we annul the nonlinearity in our expression for the dwell time and limit

the analysis to normal incidence (θ = 0), a suitable correlation can be established between

8
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FIG. 3: (Color online) Dependence of a) the transversal time, τt, and b) the nonlinear term, τNL,

on the intensity |E0| of the incident plane wave. Structure parameters are the same as in Fig. 2.

that result and the real part of the traversal time from [15]. This stems from the fact that

the results for traversal time presented therein rely on a more complex model for the linear

regime, comprising the contribution of the Faraday effect.

CONCLUSION

This paper provides a comprehensive analysis of the problem of calculating the delay times

(dwell time, bidirectional group delay, interference time) which characterize the transmission

of electromagnetic waves through a thin slab with Kerr-type nonlinearity present. Particular

consideration is given to the complex task of determining the field distribution within the

slab. For this purpose, the Helmholtz equation is decomposed into two equations, one

describing the amplitude of the field, and the other describing the phase of the field. While
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FIG. 4: (Color online) Dependence of a) the bidirectional group delay, τ̃g, and b) the dwell time,

τd, on |E0|. Parameters are given in Fig. 2. Both τ̃g and τd are at least an order of magnitude

greater than τt and τNL. Since the group delay in absence of the slab is approximately 0.3×10−14s,

the velocities corresponding to these times are subluminal.

the second equation can easily be reduced to a simple integral equation, the solutions of

the first one are given via elliptic functions. A simple analysis shows that all the required

constants can be obtained if the integration is carried out backwards. By expressing the

phase shift along the slab via incomplete elliptic integrals, we arrived to a closed analytic

expression for the complex reflection and transmission coefficients. Upon resolving the field

distribution, in the second part of the paper, we derive the appropriate expressions for

all three types of delay times and identify two additional terms, τNL and τt. Finally, by

calculating the delay times for an arbitrarily chosen thin slab, we show that these become

very sensitive to changes in the incoming wave amplitude when it goes above the first

resonant transmission condition. In this regime, an oscillatory behavior of the delay times
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with the increased field intensity is observed. Our results indicate that bistability and

multivalued behavior are present in the delay times, as well. As pointed out in [15], the

transversal electric field present in a slab of material exhibiting Kerr-type nonlinearity can

be utilized to measure the interaction time of the electromagnetic waves in given region.

Hence, by drawing on the theory presented there, it is possible to analyze traversal and

reflection times of electromagnetic waves through the slab, exploiting the Kerr effect as an

electric clock.
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[11] Ch. Spielmann, R. Szipöcs, A. Stingl, F. Krausz, Phys. Rev. Lett. 73, 2308 (1994).

[12] W. Chen, D. L. Mills, Phys. Rev. B 35, 524 (1987).

[13] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas,

Graphs, and Mathematical Tables, U. S. Government Printing Office, National Bureau of

Standards, Washington, D. C., (1972).

[14] H. G. Winful, Phys. Rev. Lett. 91, 260401 (2003).

[15] V. Gasparian, M. Ortuño, J. Ruiz, and E. Cuevas, Phys. Rev. Lett. 75, 2312 (1995).

11

mailto:elgi@leeds.ac.uk

	Introduction
	Theoretical modelling and numerical examples
	Conclusion
	Acknowledgments
	References

