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Estimation
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Dept. of Statistics,
University of Leeds,
Leeds LS2 9JT, UK

Abstract

Given angular dataθ1, . . . , θn ∈ [0, 2π) a common objective is to
estimate the density. In the case that a kernel estimator is used, band-
width selection is crucial to the performance. This paper obtains a
“plug-in rule” for the bandwidth, which is based on the concentration
of a reference density, namely, the von Mises distribution.It is seen
that this is equivalent to the usual Euclidean plug-in rule in the case
that the concentration becomes large. In the case that the concentra-
tion parameter is unknown, alternative methods are explored which
are intended to be robust to departures from the reference density.
Simulations indicate that “wrapped estimators” can perform well in
this context.
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1 Introduction

Given a random sample of anglesθ1, . . . , θn ∈ [0, 2π) from some un-
known densityf(θ) a natural component of exploratory data analysis
is to estimate the functionf(·). When a parametric form is assumed,
this may be achieved by maximum likelihood, or moment-basedes-
timation. A nonparametric estimator may be naively writtenas

f̂(θ; h) =
1

n

n
∑

i=1

Kh(θ − θi) (1)

whereKh(θ) = K(θ/h)/h is a kernel function, usually a symmetric
probability density, andh is a smoothing parameter. This kernel esti-
mator was first proposed by Fisher (1989) for data lying on thecircle,
in which he adapted linear data methods of Silverman (1986) and
used a quartic kernel functionK(θ) = 0.9375(1 − θ2)2 . However,
when using data on the circle, we cannot use distance in Euclidean
space, so all differencesθ− θi should be replaced by considering the
angle between two vectors:

di(θ) = ||θ − θi|| = min(|θ − θi|, 2π − |θ − θi|). (2)

This may also be written asdi = cos−1(xT
xi) where x

T =

(cos θ, sin θ) is a unit vector. A more natural choice for the kernel
function is therefore one of the commonly used circular probability
densities, such as the wrapped normal distribution, or the von Mises
distribution. This leads to an alternative representationfor the kernel
density estimate (Jammalamadaka and SenGupta, 2001, page 282):

f̂(x; h) =
1

n

n
∑

i=1

Kh(1 − x
T
xi). (3)

In studying properties of kernel density estimates in Euclidean space,
it is common to take Taylor series approximations to give an asymp-
totic form for the bias and variance. These can then be combined
to give an asymptotically optimal choice for the smoothing param-
eter; see, for example, Silverman (1986). For data lying on the q -
dimensional sphere (q ≥ 2) Hall et al. (1987) described the asymp-
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totic bias and variance of two classes of kernel estimators.This was
done by the use of directional derivatives, thus making the results
a close analogue of the Taylor series methods used for data inEu-
clidean space.

One of the difficulties in nonparametric density estimationis to make
good choices of the smoothing parameterh; see Joneset al. (1996)
for an excellent survey of methods. In the Euclidean setting, Silver-
man (1986) and Joneset al. (1996) give formulae which depend on
derivatives of the unknown densityf . When the data lie in Euclidean
space, there are many approaches to this problem, a simple exam-
ple of which is based on a “Normal-scale rule” or a “rule-of-thumb”.
When the kernel function is taken as the gaussian density, this leads
to a plug-in selectorh = 1.06σ̂n−1/5 (Silverman, 1986). The goal of
this paper is to obtain an equivalent plug-in rule for density estimation
on the circle.

Specifically, we consider the estimator in which the kernel function
is the von Mises density, which gives

f̂(θ; ν) =
1

n(2π)I0(ν)

n
∑

i=1

exp{ν cos(θ − θi)}. (4)

whereIr(ν) is the modified Bessel function of orderr , and the con-
centration parameterν has now taken the role of the (inverse of the)
smoothing parameterh. A common approach to obtain the smooth-
ing parameter is by considering derivatives of the unknown density
and then substituting a “reference” density in order to obtain a plug-
in rule; the results of Klemelä (2000) could probably be implemented
here. However, we instead follow the approach of Marron and Wand
(1992) who obtained the form of the exact mean integrated squared
error for densities which can be expressed as a mixture of normal
densities.

In Section 2 we write the exact expectation and variance of the es-
timator (4) under the assumption that the data follow a von Mises
distribution. This then leads to an expression for the asymptotic bias
and variance, which can be integrated to give AMISE as a function
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of the concentration parameter of the data (κ), the smoothing param-
eter (ν ) and the sample size (n). Finally, this can be solved to give a
simple plug-in rule forν dependent only onκ andn. Section 3 dis-
cusses robust estimation ofκ, suited for the plug-in rule, which may
be used in case that the underlying density is not von Mises. Section
4 gives some simulation results, and Section 5 gives a real example
using 2-dimensional data from a bioinformatics dataset. Weconclude
with a discussion.

2 Asymptotic Mean Integrated Squared Error

We supposef(·) is von Mises (written in general as vM(µ, κ)), with
concentration parameterκ and – without loss of generality – mean
directionµ = 0. Then the first two moments of (4) are given by

E{f̂(θ; ν)} =
1

(2π)2I0(κ)I0(ν)

∫ 2π

0
exp{ν cos(θ − φ) + κ cos(φ)}dφ

=
I0{(κ2 + ν2 + 2νκ cos θ)1/2}

(2π)I0(κ)I0(ν)
,

(Jammalamadaka & SenGupta, 2001, p. 40) and

var{f̂(θ; ν)} =
1

n(2π)2I0(ν)2
var[exp{ν cos(θ − Θ)}]

=
1

n(2π)2I0(ν)2I0(κ)



I0{(4ν2 + κ2 + 4κν cos θ)1/2}

−I0{(ν
2 + κ2 + 2κν cos θ)1/2}2

I0(κ)



.

Note that, whenν = 0 we haveE{f̂(θ; 0)} = 1/{(2π)} which does
not depend onθ and, in the limit, the estimator is unbiased,i.e.

lim
ν→∞E{f̂(θ; ν)} = f(θ).

These equations may be used to write down an expression for the ex-
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act mean squared error. However, integrating the resultingexpression
to obtain the exact MISE seems hard to do analytically, so we now
derive asymptotic expressions for the above.

As the smoothing parameterν → ∞ the asymptotic bias is

{2πI0(κ)}−1





exp





ν













1 +
κ2

ν2
+ 2

κ

ν
cos θ





1/2

− 1















 − exp{κ cos θ}




+O
(

ν−2
)

.

Expanding the square root in a Taylor series, then expandingthe
exponential function in a Taylor series gives a simpler formof the
asymptotic bias as

{4πI0(κ)ν}−1κ2 sin2 θ exp(κ cos θ) + O
(

ν−2
)

. (5)

Similarly, for largen, and asν → ∞ the variance has asymptotic
form

{4nπ3/2I0(κ)}−1ν1/2 exp





2ν













1 +
κ2

4ν2
+
κ

ν
cos θ





1/2

− 1















+o





ν1/2

n



 ,

which is valid providedn/ν1/2 → ∞. Again, by expanding the
square root, and then the exponential function, as Taylor series, we
obtain the simpler form of the asymptotic variance

{4nπ3/2I0(κ)}−1ν1/2 exp(κ cos θ) + o





ν1/2

n



 . (6)

We now integrate the square of the asymptotic bias (5) and theasymp-
totic variance (6), to obtain

3κ2I2(2κ)
/

{32πν2I0(κ)
2}

and
ν1/2

/(

2nπ1/2
)

respectively. Thus the asymptotic integrated mean squarederror is of
the formaν−2+bν1/2 which can be minimized by differentiating with
respect toν and equating to zero. This leads to a “von Mises-scale
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plug-in rule” for the smoothing parameterν based on the estimated
κ:

ν =
[

3nκ̂2I2(2κ̂){4π1/2I0(κ̂)
2}−1

]2/5
. (7)

Note that this is of a similar asymptotic form as the normal-scale
plug in rule when we recall thatν is the concentration parameter, and
so takes the role of1/h2 in h = 1.06σ̂n−1/5 . Moreover, if we con-
sider the limit asκ → ∞ then the von Mises distribution tends to
a Normal distribution, withσ = κ1/2 . Hence, in the limit we have
h = ν−1/2 = 1.06κ−1/2n−1/5 which is exactly the same as the usual
rule of thumb used for the Normal distribution. A simple method
could be to estimateκ from the data, and use equation (7) to select
the smoothing parameter for use in (4). Two obvious questions arise
at this point: what happens if the data do not come from this reference
density (von Mises); how good are all these Taylor series approxima-
tions in practice? The next two sections address these questions in
turn.

3 Robust Estimation of Spread

When the data are unimodal, the above selection rule (7) is likely to
work reasonably well. However, for bimodal data, the usual estimate
of κ – either by maximum likelihood, or the method of moments –
may be almost useless. In the most extreme case, an equal mixture of
data tightly clustered aroundφ combined with a similar distribution
of data clustered aroundφ + π will lead to an estimate ofκ close
to zero. Whenκ̂ = 0 then equation (7) givesν = 0 which will
result in f̂(θ) ≡ 1/(2π), and so such automatic methods may lead to
very misleading density estimates. Indeed, even in the regular case,
the maximum likelihood estimator ofκ is far from robust, as it has
infinite standardized gross error sensitivity (Mardia & Jupp, 1999,
p. 276).

Ronchetti (1992) derived the “mostB -robust self-standardized esti-
mator” of the concentration parameter asκ̂MR = log 2/median{ci},
whereci = 1 − x

T
i µ, with µ the unit vector with directionµ. Al-
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ternative robust estimators are also given by Ronchetti (1992) and Ko
(1992), but our intention in this paper is to focus on densityestima-
tion.

In the case of Euclidean data, an alternative rule-of-thumbproposed
by Silverman (1986, p. 47) was to takêσ = min{s, IQR/1.349},
wheres is the sample standard deviation, andIQR is the inter-quartile
range. This will work better for bimodal data, and give similar results
when the data are normal. This proposal was obtained by compar-
ing the population inter-quartile range to the standard deviation. For
circular data, ifm is the (estimated) median then, for0 < p < 0.5
defineqi(p) ∈ [0, π) such that

p =
∫ m

m−q1(p)
f(θ)dθ =

∫ m+q2(p)

m
f(θ)dθ

which can be solved for knownf(·) and givenp. In particular, for the
reference (von Mises) distribution, without loss of generality we can
setm = 0. The interp-quantile range for the reference distribution
is then given byq2(p) + q1(p) = 2q1(p). The sample circular median
is defined (Mardia & Jupp, 1999, p. 17) as the valuem̂ such that half
the data lies in[m̂, m̂ + π) and more data lies closer tôm than to
m̂ + π . Sample values ofqi(p) can then be easily found from the
data. The procedure is then as follows:

(1) Selectp ∈ (0, 1/2)
(2) Form a look-up table which definesq1(p) as a function ofκ for

the reference distribution vM(0, κ)
(3) Find the sample median̂m and q̂i(p), i = 1, 2 from the data
(4) Obtain the estimatedκ from the look-up table, using||m̂ +

q̂2(p) − (m̂ − q̂1(p))|| where the distance used is as in Equation
(2)

An alternative approach is to note that, for the von Mises distribution,
the maximum likelihood estimate ofκ is obtained from the solution
to

A1(κ) =
1

n

n
∑

i=1

cos(θi − µ̂)

whereAk(κ) = Ik(κ)/I0(κ) and µ̂ = tan−1 (
∑

sin θi,
∑

cos θi).
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This follows from a more general identity using trigonometric mo-
ments which states thatE cos{k(θ − µ)} = Ik(κ)/I0(κ). Thus, al-
ternative estimates ofκ (for a von Mises distribution) are given by
solutions to

Ak(κ) =
1

n

n
∑

i=1

cos(kθi − µ̂k) (8)

where µ̂k = tan−1 (
∑

sin kθi,
∑

cos kθi), for k = 1, 2, . . .. In the
case that the data are von Mises, different values ofk will lead to
similar estimates ofκ. In simulations (not shown), we have observed
that κ̂k is an increasing function ofk , with the bias decreasing, and
the variance increasing asκ increases. However, in the case of multi-
modal data, then rather different estimates will ensue. Hence, a pos-
sible procedure is to estimateκ usingk = 1, . . . , K in Equation (8)
giving, say,κ̂k and then takinĝκ = max{κ̂k, k = 1, . . . , K} for use
in Equation (7).

4 Simulations

For the standard von Mises distribution, we can compare the average
integrated squared errorISE with the approximate MISE given in
Section 2, whenκ is known. The results, for 500 simulations, and
n = 50 and n = 500 are shown in Figure 1. The approximation
looks quite good, improving withn.

We now explore the effectiveness of the plug-in rule, when the data
are taken from a mixture ofM(≥ 1) von Mises distributions. Specif-
ically, we simulateθ1, . . . , θn ∼ f(θ) where the distribution is given
by

f(θ) =
1

2π

M
∑

j=1

pj
exp{κj cos(θ − µj)}

I0(κj)
, i = 1, . . . , n with

M
∑

j=1

pj = 1

(9)
and we evaluateISE(ν) =

∫

(f̂(θ; ν) − f(θ))2dθ over N = 500
datasets (using a grid of 500 points to evaluate the integrals numer-
ically). For each distribution, we note the value ofν which mini-
mizesISE(ν), sayν0 , as well asISE(ν0). We also giveISE(ν) when
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Fig. 1. Average integrated squared error –ISE – (points) and MISE (lines) for 500 simula-
tions of sizen = 50 (top panel) andn = 500 (bottom panel) from a von Mises distribution
with κ = 1.

9



ν is obtained for each dataset from the plug-in rule (7) andκ̂ is
estimated by one of the methods described in Section 3. We also
give results when cross-validation is used to select the bandwidth.
Here, we selectν to maximize the likelihood cross-validation func-
tion LCV(ν) =

∏

i f̂−i(θi; ν), where

f̂−i(θ; ν) =
1

(n− 1)(2π)I0(ν)

n
∑

j 6=i
exp{ν cos(θ − θj)}

is the leave-one-out estimator. (We have also tried least-squares cross-
validation to select the smoothing parameter. The results of this were
very similar to, but not quite as good as using likelihood cross-
validation, and so are not shown.) LetνCV denote the value ofν
which maximizes LCV(ν). Denote byνK whenν is estimated with
κ̂ = max{κ̂k, k = 1, . . . , K} and κ̂k is the solution to (8). De-
note by νp the value ofν when κ is estimated using the interp-
quantile range. We also include results for Fisher’s (1989)adaptation
of the quartic kernel, in which his smoothing parameter is given by
hF =

√
7κ̂−1/2n−1/5 , and for a similar method using the Epanech-

nikov kernel withhE = 2.345κ̂−1/2n−1/5 . This plug-in rule for a von
Mises density was obtained by using a large concentration approxi-
mation for the AMISE solution given by

hE =





120πI0(κ)
2

nκ2(2I0(2κ) + I2(2κ))





1/5

≈ κ−1/2(40
√
π/n)1/5.

The results are given in Table 1. Note that, for the standard von Mises
distribution, if the knownκ = 1 is used in (7), then the smoothing
parameter isν = 3.51 for n = 50 and ν = 8.82 for n = 500,
whereas ifκ = 0.1 then ν = 0.06 for n = 50 and ν = 0.16 for
n = 500, which shows the accuracy of the asymptotic results for
finite samples. Note that using the maximum likelihood estimator for
κ with Equation (7) leads to rowν1 in this table.

In Table 1 we see that for the standard von Mises distributions, only
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parameters (1) (0.1) (4, 1

2
, π, 4) (2, 1

4
, π√

3
, 2) (5, 1

5
, π

2
, 5)

n 50 500 50 500 50 500 50 500 50 500

ν0 3.32 8.59 0.23 0.65 10.29 29.52 4.59 13.25 14.37 40.49

100 ISE(ν0) 0.85 0.16 0.07 0.05 1.91 0.34 1.01 0.21 1.93 0.37

νCV 47.2 19.7 891.1 151.8 13.9 5.0 33.6 14.54 22.0 16.1

hF 13.9 3.8 569.1 98.8 385.8 2857.5 6.7 –1.8 5.6 8.6

hE 3.5 –3.9 487.4 50.0 431.7 3129.1 9.9 –9.3 16.4 20.9

ν1 32.8 15.2 61.3 30.3 465.1 3263.1 25.1 4.4 28.2 51.7

ν2 29.1 13.4 788.3 37.4 11.0 4.6 16.1 4.7 21.8 37.8

ν3 36.6 12.8 1744.0 218.3 11.1 4.6 32.8 16.3 9.2 3.0

ν4 54.7 21.5 2643.1 410.6 19.1 6.5 74.2 31.7 15.8 3.9

νMR 16.1 12.1 317.6 59.2 272.4 733.6 33.5 31.7 48.5 71.7

ν0.08 149.4 31.0 1229.0 20.3 182.4 1425.5 147.3 37.0 73.3 20.8

ν0.24 53.4 20.9 258.3 28.9 278.2 1982.9 57.6 32.9 29.5 18.0

ν0.40 38.4 17.4 143.4 32.5 372.4 2668.2 50.5 35.5 28.2 22.8
Table 1
Average integrated squared error results for various bandwidth selection rules. The param-
eters of the distribution, given in the top row by (9), are(κ1, p2, µ2, κ2, . . . , pM , µM , κM ) ,
with µ1 = 0 in each case. Numerical integration used on 500 grid values;averages taken
over 500 datasets of sizen . ν0 is the smoothing parameter to minimize MISE, andISE(ν0)
the corresponding minimum. In the lower part of the table we give the percentage increase,
i.e. (ISE(ν•)/ISE(ν0) − 1)100% for each method. Hereν• is selected by cross-validation
(νCV ), by νK ,K = 1, 2, 3, 4 in the case that the wrapped estimator is used, byνp in
the case that thep-quantile range estimator is used, and byνMR in the case that a robust
estimator is used forκ . Two “linear” kernels are also used:hF denotes the performance
for the quartic kernel and respective plug-in rule described by Fisher (1989);hE uses an
Epanechnikov kernel with smoothing parameterhE = 2.345κ̂−1/2n−1/5 .

ν1 (using Equation (7) withκ estimated by Equation (8) withk = 1)
gives reasonable answers for both small and moderateκ. The linear
kernel estimators are very poorly behaved for large smoothing param-
eters (h > π ), which occurs when̂κ and/orn are small. Anad hoc
solution is simply to rescale the density estimate so that itintegrates
to unity, but this was not done here. However, note that for moderate
κ (= 1), the linear kernels outperform the von Mises kernel estima-
tor. We conjecture that this may be due to the fact that the vonMises
kernel is less efficient, though it is not immediately obvious how to
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define efficiency for angular kernels.

For the mixtures of distributions, the “standard” plug-in rule ν1 can
do very poorly, with bothν2 andν3 performing similarly, overall, to
the cross-validation estimate, but at a cheaper computational cost. In-
terestingly, the plug-in bandwidths for the linear kernelscan perform
surprisingly well for some of the mixtures. Amongst thep-quantile
range estimators,ν0.40 performed reasonably, except for one of the
mixture distributions.

5 Application to Protein Angles

The backbone of a protein comprises a sequence of atoms

N1−Cα
1−C1−N2−Cα

2−C2− . . .−Np−Cα
p−Cp,

and by choosing 4 atoms withA3 directly behindA2 , andA1 directly
below A2 (see Table 2) we can specify 3dihedral angles: φ, ψ, ω .

θ A1 A2 A3 A4

φi Ci−1 Ni Cα
i Ci

ψi Ni Cα
i Ci Ni+1

ωi Cα
i−1 Ci−1 Ni Cα

i

A

A

A

b

b3

1

2

4

1

θ

Table 2
For a sequence of atoms (A1, A2, A3, A4 ) as specified, withA3 directly behindA2 , and
A1 directly belowA2 , we label the angle shown in the sketch as one ofφ,ψ, ω .

The angleω is restricted to be about zero, and is of little interest. The
remaining angles(φ, ψ) are measured between−π andπ . A scatter
plot of a collection of(φi, ψi), i = 1, . . . , n for a protein is known as a
Ramachandran plot, and has been used to characterize the secondary
structure of the protein.

We can extend the result of Section 2 to multivariate data by using
a multiplicative kernel, with equal bandwidths in each dimension. In
two dimensions, iff is assumed to be a multivariate von Mises, with
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independent components, and common concentrationκ, then we can
approximate the asymptotic integrated variance of the kernel density
estimate asν/(4nπ) with asymptotic integrated bias-squared as

κ2
[

3I0(2κ)I2(2κ) + I1(2κ)
2
] /

(32π2I0(κ)
4ν2) .

Hence in this case, the rule of thumb is

ν =
[

nκ̂2
{

3I0(2κ̂)I2(2κ̂) + I1(2κ̂)
2
} /

(4πI0(κ̂)
4)

](1/3)
. (10)

We illustrate a kernel density estimate for the proteinMalate dehy-
drogenase which hasn = 343 observations; the Ramachandran plot
is shown in Figure 2. For the purposes of this example, we assume
that the sequence of angles are independent. To obtainκ̂ we use the
geometric mean of the estimated concentrations of the marginal data
(using the wrapped estimate withK = 3). We obtainκ̂ = 5.69 and
so, using Equation (10), we use smoothing parameterν = 36.85 in a
multiplicative kernel. A contour plot of the square root — the trans-
formation was used in order to reveal more of the detail — of the
estimated density is shown in Figure 2.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Malate dehydrogenase

φ

ψ

contours of sqrt(density estimate)

φ

ψ

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Fig. 2. Left: Ramachandran plot for Malate dehydrogenase, and Right: contour plot of
estimated (sqrt) density.
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6 Concluding Remarks

Extending some of the above results to a mixture of von Mises dis-
tributions would also be straightforward, and would proceed along
the lines of Marron & Wand (1992). However, although we couldob-
tain expressions for the approximate MISE, it would depend on the
mixing proportions (as well as the means and concentrationsof each
component), and no plug-in rule would be readily available.

Agostinelli (2007) has considered alternative approachesto the robust
estimation ofκ which could also be used in Equation (7) in place of
those considered here.

Finally, we note the survey paper of Joneset al., (1996) which ad-
dresses the issue of bandwidth selection for real-valued data. In ad-
dition to the ideas of the current paper, there are several alternatives
which will have a counterpart for directional data. In particular, there
are now well-known results in the euclidean case which obtain more
sophisticated plug-in rules by estimating functionals of the deriva-
tives. By using the results of Klemelä (2000) it should be possible to
obtain circular data counterparts.
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