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Abstract

Given angular dat#,,...,6, € [0,27) a common objective is to
estimate the density. In the case that a kernel estimatses, bband-
width selection is crucial to the performance. This papdriols a
“plug-in rule” for the bandwidth, which is based on the camication
of a reference density, namely, the von Mises distributibis seen
that this is equivalent to the usual Euclidean plug-in ral¢hie case
that the concentration becomes large. In the case that tieentra-
tion parameter is unknown, alternative methods are exgplodgich
are intended to be robust to departures from the referencsitge
Simulations indicate that “wrapped estimators” can penfovell in
this context.
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1 Introduction

Given arandom sample of anglés . . ., 0,, € [0, 2r) from some un-
known densityf (#) a natural component of exploratory data analysis
is to estimate the functiori(-). When a parametric form is assumed,
this may be achieved by maximum likelihood, or moment-based
timation. A nonparametric estimator may be naively writdsn

A~

F0:0) = =3 K0 — 6) (1)

1
=
where K;,(0) = K(6/h)/h is a kernel function, usually a symmetric
probability density, and is a smoothing parameter. This kernel esti-
mator was first proposed by Fisher (1989) for data lying orciiate,

in which he adapted linear data methods of Silverman (1986) a
used a quartic kernel functiof (¢) = 0.9375(1 — 62)%. However,
when using data on the circle, we cannot use distance indaaii
space, so all differences— ¢; should be replaced by considering the
angle between two vectors:

dy(0) = ||6 — 6,]| = min(|6 — 6,27 — |0 — 6,]). 2)

This may also be written ag; = cos '(x’z;) where z7 =

(cosd,sinf) is a unit vector. A more natural choice for the kernel

function is therefore one of the commonly used circular piolity

densities, such as the wrapped normal distribution, or tmeNises

distribution. This leads to an alternative representdiorthe kernel

density estimate (Jammalamadaka and SenGupta, 2001, §2ge 2
n

= Ly K- 2Ty, 3)

flash) == %
In studying properties of kernel density estimates in Elean space,
it is common to take Taylor series approximations to give symap-
totic form for the bias and variance. These can then be cadbin
to give an asymptotically optimal choice for the smoothiraggm-
eter; see, for example, Silverman (1986). For data lyinghengt
dimensional sphereg;(> 2) Hall et al. (1987) described the asymp-



totic bias and variance of two classes of kernel estimaiidis was
done by the use of directional derivatives, thus making gsailts
a close analogue of the Taylor series methods used for ddEa-in
clidean space.

One of the difficulties in nonparametric density estimatoto make
good choices of the smoothing parametersee Jonest al. (1996)
for an excellent survey of methods. In the Euclidean setSilyer-
man (1986) and Jones al. (1996) give formulae which depend on
derivatives of the unknown density. When the data lie in Euclidean
space, there are many approaches to this problem, a simaie-ex
ple of which is based on a “Normal-scale rule” or a “rule-béxnb”.
When the kernel function is taken as the gaussian densisylgads
to a plug-in selectoh, = 1.066n~'/° (Silverman, 1986). The goal of
this paper is to obtain an equivalent plug-in rule for dgnsgtimation
on the circle.

Specifically, we consider the estimator in which the kerno@lction
Is the von Mises density, which gives

n

A

1) = om0 2
where!,(v) is the modified Bessel function of order and the con-
centration parameter has now taken the role of the (inverse of the)
smoothing parametegr. A common approach to obtain the smooth-
ing parameter is by considering derivatives of the unknoensity
and then substituting a “reference” density in order to imbégplug-

in rule; the results of Kleméal(2000) could probably be implemented
here. However, we instead follow the approach of Marron aathdV
(1992) who obtained the form of the exact mean integratedreqgu
error for densities which can be expressed as a mixture ahalor
densities.

1exp{y cos(f — 6;)}. (4)

In Section 2 we write the exact expectation and variance @fet
timator (4) under the assumption that the data follow a vosddi
distribution. This then leads to an expression for the asgtigpbias
and variance, which can be integrated to give AMISE as a fonct



of the concentration parameter of the datd, the smoothing param-
eter (v) and the sample size:]. Finally, this can be solved to give a
simple plug-in rule forr dependent only om andn. Section 3 dis-
cusses robust estimation ef suited for the plug-in rule, which may
be used in case that the underlying density is not von Misesid@

4 gives some simulation results, and Section 5 gives a reahple
using 2-dimensional data from a bioinformatics datasetciveclude
with a discussion.

2 Asymptotic Mean Integrated Squared Error

We supposef(-) is von Mises (written in general as M, «)), with
concentration parameter and — without loss of generality — mean
directiony = 0. Then the first two moments of (4) are given by

~ 1 2w
E{f(0;v)} = L () Io() /0 exp{v cos(0 — ¢) + K cos(¢)}de
~ I{(K* + v* 4 2vk cos 6)'/2}
B (2m)Io(r)Lo(v) ’
(Jammalamadaka & SenGupta, 2001, p. 40) and

1
272 Io(v)
1
n(2m)21y(v)*1y(k)
 Io{(v* + K* + 2KV cos 0)1/2}2}

var{ f(6;v)} =

m 5 var[exp{v cos(0 — O)}]

[I@{(4V2 + K2 4 4kv cos 0)1/?}

]()(K,)

Note that, whens = 0 we haveE{f(6;0)} = 1/{(27)} which does
not depend o and, in the limit, the estimator is unbiasee,

lim E{f(6;v)} = f(6).

These equations may be used to write down an expressiongf@xth



act mean squared error. However, integrating the resutpgession
to obtain the exact MISE seems hard to do analytically, so e n
derive asymptotic expressions for the above.

As the smoothing parameter— oo the asymptotic bias is

v

>, 1/2
{271 1y(k)} 1 (exp v { (1 + % + 2— cos 0) — 1H — expq{k cos 0}) +0 (V_Q) :

Expanding the square root in a Taylor series, then expanitiag
exponential function in a Taylor series gives a simpler faihe
asymptotic bias as

{47 Iy(k)r}'w*sin® exp(k cos 0) + O (v™?) . (5)

Similarly, for largen, and asv — oo the variance has asymptotic

form
2 1/2 1/2
2y{<1+/€2+/€cos<9> 1} +0(V—),
4y v n

which is valid providedn/v'/? — oo. Again, by expanding the
square root, and then the exponential function, as Tayloesewve
obtain the simpler form of the asymptotic variance

{4nm?1y(k)} w2 exp

172

{an7®Iy(k) } Y2 exp(k cos 0) + o (—) : (6)

n

We now integrate the square of the asymptotic bias (5) anaynap-
totic variance (6), to obtain

3K215(2k) /{32m*1o(k)?}
and

V1/2/(2nﬂ'1/2)

respectively. Thus the asymptotic integrated mean squaredis of
the formar—2+br'/? which can be minimized by differentiating with
respect tor and equating to zero. This leads to a “von Mises-scale



plug-in rule” for the smoothing parameterbased on the estimated
K:
_ ~2 - 127 (2 21-112/5

v = [3ni*L(2R) {4n 2 y(R)*} . (7)
Note that this is of a similar asymptotic form as the norncals
plug in rule when we recall that is the concentration parameter, and
so takes the role of /h? in h = 1.066n~"/°. Moreover, if we con-
sider the limit ask — oo then the von Mises distribution tends to
a Normal distribution, withv = x!/2. Hence, in the limit we have
h = v~ Y% = 1.06k~?n~1/° which is exactly the same as the usual
rule of thumb used for the Normal distribution. A simple naath
could be to estimate from the data, and use equation (7) to select
the smoothing parameter for use in (4). Two obvious questaise
at this point: what happens if the data do not come from tlieseace
density (von Mises); how good are all these Taylor seriesapma-
tions in practice? The next two sections address theseigngsh
turn.

3 Robust Estimation of Spread

When the data are unimodal, the above selection rule (7Ba$/lto
work reasonably well. However, for bimodal data, the usstheate

of xk — either by maximum likelihood, or the method of moments —
may be almost useless. In the most extreme case, an equatenaft
data tightly clustered aroung combined with a similar distribution
of data clustered around + 7 will lead to an estimate of close

to zero. Whens = 0 then equation (7) giveg = 0 which will
resultin f(A) = 1/(2x), and so such automatic methods may lead to
very misleading density estimates. Indeed, even in thelaegase,
the maximum likelihood estimator of is far from robust, as it has
infinite standardized gross error sensitivity (Mardia & guf999,

p. 276).

Ronchetti (1992) derived the “mogt-robust self-standardized esti-
mator” of the concentration parameterag = log2/mediarfc;},
wherec; = 1 — ' p, with p the unit vector with direction:. Al-



ternative robust estimators are also given by RonchetéiZland Ko
(1992), but our intention in this paper is to focus on densgyma-
tion.

In the case of Euclidean data, an alternative rule-of-thpnolposed

by Silverman (1986, p. 47) was to talke = min{s, IQrR/1.349},
wheres is the sample standard deviation, aQe is the inter-quartile
range. This will work better for bimodal data, and give sanilesults
when the data are normal. This proposal was obtained by aempa
ing the population inter-quartile range to the standardadien. For
circular data, ifm is the (estimated) median then, for< p < 0.5
defineq;(p) € [0, 7) such that

m 'm+q2(p)

p= F(O)do = [ F(0)do

m—qx (p) m

which can be solved for knowyi(-) and givenp. In particular, for the
reference (von Mises) distribution, without loss of getgrave can
setm = 0. The interp-quantile range for the reference distribution
is then given byg(p) + ¢1(p) = 2¢:1(p). The sample circular median
Is defined (Mardia & Jupp, 1999, p. 17) as the valuesuch that half
the data lies inm,m + 7) and more data lies closer t@ than to

m + w. Sample values of;(p) can then be easily found from the
data. The procedure is then as follows:

(1) Selectp € (0,1/2)

(2) Form a look-up table which defines(p) as a function ofx for
the reference distribution v, )

(3) Find the sample mediafh andg;(p),i = 1,2 from the data

(4) Obtain the estimated from the look-up table, using|m +
Go(p) — (m — ¢1(p))|| where the distance used is as in Equation

(2)

An alternative approach is to note that, for the von Misegifistion,
the maximum likelihood estimate af is obtained from the solution
to

1 R
Ai(k) = - >_cos(0; — f1)
i=1
where A(k) = Ix(k)/Io(k) and g = tan~! (X sin 0;,3 cos 6;).



This follows from a more general identity using trigononeno-
ments which states th& cos{k(0 — )} = Ix(k)/Io(k). Thus, al-
ternative estimates of (for a von Mises distribution) are given by
solutions to

12 .
Ai(k) = - > cos(kb; — fi) (8)
i=1
where fi;, = tan™! (T sin k6;, > cos kb;), for k = 1,2,.... In the

case that the data are von Mises, different values afill lead to
similar estimates ok . In simulations (not shown), we have observed
that <5 is an increasing function of, with the bias decreasing, and
the variance increasing asincreases. However, in the case of multi-
modal data, then rather different estimates will ensue cega pos-
sible procedure is to estimateusingk = 1, ..., K in Equation (8)
giving, say,~; and then takingc = max{k, k = 1,..., K} for use

in Equation (7).

4 Simulations

For the standard von Mises distribution, we can compareuvbmge
integrated squared errdSE with the approximate MISE given in
Section 2, wherx is known. The results, for 500 simulations, and
n = 50 andn = 500 are shown in Figure 1. The approximation
looks quite good, improving with.

We now explore the effectiveness of the plug-in rule, whendhta
are taken from a mixture ot/ (> 1) von Mises distributions. Specif-
ically, we simulated,, . .., 0, ~ f(6) where the distribution is given

by

1 M exp{rjcos(f — uj)} . : M
== p —1,... th =1
f(e) s Z: p] IO(Hj) ) ¢ ) y TV Wi j;p]
(9)

and we evaluatdSE(v) = [(f(6;v) — f(#))2d6 over N = 500
datasets (using a grid of 500 points to evaluate the integraner-
ically). For each distribution, we note the value mfwhich mini-

mizesISE(v), sayvy, as well adSE(1,) . We also givelSE() when



average and expected integrated squared error
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Fig. 1. Average integrated squared errdSE — (points) and MISE (lines) for 500 simula-
tions of sizen = 50 (top panel) and» = 500 (bottom panel) from a von Mises distribution
with k = 1.



v is obtained for each dataset from the plug-in rule (7) ands
estimated by one of the methods described in Section 3. Ve als
give results when cross-validation is used to select thel\waith.
Here, we select to maximize the likelihood cross-validation func-
tion LCV(v) = II; f-i(6;; v), where

f—z‘(e;’/) = !

(n = 12 lo(0) j%é:iexp{y cos(60 —0,)}
Is the leave-one-out estimator. (We have also tried lesH®s cross-
validation to select the smoothing parameter. The restittaowere
very similar to, but not quite as good as using likelihoodssro
validation, and so are not shown.) Leg¢y denote the value of
which maximizes LCVv). Denote byvx whenv is estimated with

k = max{k, k = 1,..., K} and i is the solution to (8). De-
note by v, the value ofy when « is estimated using the inter-
guantile range. We also include results for Fisher’s (128@)ptation

of the quartic kernel, in which his smoothing parameter \&giby

he = VTi/?n~1/%, and for a similar method using the Epanech-
nikov kernel withhg = 2.34541/2p=1/5_ This plug-in rule for a von
Mises density was obtained by using a large concentratipnoap
mation for the AMISE solution given by

B 1207, (k)2 1/5
he = (nﬁ2(210(2/<a) + ]2(2/{)))

~ k2407 /n)'/,

The results are given in Table 1. Note that, for the standandWises
distribution, if the knownx = 1 is used in (7), then the smoothing
parameter is» = 3.51 for n = 50 andv = 8.82 for n = 500,
whereas ifx = 0.1 thenv = 0.06 for n = 50 andv = 0.16 for

n = 500, which shows the accuracy of the asymptotic results for
finite samples. Note that using the maximum likelihood eatonfor

x with Equation (7) leads to row; in this table.

In Table 1 we see that for the standard von Mises distribgtionly

10



parameters (1) (0.1) (4,3,7,4) (2,1, 72 | 6, :,2.5)
n 50 500 50 500 50 500 50 500 50 500
g 3.32 8.59 0.23 0.65]| 10.29 29.52| 4.59 13.25| 14.37 40.49

100|S—E(1/0) 0.85 0.16 0.07 0.05] 191 0.34| 1.01 0.21] 193 0.37
vev 47.2 19.7 891.1 151.8] 13.9 5.0/ 33.6 14.54] 220 16.1
hE 13.9 3.8] 569.1 98.8| 385.8 2857.5 6.7 -1.8 5.6 8.6
he 35 -39 4874 50.0/ 431.7 3129.1] 99 -93| 164 209
V1 32.8 15.2 61.3 30.3] 465.1 3263.1] 25.1 44| 28.2 51.7
) 29.1 13.4| 788.3 37.4| 11.0 46| 16.1 47| 21.8 37.8
V3 36.6 12.8| 1744.0 218.3 11.1 46| 328 16.3] 9.2 3.0
V4 547 21.5| 2643.1 410.6 19.1 6.5 74.2 31.7| 15.8 3.9
UMR 16.1 12.1| 317.6 59.2| 2724 733.6/ 33.5 31.7| 485 71.7
10.08 149.4 31.0| 1229.0 20.3| 182.4 14255 147.3 37.0f 73.3 20.8
V0.24 53.4 20.9| 258.3 289 278.2 19829 57.6 329 295 18.0
10.40 384 17.4| 1434 32.5| 3724 2668.2 505 355 28.2 228

Table 1

Average integrated squared error results for various batidwselection rules. The param-
eters of the distribution, given in the top row by (9), &rg, p2, ti2, K2, - - ., ALy b KM )
with 1 = 0 in each case. Numerical integration used on 500 grid valasages taken
over 500 datasets of size. v is the smoothing parameter to minimize MISE, d6& ()
the corresponding minimum. In the lower part of the table we the percentage increase,
i.e. (ISE(ve)/ISE(vg) — 1)100% for each method. Here, is selected by cross-validation
(vev), by v, K = 1,2,3,4 in the case that the wrapped estimator is usedypyn
the case that th@-quantile range estimator is used, andyk in the case that a robust
estimator is used for.. Two “linear” kernels are also usedr denotes the performance
for the quartic kernel and respective plug-in rule desctibg Fisher (1989)/g uses an
Epanechnikov kernel with smoothing paramelier= 2.3454~1/2n~1/5,

vy (using Equation (7) withs estimated by Equation (8) with = 1)
gives reasonable answers for both small and moderaiée linear
kernel estimators are very poorly behaved for large smogtparam-
eters (. > m), which occurs wher and/orn are small. Anad hoc
solution is simply to rescale the density estimate so thategrates
to unity, but this was not done here. However, note that fodenate

k (= 1), the linear kernels outperform the von Mises kernel estima-

tor. We conjecture that this may be due to the fact that theMises
kernel is less efficient, though it is not immediately obwdwow to

11



define efficiency for angular kernels.

For the mixtures of distributions, the “standard” plug-uterv, can

do very poorly, with both, and 5 performing similarly, overall, to
the cross-validation estimate, but at a cheaper compuotdtomst. In-
terestingly, the plug-in bandwidths for the linear kerrega perform
surprisingly well for some of the mixtures. Amongst theguantile
range estimatorsy, 4 performed reasonably, except for one of the
mixture distributions.

5 Application to Protein Angles

The backbone of a protein comprises a sequence of atoms
N1 —Cy=Ci—Ny—C5—-Co— ... —=N,—C/-C,,

and by choosing 4 atoms with; directly behindA,, and A, directly
below A, (see Table 2) we can specify Gihedral angles. ¢, ¢, w.

H
0| Ay Ay, A; Ay
0

¢ | Cici Ny CF Gy A
vi | N; C¢ G Nipp !

Wy C?fl Cz‘_l Ni C? 0
Table 2

For a sequence of atomgl(, As, A3, A4) as specified, withd3 directly behind A, , and
Ay directly below A, , we label the angle shown in the sketch as oné,af, w.

w

The anglew is restricted to be about zero, and is of little interest. The
remaining angleso, ¢) are measured betweenr and . A scatter

plot of a collection of(¢;, 1;),i = 1, ..., n foraprotein is known as a
Ramachandran plot, and has been used to characterize the secondary
structure of the protein.

We can extend the result of Section 2 to multivariate datasiggu
a multiplicative kernel, with equal bandwidths in each disien. In
two dimensions, iff is assumed to be a multivariate von Mises, with

12



independent components, and common concentratjdhnen we can
approximate the asymptotic integrated variance of thedtatensity
estimate ag//(4nm) with asymptotic integrated bias-squared as

k? [310(26) I2(25) + L(26)7] /(327 1o(K) V7).
Hence in this case, the rule of thumb is

v = [ni? {310(28) L(2&) + 1(27)%) /(4xTo(2)H]™Y . (10)

We illustrate a kernel density estimate for the proteialate dehy-
drogenase which hasn = 343 observations; the Ramachandran plot
Is shown in Figure 2. For the purposes of this example, wenassu
that the sequence of angles are independent. To obtaa use the
geometric mean of the estimated concentrations of the malrgata
(using the wrapped estimate with = 3). We obtaink = 5.69 and
S0, using Equation (10), we use smoothing parameter36.85 in a
multiplicative kernel. A contour plot of the square root —e ttnans-
formation was used in order to reveal more of the detail — ef th
estimated density is shown in Figure 2.

Malate dehydrogenase contours of sqrt(density estimate)

Fig. 2. Left: Ramachandran plot for Malate dehydrogenasd, Right: contour plot of
estimated (sqrt) density.
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6 Concluding Remarks

Extending some of the above results to a mixture of von Mises d
tributions would also be straightforward, and would prateéong
the lines of Marron & Wand (1992). However, although we caald
tain expressions for the approximate MISE, it would depemdhe
mixing proportions (as well as the means and concentratbeach
component), and no plug-in rule would be readily available.

Agostinelli (2007) has considered alternative approatintse robust
estimation ofx which could also be used in Equation (7) in place of
those considered here.

Finally, we note the survey paper of Joretsal., (1996) which ad-
dresses the issue of bandwidth selection for real-valuéal tfaad-
dition to the ideas of the current paper, there are sevashalives
which will have a counterpart for directional data. In peutar, there
are now well-known results in the euclidean case which abtaore
sophisticated plug-in rules by estimating functionals e tleriva-
tives. By using the results of Klen&|2000) it should be possible to
obtain circular data counterparts.
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