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Abstract

The determination of an approximate greatest common divisor (GCD) of two in-
exact polynomials f = f(y) and g = g(y) arises in several applications, including
signal processing and control. This approximate GCD can be obtained by comput-
ing a structured low rank approximation S∗(f, g) of the Sylvester resultant matrix
S(f, g). In this paper, the method of structured total least norm (STLN) is used to
compute a low rank approximation of S(f, g), and it is shown that important issues
that have a considerable effect on the approximate GCD have not been considered.
For example, the established works only yield one matrix S∗(f, g), and therefore
one approximate GCD, but it is shown in this paper that a family of structured low
rank approximations can be computed, each member of which yields a different ap-
proximate GCD. Examples that illustrate the importance of these and other issues
are presented.

Key words: Sylvester matrix, structured total least norm, approximate greatest
common divisor

1 Introduction

The determination of the greatest common divisor (GCD) of two polynomials
arises in several applications of signal processing and control. If the polyno-
mials are known exactly and computations are performed symbolically, then
Euclid’s algorithm may be used, but this algorithm should not be executed
in a floating point environment because it is numerically unstable. If the data
is inexact, it is only possible to define an approximate GCD because the in-
put data now consists of a (potentially infinite) family of polynomials that
lie within the specified error bounds of their coefficients. In particular, if the
inexact polynomials f = f(y) and g = g(y),
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f(y) =
m

∑

i=0

aiy
m−i and g(y) =

n
∑

j=0

bjy
n−j, (1)

are coprime, and the maximum normwise error in their coefficients is e, then
a minor structured perturbation of the coefficients to ai + δai and bj + δbj ,
where δa = {δai}

m

i=0 and δb = {δbj}
n

j=0, and

‖δa‖ ≤ e ≪ ‖a‖ , ‖δb‖ ≤ e ≪ ‖b‖ , ‖·‖ = ‖·‖2 , (2)

may cause the perturbed inexact polynomials

f̃(y) =
m

∑

i=0

(ai + δai)y
m−i and g̃(y) =

n
∑

j=0

(bj + δbj)y
n−j, (3)

to have a non-constant GCD. Even if it is required to compute the smallest
perturbations δai and δbj such that the polynomials (3) have a non-constant
GCD, different noisy realisations f(y) and g(y) of their theoretically exact
forms yield different approximate GCDs, all of which are valid if (2) is satisfied.

The computation of an approximate GCD of the inexact polynomials (1)
has been considered by several authors. For example, Corless et. al. [5], and
Zarowski et. al. [13], use the QR decomposition of the Sylvester resultant ma-
trix S(f, g) [3], which will henceforth be called the Sylvester matrix. Similarly,
the singular value decomposition of S(f, g) is used in [4] in order to compute
an approximate GCD, but both these decompositions do not preserve its struc-
ture. In particular, the smallest non-zero singular value of S(f, g) is a measure
of its distance to singularity, but this is the distance to an arbitrary rank
deficient matrix, and not the distance to the nearest rank deficient Sylvester
matrix. Karmarkar and Lakshman [8] use optimisation techniques in order to
compute the smallest perturbations that must be applied to the coefficients
of two polynomials such that they have a non-constant GCD, and Pan [11]
uses Padé approximations to compute an approximate GCD. Zeng [14] uses
partial singular value decompositions of Sylvester subresultant matrices, and
an iterative algorithm is then used to calculate the factors of the GCD.

In this paper, the perturbations δai, i = 0, . . . , m, and δbj , j = 0, . . . , n, in (3)
are calculated by applying the method of structured total least norm (STLN)
[12] to S(f, g), thereby yielding the polynomials f̃ = f̃(y) and g̃ = g̃(y). The
Sylvester matrix S(f, g) is considered in Section 2, and it is shown that these
perturbations allow the computation of an approximate GCD of the inexact
polynomials f(y) and g(y). Although the computation of S(f̃ , g̃) has been
considered previously [7,9,15], there exist several important issues that must
be considered when this matrix is used for the computation of an approximate
GCD of f(y) and g(y). In particular:
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• Since the GCD of f(y) and g(y) is equal to, up to an arbitrary scalar mul-
tiplier, the GCD of f(y) and αg(y) where α is an arbitrary non-zero con-
stant, it follows that the Sylvester resultant matrix S(f, αg) should be used
when it is desired to compute an approximate GCD of f(y) and g(y). Since
S(f, αg) 6= αS(f, g), the inclusion of α permits a family of approximate
GCDs, rather than only one approximate GCD, to be computed. In par-
ticular, it is shown in the examples in Section 4 that the restriction α = 1
yields unsatisfactory solutions, but that the inclusion of α allows signifi-
cantly improved solutions to be obtained.

• The method of STLN yields a non-linear least squares problem with an
equality constraint, and the minimisation of the residual leads to a non-
linear algebraic equation that is solved iteratively. It is shown that a stop-
ping criterion that is based on a small normalised residual may lead to a
poor or incorrect solution, and that an additional stopping criterion that is
based on the singular values of S(f̃ , g̃) must be included.

• The perturbed inexact polynomials f̃(y) and g̃(y) are obtained by comput-
ing the perturbations δai, i = 0, . . . , m, and δbj , j = 0, . . . , n, and a com-
puted approximate GCD is valid if (2) is satisfied. This condition requires
that the norm of these perturbations be less than the maximum permissible
normwise error in the coefficients because it guarantees that the perturbed
inexact polynomials f̃(y) and g̃(y) are legitimate realisations of the theoret-
ically exact forms of f(y) and g(y), respectively. This criterion has not been
considered in previous work as a condition for the acceptance or rejection
of an approximate GCD.

It is important to note that if interest is restricted to the computation of a
structured low rank approximation of S(f, g) and an approximate GCD com-
putation is not required, then the default value α = 1 must be used. In this
paper, however, it is desired to compute a family of approximate GCDs from
structured low rank approximations of S(f, αg), and thus the introduction of
α is required. Different values of α yield different structured low rank approxi-
mations, and each of these approximations is a candidate for the computation
of an approximate GCD of f(y) and g(y). It will be shown, however, that it
is not possible to construct an approximate GCD for all values of α because a
necessary equality constraint is not satisfied exactly, and the numerical rank
of S(f̃ , g̃) is not defined, for all values α.

Section 3 considers the application of the method of STLN to the computation
of a structured low rank approximation of S(f, αg), and methods for the solu-
tion of the resulting equation are discussed. Section 4 contains examples that
illustrate the importance of the three points that are discuused above. All the
examples are non-trivial because polynomials of high degree are considered,
and the roots have high multiplicity. A summary of the paper is contained in
Section 5.
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2 The Sylvester matrix

The Sylvester matrix S(f, αg) ∈ R
(m+n)×(m+n) is equal to

S(f, αg)=



















































a0

a1 a0

... a1
. . .

am−1
...

. . . a0

am am−1
. . . a1

am
. . .

...
. . . am−1

am

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αb0

αb1 αb0

... αb1
. . .

αbn−1
...

. . . αb0

αbn αbn−1
. . . αb1

αbn
. . .

...
. . . αbn−1

αbn



















































,

where the coefficients ai of f(y) occupy the first n columns, and the coefficients
αbi of αg(y) occupy the last m columns. It is shown in [3] that if the degree
of the GCD of f(y) and αg(y) is equal to d, then the rank of S(f, αg) is equal
to (m + n − d), that is, the rank loss of the Sylvester matrix is equal to the
degree of the GCD of f(y) and αg(y). The condition number of S(f, αg) is a
function of α, and it therefore follows that the accuracy and stability of the
numerical computation of the GCD of f(y) and αg(y) is dependent on α. This
will be confirmed in Section 4, where several examples are considered, and it
will be shown that an incorrect value of α leads to poor results.

The k’th Sylvester matrix, or subresultant, Sk ∈ R
(m+n−k+1)×(m+n−2k+2) is

a submatrix of S(f, αg) that is formed by deleting the last (k − 1) rows of
S(f, αg), the last (k−1) columns of the coefficients of f(y), and the last (k−1)
columns of the coefficients of αg(y).

Example 2.1

If m = 4 and n = 3, then
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S1 = S(f, αg) =











































a0 αb0

a1 a0 αb1 αb0

a2 a1 a0 αb2 αb1 αb0

a3 a2 a1 αb3 αb2 αb1 αb0

a4 a3 a2 αb3 αb2 αb1

a4 a3 αb3 αb2

a4 αb3











































,

S2 =



































a0 αb0

a1 a0 αb1 αb0

a2 a1 αb2 αb1 αb0

a3 a2 αb3 αb2 αb1

a4 a3 αb3 αb2

a4 αb3



































, S3 =





























a0 αb0

a1 αb1 αb0

a2 αb2 αb1

a3 αb3 αb2

a4 αb3





























.

2

Each matrix Sk is partitioned into a vector ck ∈ R
m+n−k+1 and a matrix

Ak = Ak(α) ∈ R
(m+n−k+1)×(m+n−2k+1), where ck is the first column of Sk, and

Ak is the matrix formed from the remaining columns of Sk,

Sk =
[

ck

∣

∣

∣

∣

Ak

]

=
[

ck

∣

∣

∣

∣

coeffs. of f(y)

∣

∣

∣

∣

coeffs. of αg(y)

]

.

The application of the method of STLN to the computation of an approximate
GCD of the inexact polynomials f(y) and αg(y) requires that the equation

Akx = ck, x ∈ R
m+n−2k+1, (4)

be considered. The following theorem is established in [7,9,15].

Theorem 2.1 Consider the polynomials f(y) and αg(y), where f(y) and g(y)
are defined in (1), and let k be a positive integer, where 1 ≤ k ≤ min (m, n).
Then

(1) The dimension of the null space of Sk is greater than or equal to one if
and only if (4) possesses a solution.
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(2) A necessary and sufficient condition for the polynomials f(y) and αg(y)
to have a common divisor of degree greater than or equal to k is that the
rank of Sk is less than or equal to (m + n − 2k + 1).

It is recalled that f(y) and αg(y) are inexact and coprime, and that their
theoretically exact forms have a non-constant GCD. There therefore exist
perturbations δf(y) and αδg(y) such that f(y) + δf(y) and α (g(y) + δg(y))
have a non-constant common divisor, that is, if hk ∈ R

m+n−k+1 and Ek ∈
R

(m+n−k+1)×(m+n−2k+1) are structured perturbations of ck and Ak respectively,
it follows from Theorem 2.1 that the equation

(Ak + Ek)x = ck + hk, (5)

which is the perturbed form of (4), has an exact solution.

It follows from Theorem 2.1 that (5) has a solution if and only if f(y)+ δf(y)
and g(y) + δg(y) have a common divisor of degree greater than or equal to k.
The computation of a structured low rank approximation of S(f, αg) therefore
requires the determination of a structured matrix Ek and a structured vector
hk such that (5) possesses a solution for which Ak and Ek have the same struc-
ture, and ck and hk have the same structure. This is an overdetermined equa-
tion, and k is initially set equal to its maximum value, k = k0 = min (m, n). If
a solution exists, then the degree of the GCD of f(y)+ δf(y) and g(y)+ δg(y)
is equal to k0. If this equation does not possess a solution, then k is reduced
to k0 − 1, and if a solution exists for this value of k, then the degree of the
GCD of f(y) + δf(y) and g(y) + δg(y) is equal to k0 − 1. If a solution does
not exist, then k is reduced to k0 − 2, and this process is repeated until (5)
possesses a solution. This result is used in the next section in order to compute
a structured low rank approximation of S(f, αg).

3 The method of STLN for a Sylvester matrix

It is shown in this section that the method of structured total least norm
(STLN) can be used to compute a solution of (5), subject to the constraints
on Ek and hk that are stated in the previous paragraph.

Let z = {zi}
m+n+1
i=0 be the vector of perturbations of the coefficients of f(y) and

αg(y) such that their perturbed forms have a non-constant common divisor.
In particular, let zi be the perturbation of the coefficient ai, i = 0, . . . , m, of
f(y), and let zm+1+j be the perturbation of the coefficient αbj , j = 0, . . . , n,
of αg(y). The perturbed form Bk ∈ R

(m+n−k+1)×(m+n−2k+2) of Sk is, therefore,
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Bk :=
[

hk

∣

∣

∣

∣

Ek

]

=



















































z0 zm+1

z1 z0 zm+2

... z1
. . .

...
. . .

zm−1
...

. . . z0 zm+n
. . . zm+1

zm zm−1
. . . z1 zm+n+1

. . . zm+2

zm
. . .

...
. . .

...
. . . zm−1

. . . zm+n

zm zm+n+1



















































,

where hk is equal to the first column of Bk, and Ek is equal to the last (m +
n − 2k + 1) columns of Bk.

Equation (5), which is non-linear, is solved iteratively for the perturbations
zi, i = 0, . . . , m + n + 1, such that the structures of Ek and hk are retained. In
particular, the residual r(z, x) that is associated with an approximate solution
of (5) due to the approximate perturbations hk and Ek is

r(z, x) = ck + hk − (Ak + Ek)x, hk = Pkz, Ek = Ek(z), (6)

and it is required to minimise ‖Dz‖ subject to the constraint r(z, x) = 0. The
matrix D ∈ R

(m+n+2)×(m+n+2) is diagonal and accounts for the repetition of the
elements of z in Bk. In particular, each of the perturbations zi, i = 0, . . . , m,
occurs (n − k + 1) times in Bk, and each of the perturbations zi, i = m +
1, . . . , m + n + 1, occurs (m − k + 1) times in Bk, and thus

D =







D1 0

0 D2






=







(n − k + 1)Im+1 0

0 (m − k + 1)In+1






.

It is shown in [7,9,15] if r(z, x) is linearised and the 2-norm is used, this
constrained minimisation leads to a least squares problem with an equality
constraint (the LSE problem),

min
δz

∥

∥

∥

∥

∥

∥

∥

[

D 0

]







δz

δx





 − (−Dz)

∥

∥

∥

∥

∥

∥

∥

subject to C







δz

δx





 = q, (7)

where ‖·‖ = ‖·‖2, C ∈ R
(m+n−k+1)×(2m+2n−2k+3) is a function of Ak, Ek and x,
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and q ∈ R
m+n−k+1 is a function of the residual of (6) due to an approximate

solution of this equation.

If E ∈ R
(m+n+2)×(2m+2n−2k+3), ω ∈ R

2m+2n−2k+3 and p ∈ R
m+n+2 are defined

as

E =







D1 0 0

0 D2 0





 , ω =







δz

δx





 and p = −Dz,

respectively, where δz ∈ R
m+n+2 and δx ∈ R

m+n−2k+1, then the LSE problem
(7) can be written as

min
w

‖Eω − p‖ subject to Cω = q.

Algorithm 3.1 implements the LSE problem using the QR decomposition [6],
and the initial value of x in this iterative algorithm is given by setting r(z, x) =
hk = Ek = 0 in (6),

x = arg min
t

‖Akt − ck‖ . (8)

3.1 Solution methods for the LSE problem

The LSE problem (7) is usually solved by the method of weights [1,2,10]. Al-
though this method transforms the LSE problem into an unconstrained least
squares problem that can be solved by standard methods, it is necessary to
introduce a weight parameter τ whose value is specified by heuristic methods.
Van Loan [10] recommends that τ = µ− 1

2 , but Barlow [1], and Barlow and

Vemulapati [2], recommend that τ = µ− 1

3 , where µ is the machine precision.
The heuristic nature of τ is a disadvantage of this method because the con-
vergence of the algorithm for the method of weights is critically dependent on
the value of τ . In particular, if τ is too large or too small, the algorithm may
converge slowly, or it may converge to an inaccurate solution, or it may not
converge at all [1]. Furthermore, it is noted in [1] that the algorithm for the
method of weights converges quickly for all but ill-conditioned problems. The
QR decomposition does not suffer from these disadvantages of the method of
weights, and it was therefore used for the solution of the LSE problem.
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Algorithm 3.1: STLN for a Sylvester matrix

Input The polynomials f(y) and g(y), the scalar α, a value for k, where
1 ≤ k ≤ min (m, n), and the tolerances ǫx and ǫz.

Output Polynomials f̃(y) = f(y) + δf(y) and g̃(y) = g(y) + δg(y) such that
the degree of the GCD of f̃(y) and g̃(y) is greater than or equal to k.

Begin

(1) Form the k’th Sylvester matrix Sk from f(y), g(y) and α.
(2) Set Ek = 0 and hk = 0, and compute the initial value of x from (8).

Construct the residual r(z, x) = ck −Akx, the matrix Yk from x, and the
matrix Pk.

(3) Repeat
(a) Compute the QR decomposition of CT ,

CT = QR = Q







R1

0






.

(b) Set w1 = R−T
1 q.

(c) Partition EQ as

EQ =
[

E1 E2

]

,

where E1 ∈ R
(m+n+2)×(m+n−k+1) and E2 ∈ R

(m+n+2)×(m+n−k+2).
(d) Compute

z1 = E†
2 (p − E1w1) .

(e) Compute the solution

y = Q







w1

z1






.

(f) Set x := x + δx and z := z + δz.
(g) Update Ek and hk from z, and Yk from x. Compute the residual

r(z, x) = (ck + hk) − (Ak + Ek)x.

Until ‖δx‖
‖x‖

≤ ǫx AND ‖δz‖
‖z‖

≤ ǫz .

End
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4 Examples

This section contains several examples that illustrate the method of STLN
for the computation of a structured low rank approximation of S(f, αg) when
it is required to compute an approximate GCD of f(y) and g(y) from this
low rank approximation. It is shown that Algorithm 3.1 does not always yield
a valid solution, and refinements to it are therefore required. Polynomials of
high degree with roots of high multiplicity are considered in the examples in
order to establish the robustness of the proposed algorithm.

The given inexact polynomials f(y) and g(y) are constructed by perturbing
their theoretically exact forms f̂ = f̂(y) and ĝ = ĝ(y). In particular, let
µ = 1/ε be the signal-to-noise ratio,

∥

∥

∥δf̂
∥

∥

∥ = ε
∥

∥

∥f̂
∥

∥

∥ and ‖δĝ‖ = ε ‖ĝ‖ ,

where the norm of a polynomial is equal to the 2-norm of its coefficients. If
cf ∈ R

m+1 and cg ∈ R
n+1 are vectors of random variables, all of which are

uniformly distributed in the interval [−1, . . . , +1], then the perturbations δf̂
and δĝ are given by

δf̂ = ε

∥

∥

∥f̂
∥

∥

∥ cf

‖cf‖
and δĝ = ε

‖ĝ‖ cg

‖cg‖
,

respectively, and thus the inexact polynomials f(y) and g(y) are

f = f̂ + ε

∥

∥

∥f̂
∥

∥

∥ cf

‖cf‖
and g = ĝ + ε

‖ĝ‖ cg

‖cg‖
, (9)

respectively. If the polynomials f(y) and g(y) are normalised, then α can be
interpreted as the relative magnitude of g(y) with respect to f(y). Common
normalisations include the 1, 2, and infinity norms of the coefficients, but
normalisation by the geometric mean of the coefficients is used in this work
because it is more suitable if the coefficients vary by several orders of magni-
tude. It therefore follows from (1) that the polynomials f(y) and g(y) in (9)
are redefined as

f(y) :=
1

(
∏m

i=0 |ai|)
1

m+1

m
∑

i=0

aiy
m−i, (10)

and

10



g(y) :=
1

(

∏n
j=0 |bj |

)
1

n+1

n
∑

j=0

bjy
n−j, (11)

respectively, where ai, i = 0, . . . , m, and bj , j = 0, . . . , n, are the perturbed
coefficients, and thus the Sylvester matrix S(f, αg) is constructed from these
polynomials. It is clear that if one or more of the coefficients of a polynomial is
equal to zero, then the normalisation by the geometric mean of its coefficients,
as shown in (10) and (11), requires modification.

The method of STLN allows the best vector z, the vector of perturbations
of the coefficients of f(y) and αg(y), that satisfies the LSE problem to be
calculated, but the maximum permissible value of ‖z‖ is related to the signal-
to-noise ratio µ. In particular, the smaller the value of µ, the larger the max-
imum permissible value of ‖z‖. This consideration leads to the definition of
the legitimate solution space.

Definition 4.1 (Legitimate solution space) The legitimate solution space
of f̂(y) is the region that contains all perturbations of its coefficients that are
allowed by the signal-to-noise ratio µ. The maximum allowable magnitude of
these perturbations is ρ, where

ρ =
‖f̂‖

µ
, (12)

and all perturbations that are smaller than ρ lie in the legitimate solution
space.

Since the errors consist of the data errors
∥

∥

∥f − f̂
∥

∥

∥ and the structured pertur-

bations from the method of STLN, it follows that (12) yields

∥

∥

∥f − f̂
∥

∥

∥ + ‖zf‖ ≤

∥

∥

∥f̂
∥

∥

∥

µ
, (13)

where zf ∈ R
m+1 denotes the structured perturbations of f(y). This equation

requires modification because f̂(y) is not known, and thus if it is assumed that

∥

∥

∥f − f̂
∥

∥

∥ ≪ ‖zf‖ and
∥

∥

∥f̂
∥

∥

∥ ≈ ‖f‖ ,

then (13) can be approximated by

‖zf‖ ≤
‖f‖

µ
. (14)

This definition of the legitimate solution space is expressed in terms of f(y),
and it is clear that (14) is also satisfied by g(y), but with a slight modification.

11



Specifically, since zm+i+1, i = 0, . . . , n, are the perturbations of the coefficients
αbi, it follows that

‖zg‖

α
≤

‖g‖

µ
, (15)

where zg ∈ R
n+1 stores the structured perturbations of the polynomial αg(y).

It is clear from the definitions of zf and zg that

z =







zf

zg





 ,

and that acceptable structured perturbations require that the conditions (14)
and (15) be satisfied.

Algorithm 4.1 is an extension of Algorithm 3.1 that performs a sequence of
tests in order to eliminate values of α, and therefore polynomials f̃ = f̃(y) and
g̃ = g̃(y), from Algorithm 3.1 that do not satisfy error criteria with regard to
the legitimate solution space, the magnitude of the normalised residual, and
the rank of the structured low rank approximation. In particular, Algorithm
3.1 is executed for a range of values of α, and the results are stored. Each value
of α yields a different pair of polynomials f̃ and g̃, and Step 2 of Algorithm 4.1
is used to eliminate the values of α for which the magnitude of the structured
perturbations is greater than the error in the polynomials, that is, polynomials
that lie outside the legitimate solution space are discarded. Values of α for
which the normalised residual ‖rnorm‖ is too large are eliminated in Step 3
of Algorithm 4.1, which is therefore performed on a reduced set of solutions.
Step 4 of Algorithm 4.1 calculates, for each of the remaining values of α,
the singular values of the Sylvester matrix S(f̃ , g̃) in order to determine its
numerical rank. The value of α for which this quantity is most clearly defined
is the optimal value α0 of α, and a low rank approximation of S(f, αg) is
constructed from the polynomials f̃0(y) and g̃0(y), which are the polynomials
that are associated with α0. An approximate GCD of f(y) and g(y) can be
calculated by performing an LU or QR decomposition on S(f̃0, g̃0).

Algorithm 4.1: Extended STLN for a Sylvester matrix

Input The polynomials f(y) and g(y), the scalar α, a value for k where
1 ≤ k ≤ min (m, n), the tolerances ǫx and ǫz, the signal-to-noise ratio µ,
and a range of values of α, α1 ≤ α ≤ α2.

Output Polynomials f̃0(y) and g̃0(y) such that the degree of the GCD of
f̃0(y) and g̃0(y) is greater than or equal to k.

12



Begin

(1) Apply Algorithm 3.1 with the given values of ǫx, ǫz and all values of α
in the specified range. For each value of α, store the values of ‖zf‖ , ‖zg‖
and rnorm,

rnorm =
r

‖ck + hk‖
,

where r = r(z, x) is calculated in Step 3g of Algorithm 3.1 and rnorm is
the normalised form of r.

(2) Retain the values of α for the values of ‖zf‖ and ‖zg‖ that satisfy (14)
and (15), respectively.

(3) Retain the values of α for which the normalised residual ‖rnorm‖ satisfies
the error criterion

‖rnorm‖ ≤ 10−13. (16)

(4) For each acceptable value of α, compute the singular values σi of S(f̃ , g̃),
where f̃ and g̃ are the polynomials that are computed by Algorithm 3.1
and are normalised by the geometric mean of their coefficients, as shown
in (10) and (11) for f and g, respectively. Arrange the singular values in
non-increasing order, and choose the value α0 of α for which the numerical
rank of S(f̃ , g̃) is equal to (m + n − k), that is, the ratio

σm+n−k

σm+n−(k−1)

, (17)

is a maximum. The polynomials that correspond to the value α0 are f̃0(y)
and g̃0(y).

End

Example 4.1 Consider the exact polynomials

f̂1(y) = (y − 0.25)8(y − 0.5)9(y − 0.75)10(y − 1)11(y − 1.25)12, (18)

and

ĝ1(y) = (y + 0.25)4(y − 0.25)5(y − 0.5)6, (19)

which have 11 common roots, from which it follows that rank S(f̂1, ĝ1) = 54.
The termination constants ǫx and ǫz, which are defined in Algorithm 3.1, were
set equal to 10−6 and 10−8, respectively.
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Case 1: Signal-to-noise ratio µ = 108, 11’th subresultant k = 11. The com-
putation of a family of approximate GCDs from a given structured low rank
approximation of S(f1, αg1).
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Fig. 1. (i)(a) The maximum allowable value of ‖zf1
‖, which is equal to ‖f1‖ /µ, (b)

the computed value of ‖zf1
‖; (ii)(a) the maximum allowable value of ‖zg1

‖/α, which
is equal to ‖g1‖ /µ, (b) the computed value of ‖zg1

‖/α; (iii) the normalised residual
‖rnorm‖; (iv) the singular value ratio σ54/σ55.

The exact polynomials (18) and (19) were perturbed by noise such that µ =
108 and then normalised by the geometric mean of their coefficients, yielding
the polynomials f1(y) and g1(y). Figure 1 shows the results of applying the
criteria in Steps 2, 3 and 4 in Algorithm 4.1. In particular, Figure 1(i) shows
the ratio ‖f1‖ /µ, which is the maximum allowable perturbation of f1(y), and
the variation with α of the computed value of ‖zf1

‖, which is calculated by the
method of STLN. Figure 1(ii) is the same as Figure 1(i), but for the polynomial
g1(y), and it is seen from (14) and (15) that valid solutions are obtained for
log10 α > −0.9. Figure 1(iii) shows the variation of the normalised residual
‖rnorm‖ with α, and it is seen that it ranges from O(10−16) to O(10−8) in the
specified range of α.

Figure 1(iv) shows the variation with α of the ratio σ54/σ55 that is defined
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Fig. 2. The normalised singular values of the Sylvester matrix, on a logarithmic scale,
for (i) the theoretically exact data S(f̂1, ĝ1), ♦; (ii) the given inexact data S(f1, g1),
�; (iii) the computed data S(f̃1,0, g̃1,0), ×, for α = 10−0.6. All the polynomials are
normalised by the geometric mean of their coefficients.

in (17), and it is seen that the profile of this curve could be produced (ap-
proximately) by calculating the reciprocal (to within a scale factor) of the
normalised residual shown in Figure 1(iii). This result, which has been ob-
served frequently, suggests that small values of the normalised residual are
associated with large values of the ratio (17). It is noted, however, that a
small value of the residual does not necessarily imply an accurate solution of
a linear algebraic equation, and thus the use of the residual as the criterion
for the acceptance or rejection of a solution is not recommended [6]. Rather,
the results suggest that the residual should be used as one of several criteria
for the acceptance or rejection of a solution.

This example clearly shows the importance of including α in the analysis be-
cause there exist, in general, many values of α for which the normalised residual
is sufficiently small and the ratio σ54/σ55 is sufficiently large. The small value
of the normalised residual implies that the perturbed equation (6) is satisfied
to high accuracy, and the large value of σ54/σ55 implies that the numerical
rank of the structured low rank approximation S(f̃1, g̃1) is well defined. Each
of these values of α yields a different structured low rank approximation of
S(f1, αg1), and therefore a different approximate GCD of f1(y) and g1(y).

It is shown in Figure 1(iv) that in the absence of scaling, that is, log10 α = 0,
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a poor solution is obtained because the ratio of the singular values (17) is
approximately equal to 101.5, which is about 7 orders of magnitude smaller
than the ratio obtained for log10 α = −0.6, which is the optimal value of α.
Figure 1(iii) shows that if log10 α = 0, the normalised residual is about 6
orders of magnitude larger than the value obtained for log10 α = −0.6. These
observations show that an arbitrary choice of α can yield severely suboptimal
results when it required to compute an approximate GCD of f(y) and g(y)
from S(f, αg).

Figure 2 shows the normalised singular values of the Sylvester resultant ma-
trices S(f̂1, ĝ1), S(f1, g1), and S(f̃1,0, g̃1,0) for the optimal value of α, where all
the polynomials are normalised by the geometric mean of their coefficients.
The polynomials f̃1,0(y) and g̃1,0(y) are the polynomials from Algorithm 4.1
that form the structured low rank approximation of S(f1, αg1), α = 10−0.6. It
is seen that the computed singular values of S(f̂1, ĝ1) do not show a sharp cut
off, which would suggest that the polynomials (18) and (19) are coprime. The
profile of the singular values of S(f1, g1) shows that the noise affects the small
singular values severely, but significantly improved results are obtained when
the Sylvester matrix S(f̃1,0, g̃1,0) is considered. In particular, it is clear that
the numerical rank of this matrix is equal to 54 because σ54 is about 7 orders
of magnitude larger than σ55. Since the Sylvester matrix is of order 65 × 65
and k = 11, it is seen that the method of STLN has yielded an excellent result.
Convergence of the algorithm was achieved in 45 iterations. It is clear that
S(f̃1,0, g̃1,0) can be used to compute an approximate GCD of f1(y) and g1(y).

This example has considered the situation in which the correct subresultant
has been selected because the degree of the GCD of f̂1(y) and ĝ1(y) is 11,
which is the chosen value of k, but this information is not, in general, known
a priori. It is therefore necessary to consider how the solution changes as a
function of k, and this is investigated in Case 2.

Case 2: Signal-to-noise ratio µ = 108. The effects of different subresultants.

It follows from Theorem 2.1 that the lower bound on the degree of the GCD
of f̂1(y) and ĝ1(y) decreases as k decreases, and the next set of experiments
investigates the performance of the method of STLN as k changes.

Computational experiments showed that the method of STLN is able to com-
pute structured low rank approximations for k = 10, . . . , 1. Figure 3 shows
the results for k = 8, and it is seen that the numerical rank of S(f̂1, ĝ1) is
not defined, but the numerical rank of its structured low rank approximation
S(f̃1,0, g̃1,0) is equal to 57, corresponding to a loss in rank of 8. Convergence
was achieved in 26 iterations.
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Fig. 3. The normalised singular values of the Sylvester matrix, on a logarithmic scale,
for (i) the theoretically exact data S(f̂1, ĝ1), ♦; (ii) the given inexact data S(f1, g1),
�; (iii) the computed data S(f̃1,0, g̃1,0), ×, for α = 101.4. All the polynomials are
normalised by the geometric mean of their coefficients.

Consider now the situation that occurs for k = 12, 13 and 14. In particular,
successful results were obtained for k = 12 and k = 13, but the computed
solution for k ≥ 14 was not acceptable. This can be seen for k = 14 in Figures
4(i) and (ii), which show that although valid solutions exist for either f1(y)
or g1(y), they do not exist for both f1(y) and g1(y). It is noted that if it is not
required that the solution lie in the legitimate solution space, it is possible to
construct structured low rank approximations matrices that can be used for
the computation of approximate GCDs of f1(y) and g1(y), such that the ratio
(17) is large and the normalised residual is small. 2

The next example is only considered briefly because the important points have
been discussed in the previous examples.

Example 4.2 Consider the polynomials

f̂2(y) = (y − 1)8(y − 2)16(y − 3)24,

and

ĝ2(y) = (y − 1)12(y + 2)4(y − 3)8(y + 4)2,
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Fig. 4. (i)(a) The maximum allowable value of ‖zf1
‖, which is equal to ‖f1‖ /µ, (b)

the computed value of ‖zf1
‖; (ii)(a) the maximum allowable value of ‖zg1

‖/α, which
is equal to ‖g1‖ /µ, (b) the computed value of ‖zg1

‖/α; (iii) the normalised residual
‖rnorm‖; (iv) the singular value ratio σ51/σ52.

which have 16 common roots, and thus the rank of S(f̂2, ĝ2) is 58. The poly-
nomials were perturbed by noise such that µ = 108, and the result for k = 16
is shown in Figure 5. It is seen that although the numerical rank of S(f̂2, ĝ2) is
not well defined, the rank of the structured low rank approximation S(f̃2,0, g̃2,0)
is 58, which is the correct value. Convergence was achieved in 22 iterations. 2

5 Summary

This paper has considered the use of the method of STLN applied to the
Sylvester resultant matrix for the computation of approximate GCDs of inex-
act polynomials. It has been shown that it is necessary to introduce a para-
meter α in order to obtain satisfactory solutions, and that there exist several
values of α that satisfy tight tolerances on the normalised residual and the nu-
merical rank of S(f̃ , g̃). Each of these values of α yields a different structured
low rank approximation of S(f, αg), and therefore a different approximate
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Fig. 5. The normalised singular values of the Sylvester matrix, on a logarithmic scale,
for (i) the theoretically exact data S(f̂2, ĝ2), ♦; (ii) the given inexact data S(f2, g2),
�; (iii) the computed data S(f̃2,0, g̃2,0), ×, for α = 100.1. All the polynomials are
normalised by the geometric mean of their coefficients.

GCD of f(y) and g(y). Additional constraints can be incorporated into the
method in order to reduce further the range of acceptable values of α. Scaling
the polynomials may affect the computed results, and it must therefore be
chosen carefully. In this paper, scaling by the geometric mean of the coeffi-
cients of the polynomials was used, and very good results were obtained. It
was shown that valid approximate GCDs of two inexact polynomials must sat-
isfy a bound on the magnitude of the perturbations calculated by the method
of STLN, and that this bound is related to the signal-to-noise ratio of the
coefficients of the inexact polynomials.
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