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Abstract 13 

Controversy exists over the extent of glaciation in Eastern Asia at the Last Glacial Maximum: 14 

complete ice sheet cover vs. restricted mountain icefields (an area discrepancy equivalent to 15 

3.7 Greenland Ice Sheets). Current arguments favour the latter. However, significant last 16 

glacial ice-rafted debris (IRD) exists in NW Pacific ocean cores, which must have been 17 

sourced from a major ice sheet somewhere bordering the North Pacific. The origin of this IRD 18 

is addressed through a combination of marine core analysis, iceberg trajectory modelling and 19 

remote sensing of glacial geomorphology. We find compelling evidence for two stages of 20 

glaciation centred on the Kamchatka area of maritime southeast Russia during the last glacial, 21 

with ice extent intermediate in size between previous maximum and minimum 22 

reconstructions.  Furthermore, a significant increase in iceberg flux precedes, and 23 

accompanies, a substantial marine core ash deposit at around 40ka BP. We speculate that 24 

rapid decay of the first stage of the ice sheet may have triggered substantial volcanic activity.  25 

 26 
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1. Introduction 29 

 30 

Polarised views of glaciation in NE Asia during the last glacial period exist in the literature. 31 

One proposes extensive glaciation in the region at the Last Glacial Maximum (LGM) in the 32 

Siberian and Pacific Arctic [1] and the Sea of Okhotsk area [2] (Fig. 1). The more popular 33 

counterview is for limited mountain-based glaciation in some areas of NE Asia, and no 34 

marine-based or Beringian ice cover [3-5]. Improved understanding of the extent of ice in this 35 

region is important for palaeoclimate models because a significant NE Asian Ice Sheet would 36 

affect the climate well beyond the physical limits of the ice itself [6]. Climate models suggest 37 

a tendency for ice sheet growth over NE Asia during the onset of the last glaciation [7]. Also, 38 

there is discrepancy between global syntheses of ice sheet volume and observed sea level [8], 39 

particularly during the growth phase of the last glaciation [9]. These factors motivate a re-40 

examination of the history of glaciation during the Late Quaternary in this area. 41 

There is increasing field evidence to support the restricted glaciation view: tundra-style 42 

vegetation conditions, for example, have been reconstructed in Beringia at the LGM [10]. 43 

Geomorphological mapping from satellite images and relative age dating has suggested that 44 

the Late Weichselian (locally Sartan) glaciation in Chukotka was less extensive than previous 45 

Pleistocene glaciations [11]. A mapping study of moraines in central Chukotka, coupled with 46 

cosmogenic dating, suggested that moraines there are older than middle Pleistocene in age [4] 47 

while a synthesis of observations of glaciations in Russian and Alaskan Beringia only found 48 

evidence for limited mountain-valley glaciation [12]. It is worth noting, however, that recent 49 

discoveries based on the bathymetry offshore of NW Alaska have suggested rather more 50 

glacial ice in this region than previously supposed [13]. 51 

Much of the evidence outlined above is from mountains north of the Anadyr River (65oN; 52 

Fig. 1). South of the Anadyr there is, however, evidence for glaciers approaching the coast 53 

[14] and also evidence for Late Weichselian glaciation centred on the Chers Range north of 54 

the Sea of Okhotsk and coastal uplands south of the Anadyr River through the Koryak upland 55 

and Kamchatka [15]. Ice in the Koryak region is known to have reached the coast during the 56 

LGM [16] and there are a number of other possible places along the Pacific coast to southern 57 

Kamchatka where ice may have reached the coast [17]. Weichselian (Sartan) glaciation has 58 

also been identified in the mountains of southern Kamchatka, and tephra and palaeosol 59 

relationships with glacial deposits have been used to argue that glaciers nearly reached 60 

Kamchatka’s west coast but probably before 40kyr BP [18]. In addition, clastic sedimentation 61 

in the open ocean of the Northwest Pacific is dominated by ice rafting [19]. The literature 62 
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describing IRD lithologies strongly affirms that through the Quaternary NW Pacific IRD 63 

originated from Kamchatka and eastern Siberia [19-22], while NE Pacific IRD came from 64 

Alaska [22-24], with no evidence of source mixing. This has also been found to be the case 65 

for the last glacial period [19, 22, 24], and evidence demonstrates that IRD magnitudes were 66 

similar to those found in the Atlantic [25]. The state of the volcanic rock particles in the IRD 67 

suggests that most of it has been reworked before marine deposition, rather than being freshly 68 

added [20]. 69 

In summary, there appears to be a dichotomy in the evidence for Weichselian (Sartan) 70 

glaciation over NE Asia: limited alpine-style glaciers versus major ice sheets reaching the 71 

ocean. We will examine this conundrum through a combination of marine and terrestrial 72 

investigations, beginning by examining the IRD record of the LGM North Pacific. 73 

 74 

2. The observed distribution of Last Glacial IRD in the North Pacific 75 

 76 

In the literature there are relatively few measurements of IRD at the LGM in the Pacific, 77 

and the units of measurement vary from counts of the number of lithic grains per gram, 78 

through to the percentage weight of IRD in the sediment, to concentrations of IRD expressed 79 

in g cm-2 kyr-1. Even the latter sedimentation rate is not easily comparable from one site to 80 

another as different workers take different size ranges of material as their definition of IRD, 81 

varying from >62 �m to 250-2000 �m. However, sufficient cases of multiple forms of 82 

measurement exist that a judgement of the relative amounts of IRD in different locations can 83 

be made. This was strengthened, and extended, by comparison of the visual core log for every 84 

ODP and DSDP bore hole in the North Pacific. As a comparison of IRD magnitude, we used 85 

maps of the Northeast Atlantic IRD concentration for several time periods during the last two 86 

glaciations [26], with a uniform measure of IRD concentration in g cm-2 kyr-1 for the 63-2000 87 

�m size fraction. In Fig. 2 we compare our assessment of the relative magnitudes of LGM 88 

IRD in the North Pacific with a similar assessment in the North Atlantic, combining the North 89 

Atlantic maps mentioned above with higher time resolution data from a number of papers. 90 

This was done because the early work, [26], is an average over the time period 25-13 14C kyr 91 

and so will be an over-estimate of the LGM flux because of the contamination of IRD peaks 92 

from the two Heinrich events H1 and H2. For our purposes the LGM covers a period of ~2kyr 93 

centred on 21ka BP. The data that has contributed to Fig. 2 is listed in the Supplementary 94 

Material, Table S1, with a description of how the various types of measurements were 95 

calibrated for the purposes of the broad categories used in Fig. 2. 96 
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While the North Atlantic had much more extensive regions of high IRD flux at the LGM 97 

than the Pacific, there is a broad similarity in the extent of IRD between the ocean basins. The 98 

peaks are similar in magnitude: at core RAMA 44PC near 53oN, 164.6oE there were at times 99 

10 g cm-2 kyr-1 in the size fraction > 150 �m [27], even around 15 kyr BP, very similar to the 100 

highest LGM IRD levels of the central Atlantic [26, 28]. Some values in the western Pacific 101 

are comparable to those in the NE Atlantic, while IRD levels in the northern Gulf of Alaska 102 

approach those in the central Atlantic (compare [21] with [26]). 103 

The LGM IRD distribution in the Pacific is thus consistent with a major flux of icebergs 104 

from North America and significant, if smaller, fluxes from the coast of the Kamchatka 105 

Peninsula and northwards. Combined with the already cited provenance evidence this 106 

suggests significant LGM ice flux to the sea from these parts of NE Russia. In the next section 107 

we will use an iceberg trajectory model to test these hypotheses about the origin of icebergs in 108 

the LGM North Pacific. 109 

 110 

3. Modelling the distribution of Last Glacial IRD in the North Pacific 111 

 112 

We can examine where we would expect to find IRD in the glacial North Pacific through 113 

seeding the ocean’s perimeter with icebergs and using an iceberg trajectory model [29], 114 

forced by simulated glacial ocean currents, to predict the probable distribution of icebergs. 115 

The iceberg trajectory model allows a suite of icebergs of different sizes to move, and melt, 116 

according to the dynamics and thermodynamics of the ocean, atmospheric and sea-ice forcing. 117 

Ten size classes of icebergs were released, varying from approximately 100 m to 1500 m in 118 

length; ignoring giant icebergs does not seriously bias the equatorward limits produced by the 119 

model [30]. The icebergs may overturn and be grounded until melted sufficiently for 120 

refloating. The sites for release were generally chosen to cover all feasible areas in a uniform 121 

manner, although the NE Pacific icebergs were preferentially seeded at locations likely to be 122 

major source areas [31]. 123 

  The glacial global ocean circulation could at different times in the last glacial period be in 124 

one of three states: an intermediate North Atlantic sinking state forming moderate amounts of 125 

North Atlantic intermediate water; a fresh North Atlantic with deep water formation only in 126 

the Southern Hemisphere; and a less likely state with enhanced North Atlantic sinking. Each 127 

of these modelled LGM states [32-33] has similar circulation in the North Pacific. This can be 128 

inferred from Fig. 3 where we plot iceberg trajectories across the glacial North Pacific for 129 

each glacial ocean state. A range of palaeoclimate models give similar atmospheric forcing 130 
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predictions for the LGM over the North Pacific, and particularly did not place the Aleutian 131 

Low noticeably further south [34], to those used to force our ocean states. We therefore 132 

believe that our conclusions are robust and independent of the real glacial ocean circulation. 133 

Each of the ocean states shows a similar pattern of iceberg drift. Icebergs from the Gulf of 134 

Alaska are predominantly trapped in a cyclonic coastal current and only penetrate the interior 135 

of the eastern Pacific from along the Aleutian arc. No icebergs deriving from the North 136 

American ice sheets, including the Aleutian arc, penetrate into the western Pacific under any 137 

ocean circulation scenario. 138 

 While the simulations in Fig. 3 assume an average LGM climate, and so the real 139 

distribution of IRD will be more dispersed, they offer clear markers for comparison with 140 

glacial IRD observations. In the eastern Pacific, Fig. 3 suggests that LGM icebergs originating 141 

from North America would have been kept close to the coast and could not leave the coastal 142 

current until it swept southwest along the Aleutians. This region has few IRD measurements, 143 

but what data there is in Fig. 2 in the NE Pacific is consistent with this reconstruction. In the 144 

western Pacific Fig. 3 suggests that icebergs from the Pacific coast of Kamchatka would have 145 

also been kept close to the coast before entering a narrow southward current. Again, this is 146 

consistent with Fig. 2, but the key region is poorly sampled and the main export route south 147 

may have been missed by the existing set of observations. Both modelling and core 148 

lithological data therefore supports the separation of sources of LGM IRD between east and 149 

west Pacific, with IRD in the west originating from the Pacific coastline of Siberia from the 150 

Anadyr River to Kamchatka. We take this as a strong argument for a large ice mass delivering 151 

icebergs to the Russian Pacific; we now examine the terrestrial evidence. 152 

 153 

4. Glacial geomorphological evidence for ice masses in the vicinity of Kamchatka 154 

 155 

 A useful overview of LGM and Quaternary maximum ice extents, insofar as this is known, 156 

has been recently compiled [35].  For Kamchatka, an LGM icefield centred on, and mostly 157 

restricted to, the mountains of the main median ridge and outliers is reconstructed, with ice 158 

reaching the coast as outlet glaciers in just a few places (Fig. 1). This was also taken to be the 159 

maximum Quaternary ice extent, in contradiction to the existing work of others ([15], [18]). 160 

 We utilised around 50 Landsat ETM+ satellite images (resolution of 15 – 30 m), digital 161 

elevation models (DEM) derived from the Space Shuttle Topographic Mission (SRTM) at 162 

around 90 m resolution, and bathymetric data of around 2.5 km resolution (from GEBCO) to 163 

systematically search for glacial geomorphological evidence using the techniques of Clark 164 
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[36], to test and constrain palaeo-ice extents. Here we focus on moraines, as these are a 165 

primary indicator of recent palaeo-ice extent. Figures S1 and S2 in the on-line supplementary 166 

information show large end and lateral moraines (kms wide, tens of kms long), found in most 167 

major valleys of the main median divide of Kamchatka. These are consistent with a recent 168 

reconstruction [35]. However, we have also found moraines and lateral meltwater channels 169 

(Figs. S3-S5) that indicate a more extensive ice mass, summarised in Fig. 4, in which ice 170 

reached the Kamchatkan coastline, on both the east (Figs. S3-S4) and west (Fig. S5) sides of 171 

the peninsula, in many places. Moraines mapped in Fig. 4 thus provide unequivocal evidence 172 

that Kamchatkan ice, at some time, was not just restricted to the main mountain divide but got 173 

at least as far as the coast in many places on both the Pacific and Sea of Okhotsk coastlines, 174 

supporting and considerably extending previous fieldwork [18]. 175 

 Of the 105 moraines identified (Fig. 4) we note that their spatial and elevation distribution 176 

indicate two systematic contexts: one group immediately adjacent to the major mountain belts 177 

and at elevations of around 300 m above sea level, and another group some 60-80 km distant, 178 

close to the coast, at elevations of around 50 m. As moraines record stillstands of ice margins, 179 

we infer that two snapshots of glaciation are recorded by the two moraine systems. A major 180 

ice field existed along the length of the Kamchatkan Mountains, and was stabilised in this 181 

position for a time long enough to build the substantial moraine systems mapped. At some 182 

time prior to this a much more extensive ice sheet existed, also centred on the Kamchatkan 183 

Mountains but reaching the coastline. The poor resolution of the available bathymetric data 184 

does not help to reveal its maximum extent. A reasonable presumption, however, is that ice 185 

extended beyond the shoreline terminating as an iceberg-calving front. In places, lateral 186 

meltwater channels and moraines indicate ice extended offshore (Figs. S3 and S4). Once the 187 

margin backstepped onto land we infer it stabilised, producing the coastal system of end 188 

moraines (Fig. 4). 189 

 From previous work and our glacial geomorphological evidence we reconstruct two stages 190 

of glaciation (Fig. 1). The evidence requires an earlier, and larger, ice sheet whose margin 191 

extended at least to the coastline around the coasts of Kamchatka and Koryak producing an 192 

extensive marine-terminating ice margin. This stage was likely to include ice streams, and 193 

therefore high potential for iceberg delivery to the ocean.  A later, more restricted glaciation 194 

also occurred, with montane ice fields and some marine-terminating outlets in NE Kamchatka 195 

and along the Koryak coastline. The mountain icefield complex of Kamchatka-Koryak is 196 

estimated to have covered 0.27 million km2, while the full Kamchatka-Koryak Ice Sheet 197 

covered 0.63 million km2, about one third the size of today’s Greenland Ice Sheet. 198 
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 Geochronometric dates to fix the moraines in time are lacking, but we would expect well-199 

preserved moraines to date from the last glaciation [11]. To our knowledge there is only one 200 

study [18] that provides the only published dating. This paper concluded that two moraines 201 

and terraces whose positions are broadly consistent with the montane-icefield glaciation are of 202 

‘Late Pleistocene’ age. Another moraine, one which we have also mapped, on the west coast 203 

(~ 156o 15’E, 52o 51’N) was placed as being older than 40 ka BP on the basis of an overlying 204 

tephra of this age. In the absence of a good time control on changing ice extent from the 205 

terrestrial record we turn next to the better chronological control found in the marine record. 206 

 207 

5. Variation in Pacific IRD during the last glacial cycle 208 

 209 

 Most sites across the Pacific show evidence for peaks in IRD during the last glacial cycle, 210 

particularly around 40 kyr BP, which are some 2-4 times above the levels seen around 18kyr 211 

BP [21, 24-25, 37-38]. ODP core 883D (51oN, 168oE) has proven a major focus for a number 212 

of these Quaternary palaeoclimate studies in the NW Pacific. We took samples of 10 cm3 213 

every 2 cm in its top 2.74 m, reaching back to ~ 43 kyr BP so as to include the time period of 214 

highest and most persistent IRD during the second half of the last glacial cycle [38]. We 215 

revised the core’s age model by recalibrating the 19 radiocarbon dates available for this 216 

section of core [38] using the calibration programme OxCal [39], a reservoir age of 217 

830±270yr (the mean of suggested reservoir ages for North Pacific sites [40]), and the Lake 218 

Suigetsu extension of the INTCAL98 calibration curve [41]. This provides temporal sample 219 

intervals of 300-1000 years. We counted the number of clastic grains and ash grains in the 220 

>150�m fraction of each sample, and expressed this as a function of dry bulk mass of the 221 

whole sample. Ash this size is likely to be ice-rafted this far from Kamchatka [42], 222 

particularly in bulk, but we cannot rule out the possibility of an airfall origin in such an area 223 

of explosive volcanism. It is therefore reasonable to separate out the ash from the clastic 224 

material. 225 

 In Fig. 5 we show the number of both lithic and ash grains per unit dry weight of sediment. 226 

At the LGM there are ~200 (non-ash) lithic grains per gram of sediment, a number 227 

representative of the background level throughout the period shown and comparable to LGM 228 

values found in other areas of the NW Pacific [43], and to LGM values in the eastern central 229 

North Atlantic [28]. 230 

 However, as well as minor fluctuations, there are some major increases in IRD flux, at ~ 25 231 

kyr, 32.5 kyr, 37.5 kyr and 39.3 kyr BP (‘H’ in Fig. 5). Note also that the major ash event in 232 
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the record coincides with our earliest, and largest, IRD event, suggesting possible ice-volcanic 233 

interaction. However, the onset of this peak (‘O’ in Fig. 5) shows a strong increase in IRD 234 

well before significant ash input (which started around 39.7 kyr BP), suggesting that a major 235 

ice collapse over the Kamchatka-Koryak region pre-dates any volcanic eruption sequence. 236 

The magnitude of the 39.3 kyr BP IRD peak is similar to levels reached in the eastern Atlantic 237 

during H1 and H2 [28] and in the Faroe-Shetland Channel during major iceberg discharge 238 

events [44]. 239 

 To put this spike in IRD and ash into context within the longer record at site 883D we show 240 

coarser measurements [38] back to ~ 62 kyr BP (Fig. 6). It is also instructive to examine the 241 

Gamma Ray Attentuation Porosity Evaluator (GRAPE) bulk density record for this, and other, 242 

cores at this location [25], as GRAPE density is proportional to core terrigenous material [25]. 243 

These measurements go to 10 m depth (~ 200 kyr BP), These records show the unusual nature 244 

of the peak around 40kyr BP, although there appear to be occasional similar events in the 245 

previous glacial cycle [25] and lesser, but still large, anomalies earlier in the Weichselian 246 

(Sartan; Fig. 6). Thus, the temporal variation of IRD at ODP site 883, combined with the 247 

modelled iceberg trajectories, indicates that the maximum Weichselian (Sartan) ice flux from 248 

the Kamchatka-Koryak region occurred early in the glacial cycle, with a major and sustained 249 

period of collapse over ~41-36 kyr BP, initiated by a massive iceberg discharge event. Two 250 

further, much less extreme, events followed before a final retreat of glaciers from the NW 251 

Pacific shoreline at ~ 14 kyr BP. 252 

 253 

6. Conclusion 254 

 255 

 The marine record of the North Pacific incontrovertibly demonstrates that there were major 256 

IRD fluxes issuing into the glacial ocean from surrounding landmasses. All previous 257 

lithological analyses [19-22, 24], a previous major discussion of Weichselian (Sartan) IRD in 258 

the NW Pacific [25] and our iceberg trajectory modelling strongly support a Northeast Asian 259 

origin for IRD found in the NW Pacific. Persuasive chronological control in NW Pacific ODP 260 

Core 883D allows confidence in the existence of a major iceberg discharge phase around 40 261 

kyr BP, comparable in magnitude to that of Heinrich events in the Atlantic, followed by much 262 

smaller events until the end of a marine-terminating ice presence ~ 14 kyr BP. On land, the 263 

one reliable date to tie the two stage Kamchatkan glacial geomorphological evidence within 264 

the Quaternary shows that the montane glaciation stage in South Kamchatka dates after 40 kyr 265 

BP while the western, coastal phase pre-dates this [18]. Palaeoclimate data for the region is 266 
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sparse prior to 20 kyr BP but pollen records north of the Sea of Okhotsk suggest a cold phase 267 

during 45-39 kyr BP, followed by warmer and moister conditions until 32 kyr BP [45]. All 268 

these lines of evidence lead us to present the hypothesis that a large Kamchatka-Koryak Ice 269 

Sheet (KKIS) existed during the Weichselian, attaining its maximum configuration sometime 270 

prior to 40 kyr BP, rather than at the LGM. Both the marine and terrestrial data are consistent 271 

with such an Ice Sheet experiencing a major purging around this time. We further hypothesise 272 

that subsequently, and after much ice margin retreat, montane-based icefields stabilised over 273 

parts of the area, and this, reduced, stage is presumed to be representative of the (global) 274 

LGM at 18 kyr BP. 275 

 The early stage, KKIS, glaciation is estimated to cover in excess of 0.6 million km2, with 276 

extensive marine-terminating ice margins. Montane-based icefields (covering an estimated 277 

0.27 million km2) characterise the later stage, with some ice outlets still reaching the sea. We 278 

therefore find elements of truth in both extremes of the Pacific Russian ice sheet controversy 279 

[1, 4]. While there is little evidence for extensive ice further north over Beringia and NE 280 

Russia [3, 5] our marine and terrestrial evidence demonstrates a significant ice sheet over 281 

parts of maritime Pacific Russia south of the Anadyr River. However, we have shown that 282 

this ice was less extensive at the LGM than earlier in the Last Glacial. The Weichselian 283 

(Sartan) glacial state of the region west of the reconstructed landward margin in Fig. 1 284 

remains unresolved, as here there is contradictory evidence in the local geomorphology and 285 

palaeobiology suggesting the possible presence of significant ice masses, but not complete 286 

cover (for example contrast [15], and on-line Fig. S6, with [10]). Our reconstruction 287 

nevertheless points towards a resolution of a long-standing controversy, and in reconciling the 288 

marine and terrestrial evidence of Weichselian (Sartan) ice sheet activity.  These findings also 289 

contribute to reconciling global ice volumes with changes in sea level during the Last Glacial. 290 

On the latter issue there was an approximately 25 m rise in sea level during 40-39 kyr BP 291 

[46], at least 5% of which could be explained by the change in the Kamchatka-Koryak Ice 292 

Sheet. Given our conclusion that a large ice sheet covered Kamchatka and Koryak, we 293 

speculate that more substantial ice masses may also have existed over parts of the mountains 294 

to the north of the Sea of Okhotsk (see question marks in Fig. 1), and that additional 295 

contributions to sea level rise at this time may be attributed to its melting. There is 296 

considerable scope for future fieldwork in eastern Russia to resolve the dating and ice extent 297 

issues of the wider area and to test and constrain our hypothesised KKIS reconstruction. 298 

 The correspondence of the largest ice discharge and ash events in core ODP 883D (Fig. 5), 299 

yet the former’s onset some centuries before the ash event is intriguing. We speculate that 300 
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there may have been a feedback mechanism between ice sheet loading and volcanic activity 301 

leading to this relationship. The purging event with greatly enhanced iceberg discharge into 302 

the Pacific must have greatly reduced the volume of the KKIS. Its cause may have been a 303 

consequence of enhanced geothermal heating of basal ice producing wholesale ice streaming 304 

or ice sheet binge-purge oscillations [47]. Whatever the origin, we hypothesise that reduction 305 

of the ice load over southern Kamchatka for 500-1000 years may have promoted volcanic 306 

activity, as has been seen in other contexts in Iceland [48] and eastern California [49]. 307 

Terrestrial evidence shows that there was volcanic activity around 40kyr BP greater than 308 

anything subsequently experienced for southern and eastern Kamchatka and the northern 309 

Kurile Islands, with multiple examples of caldera formation occurring over a narrow time 310 

frame around and just after 40 kyr BP [50]. While at least some of these appear not to have 311 

been associated with magmatic activity directly [51], we note that there was a coincident peak 312 

in volcanic sulphate deposits in the Greenland GISP2 ice core [52]. It is also supportive to our 313 

hypothesis that a number of previous major IRD peaks in the NW Pacific during the past two 314 

glacial cycles have been accompanied by significant ash deposits (Fig. 6; [25]). However, the 315 

exact origin of ash in the sedimentary record of the region varies significantly with space and 316 

time and must arise from a set of local eruptions, and dispersal mechanisms, rather than one 317 

gigantic eruption covering the whole area in uniform ash. Thus the geochemical signatures, 318 

shown in Table 1, of the mid-Weichselian (Sartan) K2 and K3 ash spikes in the Sea of 319 

Okhotsk [53], the southwestern Kamchatkan pre-40kyr BP tephra [18] and the 40 kyr BP 320 

spike at ODP Site 883 [54] are all distinct, 321 

 Although further work is needed to confirm this ice-volcanism speculation, we suggest that 322 

volcanic activity could have been triggered by, and have prolonged, the Ice Sheet collapse at 323 

~ 40 kyr BP, leading to a new, much reduced, ice mass. The more minor waxing and waning 324 

of the ice sheet suggested by the smaller IRD peaks post-35 kyr BP (Fig. 5) is not associated 325 

with ash deposit fluctuation and so also awaits further investigation. 326 

 327 

Acknowledgements 328 

 329 

 This research used samples provided by the Ocean Drilling Program (ODP). ODP is 330 

sponsored by the U.S. National Science Foundation (NSF) and participating countries under 331 

management of Joint Oceanographic Institutions (JOI), Inc. ALCH gratefully acknowledges 332 

the Natural Environmental Research Council who part-funded an MSc in Quaternary Science 333 

at Royal Holloway, University of London, where part of this work was undertaken. We would 334 



 11 

like to thank Mark Maslin, who acted as internal supervisor for ALCH during her MSc, and 335 

Paul Coles and Graham Allsopp and Paul Coles, who prepared the diagrams. We would also 336 

like to thank Thorsten Kiefer who provided the radiocarbon dates on which the age model for 337 

Core 883 was based and the data from which Fig. 6 was produced. 338 

 339 

References 340 

 341 

[1] M.G. Grosswald, T.J. Hughes, The Russian component of an Arctic Ice Sheet during the 342 

Last Glacial Maximum, Quater. Sci. Rev. 21 (2002) 121-146. 343 

[2] M.G. Grosswald, T.J. Hughes. “Back-arc” marine ice sheet in the Sea of Okhotsk. Russ. J. 344 

Earth Sci. 7 (2005) doi:10.2205/2005ES000180. 345 

[3] J. Brigham-Grette, D.M. Hopkins, V.F. Ivanov, A. Basilyan, S.L. Benson, P. Heiser, V. 346 

Pushkar, Last interglacial and sea level history of coastal Chutotka Peninsula and St. 347 

Lawrence Island, western Beringia, Quater. Sci. Rev. 20 (2001) 419-436. 348 

[4] J. Brigham-Grette, L.M. Gualtieri, O.Yu. Glushkova, T.D. Hamilton, D. Mostoller, A. 349 

Kotov, Chlorine-36 and 14C chronology support a limited last glacial maximum across 350 

central Chutotka, north-eastern Siberia, and no Beringian ice sheet, Quater. Res. 59 351 

(2003) 386-398. 352 

[5] L. Gualtieri, S. Vartanyan, J. Brigham-Grette, M. Patricia, P.M. Anderson, Pleistocene 353 

raised marine deposits on Wrangel Island, NE Siberia: implications for Arctic ice sheet 354 

history,  Quater. Res. 59 (2003) 399-410. 355 

[6] B. Felzer, Climate impacts of an ice sheet in East Siberia during the Last Glacial 356 

Maximum, Quater. Sci. Rev. 20 (2001) 437-447. 357 

[7] Z. Wang, A.-S.B. Cochelin, L.A. Mysak, Y. Wang, Simulation of the last glacial inception 358 

with the green McGill Paleoclimate Model, Geophys. Res. Lett. 32 (2005) 359 

doi:10.1029/2005GL023047. 360 

[8] C. Zweck, P. Huybrechts, Modelling of the northern hemisphere ice sheets during the last 361 

glacial cycle and glaciological sensitivity, J. Geophys. Res. 110 (2005) 362 

doi:10.1029/2005D07103. 363 



 12 

[9] S.J. Marshall, Modelled nucleation centres of the Pleistocene ice sheets from an ice sheet 364 

model with subgrid topographic and glaciologic parameterizations, Quater. Int. 95/6 365 

(2002) 125-137. 366 

[10] L.B. Brubaker, P.M. Anderson, M.E. Edwards, A.V. Lozhkin, Beringia as a glacial 367 

refugium for boreal trees and shrubs: new perspectives from mapped pollen data, J. 368 

Biogeogr. 532 (2005) 833-848.  369 

[11] P.M. Heiser, J.J. Roush, Pleistocene glaciations in Chutotka, Russia: moraine mapping 370 

using satellite synthetic aperture radar (SAR) imagery, Quater. Sci. Rev. 20 (2001) 393-371 

404. 372 

[12] O.Yu. Glushkova, Geomorphological correlation of Late Pleistocene glacial complexes 373 

of Western and Eastern Beringia, Quater. Sci. Rev. 20 (2001) 405-417. 374 

[13] J.C. Hill, N.W. Driscoll, J. Brigham-Grette, J.P. Donnelly, P.T. Gayes, L.D. Keigwin. 375 

New evidence for high discharge to the Chukchi Shelf since the Last Glacial Maximum. 376 

Quater. Res., in press (2007) doi:10.1016/j.yqres.2007.04.004. 377 

[14] A.V. Alfimov, D.I. Berman, Beringian climate during the late Pleistocene and Holocene, 378 

Quater. Sci. Rev. 20 (2001) 127-134. 379 

[15] S.A. Arkhipov, L.I. Isayeva, V.G. Bespaly, O. Glushkova, Glaciation of Siberia and 380 

north-east USSR, Quater. Sci. Rev. 5 (1986) 463-474. 381 

[16] L. Gualtieri, O. Glushkova, O., J. Brigham-Grette. Evidence for restricted ice extent 382 

during the last glacial maximum in the Koryak Mountains of Chukotka, far eastern 383 

Russia. Geol. Soc. Amer. Bull. 112 (2000) 1106– 1118. 384 

[17] D.H. Mann, T.D. Hamilton. Late Pleistocene and Holocene paleoenvironments of the 385 

North Pacific coast. Quarter. Sci. Rev. 14 (1995) 449– 471. 386 

[18] R. Bäumler, W. Zech, Quaternary paleosols, tephra deposits and landscape history in 387 

South Kamchatka, Russia, Catena 41 (2000) 199-215. 388 

[19] V.P. Nechaev, A.V. Sorochinskaya, I.B. Tsoy, S.A. Gorbarenko, Clastic components in 389 

Quaternary sediments of the northwest Pacific and their paleoceanic significance, Mar. 390 

Geol. 118 (1994) 119-137. 391 

[20] J.R. Conolly, M. Ewing, Ice-rafted detritus in Northwest Pacific deep-sea sediments, in: 392 

J.D. Hays (Ed.), Geological Investigations of the North Pacific, Geological Society of 393 

America Memoir 126 (1970) pp. 219-231. 394 

[21] K.E. St. John, L.A. Krissek, Regional patterns of Pleistocene ice-rafted debris flux in the 395 

North Pacific, Paleoceanogr. 14 (1999) 653-662. 396 



 13 

 [22] B.C. McKelvey, W. Chen, R.J. Arculus, Provenance of Pliocene-Pleistocene ice-rafted 397 

debris, Leg 145, Northern Pacific, in: D.K. Rea, I.A. Basov, D.W. Scholl, J.F. Allan 398 

(Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Leg 145, Texas 399 

College Station (1995) pp. 195-204. 400 

[23] R. von Heune, J. Crouch, E. Larson, Glacial advance in the Gulf of Alaska area implied 401 

by ice-rafted material, Geological Society of America Memoir 145 (1976) pp. 411-422. 402 

[24] A.T. Hewitt, D. McDonald, B.D. Bornhold, Ice-rafted debris in the North Pacific and 403 

correlation to North Atlantic climatic events, Geophys. Res. Lett. 24 (1997) 3261-3264. 404 

[25] A.T. Kotilainen, N.J. Shackleton, Rapid climate variability in the North Pacific Ocean 405 

during the past 95,000 years, Nature 377 (1995) 323-326. 406 

[26] W.F. Ruddiman, Late Quaternary deposition of ice-rafted sand in the sub-polar North 407 

Atlantic (lat 40o to 65oN), Geol. Soc. Amer. Bull. 88 (1977) 1813-1827. 408 

[27] L.D. Keigwin, G.A. Jones, P.N. Floerich, A 15,000 year paleoenvironmental record from 409 

Meiji Seamount, far northwestern Pacific, Earth Planet. Sci. Lett. 111 (1992) 425-440. 410 

[28] G. Auffret, S. Zaragosi, B. Dennielou, E. Cortijo, D. van Rooij, F. Grousset, C. Pujol, F. 411 

Eynaud, M. Siegert, Terrigeneous fluxes at the Celtic margin during the last glacial 412 

cycle, Mar. Geol. 188 (2002) 79-108. 413 

[29] G.R. Bigg, M.R. Wadley, D.P. Stevens, J.A. Johnson, Modelling the dynamics and 414 

thermodynamics of icebergs, Cold Reg. Sci. Technol. 26 (1997) 113-135. 415 

[30] R. Gladstone, G.R. Bigg, K.W. Nicholls, Icebergs and fresh water fluxes in the Southern 416 

Ocean, J. Geophys. Res. 106 (2001) 19903-19915. 417 

[31] G.R. Bigg, M.R. Wadley, The origin and flux of icebergs released into the Last Glacial 418 

Maximum Northern Hemisphere oceans: the impact of ice-sheet topography, J. Quater. 419 

Sci. 16 (2001) 563-573. 420 

[32] G.R. Bigg, M.R. Wadley, D.P. Stevens, J.A. Johnson, Simulations of two last glacial 421 

maximum ocean states, Paleoceanogr. 13 (1998) 340-351. 422 

[33] M.R. Wadley, G.R. Bigg, E.J. Rohling, A.J. Payne, On modelling present day and last 423 

glacial maximum oceanic δ18O distributions, Glob. Planet. Change 32 (2002) 89-109. 424 



 14 

[34] M. Kageyama, P.J. Valdes, G. Ramstein, C. Hewitt, U. Wyputta. Northern hemisphere 425 

storm tracks in present day and last glacial maximum climate simulations: A comparison 426 

of the European PMIP models. J Clim. 12 (1999) 742-760. 427 

[35] V. Zamoruyev, Quaternary glaciation of north-east Asia, in: J. Ehlers, P.L. Gibbard, 428 

(Eds.), Quaternary Glaciations – extent and chronology, Part III, Amsterdam, 429 

Netherlands, Elsevier (2004) pp. 321-323. 430 

[36] C.D. Clark, Reconstructing the evolutionary dynamics of former ice sheets using multi-431 

temporal evidence, remote sensing and GIS, Quater. Sci. Rev. 16 (1997) 1067-1092. 432 

[37] D. Kent, N.D. Opdyke, M. Ewing, Climate change in the North Pacific using ice-rafted 433 

detritus as a climatic indicator, Geol. Soc. Amer. Bull. 82 (1971) 2741-2754. 434 

 [38] T. Kiefer, M. Sarnthein, h. Erlenkeuser, P.M. Grootes, A.P. Roberts, North Pacific 435 

response to millennial-scale changes in ocean circulation over the last 60 kyr, 436 

Paleoceanogr. 16 (2001) 179-189. 437 

[39] C. Bronk Ramsey, OxCal radiocarbon calibration and stratigraphic analysis program, 438 

version 3.9, Research Laboratory for Archaeology, Oxford University, Oxford (2003) 439 

(www.rlaha.ac.uk). 440 

[40] A.L.C. Hughes. The ice-rafted debris record of ODP Site 883, Northwest Pacific. MSc. 441 

Dissertation, Royal Holloway College, University of London (2004) 59 pp. 442 

[41] H. Kitigawa, J. van der Plicht, Atmospheric radiocarbon calibration beyond 11,900 cal BP 443 

from Lake Suigetsu laminated sediments, Radiocarbon 42 (2000) 369-380. 444 

[42] M.G. Wiesner, A. Wetzel, S.G. Catane, E.L. Listanco, H.T. Mirabueno. Grain size, areal 445 

thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra 446 

layer in the South China Sea. Bull. Volcanol. 66 (2004) 226-242. 447 

[43] S.A. Gorbarenko, Stable isotope and lithological evidence of late-glacial and Holocene 448 

oceanography of the Northwest Pacific and its marginal seas, Quater. Res. 46 (1996) 230-449 

250. 450 

[44] S. Lassen, E. Jansen, K.L. Knudsen, A. Kuijpers, M. Kristensen, K. Christensen, Northeast 451 

Atlantic sea surface circulation during the past 30-10 14C kyr B.P., Paleoceanogr. 14 (1999) 452 

616-625. 453 

[45] P.M. Anderson, A.V. Lozhkin. The Stage 3 interstadial complex (Karginskii/middle 454 

Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for 455 

paleoclimatic interpretations. Quater. Sci. Rev. 20 (2001) 93-125. 456 



 15 

[46] E.J. Rohling, R. Marsh, N.C. Wells, M. Siddall, N.R. Edwards, Similar meltwater 457 

contributions to glacial sea level changes from Antarctic and northern ice sheets, Nature 430 458 

(2004) 1016-1021. 459 

[47] D.R. MacAyeal, Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the 460 

North Atlantic's Heinrich events, Paleoceanogr. 8 (1993) 775-784. 461 

[48] J. Maclennan, M. Jull, D. McKenzie, L. Slater, K. Gronvold, The link between volcanism 462 

and deglaciation in Iceland, Geochem. Geophys. Geosys. 3 (2002) 463 

doi:10.129/2001GC000282. 464 

[49] A.M. Jellinek, M. Manga, M.O. Saar, Did melting glaciers cause volcanic eruptions in 465 

eastern California? Probing the mechanics of dike formation, J.  Geophys. Res. 109 (2004) 466 

doi:10.1029/2004JB002978. 467 

[50] O.A. Braitseva, I.V. Melekestsev, V.V. Ponomareva, L.D. Sulerzhitsky, Ages of calderas, 468 

large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia, Bull. 469 

Volcanol. 57 (1995) 383-402. 470 

[51] V.V. Ponomareva, I.V. Melekestev, O.V. Dirksen. Sector collapses and large landslides 471 

on Late Pleistocene-Holocene volcanoes in Kamchatka, Russia. J Volcanol. Geotherm. 472 

Res. 158 (2006) 117-138. 473 

[52] G.A. Zielinski, P.A. Mayewski, L.D. Meeker, S. Whitlow, M.S. Twickler, A 110,000-yr 474 

record of explosive volcanism, from the GISP2 (Greenland) Ice Core, Quater. Res. 45 475 

(1996) 109-118. 476 

[53] S.A. Gorbarenko, D. Nürnberg, A.N. Derkachev, A.S. Astrakhov, J.R. Southon, A. 477 

Kaiser. Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in 478 

the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply. 479 

Mar. Geol. 183 (2002) 107-129. 480 

[54] L.-Q. Cao, R.J. Arculus, B.C. McKelvey. Geochemistry and petrology of volcanic ashes 481 

recovered from sites 881 through 884: a temporal record of Kamchatka and Kurile 482 

volcanism in: D.K. Rea, I.A. Basov, D.W. Scholl, J.F. Allan (Eds.), Proceedings of the 483 

Ocean Drilling Program, Scientific Results, Leg 145, Texas College Station (1995) pp. 484 

345-381. 485 



 16 

Figures 486 

 487 
Fig. 1 Elevation rendition of NE Asia, showing main areas mentioned in the text. The 488 

Grosswald-reconstruction is not shown but places an extensive LGM ice sheet covering the 489 

entire mainland landmass, northern Arctic Shelf and the Sea of Okhotsk.  The minimum view 490 

argues strongly against this and reconstructs restricted icefield complexes on the mountains, 491 

represented here by the synthesis of [35], marked in dark blue. The two stage model of 492 

glaciation reported in this paper is schematically shown by our maximal Kamchatka-Koryak 493 

Ice Sheet (stippled within a thick line), and the minimal reconstruction shown in dark blue. 494 

The question marks explain that we have not fully investigated north of the Sea of Okhotsk. 495 

 496 
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 497 
Fig. 2 Maps of extent and relative abundance of LGM IRD in the a) Pacific and b) North 498 

Atlantic. ‘X’ indicates no evidence of IRD, ‘F’ denotes concentrations < 50 mgcm-2kyr-1, ‘S’ 499 

~ 50-250 mgcm-2kyr-1, ‘S’ ~ 250-1000 mgcm-2kyr-1 and ‘VS’ > 1000 mgcm-2kyr-1. It is clear 500 

that the extent and maximum concentrations of Pacific LGM IRD are similar to those of the 501 

North Atlantic. The data from which the maps were constructed is available as Supplementary 502 

Material in Table S1. The S at 51.2oN, 167.8oE shows ODP Site 883, a core from which is 503 

sampled in detail in Fig. 5.  504 

 505 
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 506 
Fig. 3 Modelled iceberg trajectories for the three possible LGM ocean states: a) northern 507 

sinking state, b) intermediate sinking state, c) southern sinking state. All three ocean states 508 

have similar iceberg trajectories in the Pacific.  Note that IRD in the NW Pacific cannot have 509 



 19 

been derived from North America. The structure of the trajectories in b) is different due to the 510 

different model grid on which the computation was carried out. The location of ODP Site 883 511 

is shown by a black dot. 512 

 513 
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 514 
Fig. 4 Kamchatka Peninsula showing the maximal Quaternary glaciation of [28] (blue) and 515 

the prominent moraines we identified from imagery (black). Note that some moraine systems 516 
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are consistent with the ice extent shown, but that many indicate more extensive ice cover, and 517 

reaching the coast. Inset is of the southwest corner of the Peninsula, showing a series of end 518 

moraines indicative of ice meeting the coast (see Fig. S4). The dated tephra of [18] were 519 

found at three different locations near 53oN 157oE. 520 

 521 

 522 
Fig. 5 Variation downcore (883D) of the number of lithic grains per gram, without ash (bold) 523 

and ash alone (line). The age model for the core is given along the upper boundary. The ash 524 

was counted separately for every other sample so the temporal resolution is reduced compared 525 

to the original analysis. The oldest two lithic peaks may be slightly contaminated by material 526 

deriving from volcanic eruptions, as there is a particular strong ash signature in the core 527 

sediments from 37-39.7 kyr BP, with an extreme peak from a major eruption at 39.3 kyr BP. 528 

To quantify this, the typical variation in replicate counts was approximately 10% of the total. 529 

The major IRD events are denoted by ‘H’ and the onset of the biggest Heinrich Event, which 530 

is dominated by increasing iceberg discharge but no ash deposits, is indicated by ‘O’. 531 

 532 
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 533 
Fig. 6 Variation downcore (883D) of the number of lithic grains per gram, without ash (thin 534 

line) and ash alone (bold dashed), from coarser analysis [38] over a longer time period, 535 

back to ~ 62 ka BP. The peaks around 2.55 m (~ 41 ka BP) extend to ~ 10,000 grains per 536 

gram. Note that the major lithic peaks start rising slightly earlier than the ash peaks in 537 

both cases shown. 538 
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Table 1 539 

Geochemistry of tephras from the mid-Weichselian (Sartan) region around Kamchatka (%) 540 

Ash Age 

(BP) 

SiO2 TiO3 Al2O3 FeO MgO CaO K2O Na2O 

K2 ~25kyr 74 0.3 13 2.3 0.3 1.5 2.5 4 

K3 ~40-

45kyr 

74 0.3 13 2.3 0.3 1.5 2.5 4 

SW Kam-

chatka 

>40kyr 73.0 0.3 15.2 2.4 1.2 1.6 2.2 3.9 

883B 40kyr 74.1 0.6 15.0 2.3 0.0 1.4 3.8 2.9 

K2 and K3 geochemistry averaged from a range of cores in the Sea of Okhotsk and dates [53], 541 

SW Kamchatkan date and geochemistry from [18], core 883B geochemistry from Cao et al. 542 

(1995) and date from [54]. 543 
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Supplementary Material  544 

 545 
S1. Construction of Figure 2 546 
 547 
 Table S1 shows the data used in the compilation of Figure 2. There are a variety of different 548 

ways in which past research records ice-rafted debris (IRD) measurements. Intrinsically, the 549 

most quantitatively unambiguous is the rate measurement in gcm-2kyr-1. However, even with 550 

this measurement there are various size fractions used. As a basis to separate magnitudes we 551 

take the 0.25 gcm-2kyr-1 boundary, for the 63-2000 �m size fraction, used by [20], and 552 

Hemming (2004), to distinguish between high and low magnitudes of IRD in the glacial 553 

central North Atlantic. The two categories S and VS denote values above this boundary, while 554 

F and S denote values below, with X denoting absence of IRD. For a few locations in both the 555 

Atlantic and Pacific there exist multiple ways of representing IRD, allowing some degree of 556 

comparison between the methods. However, subjective interpretation is sometimes required to 557 

produce a final grading. For example, the % dry weight measurement firstly can have various 558 

size bands (starting from 63 �m or 500 �m changes the percentage by more than a factor of 10 559 

(Dahlgren and Vorren 2003)), but is also highly dependent on the background marine 560 

productivity at the site. Productive sites can have lower IRD percentages, for the same size 561 

band, as marine deserts, yet quantitatively the same flux. Similarly, the grains g-1 562 

measurement suffers again from the variable size banding (or sometimes none specified), but 563 

is also highly dependent on the size of IRD particles. These factors inevitably inflate values 564 

for smaller starting fractions, as a lot of small grains can be replaced by few large grains. 565 

Thus similar numbers of grains g-1 can occur for absolute fluxes differing by a factor of 100 566 

(compare van Kreveld et al. (2000) with [22]). When only core logs are available the grading 567 

is even more problematic, and depends on the degree to which sand layers and pebbles occur 568 

within the Late Weichselian segment of the core. Thus, while there is an approximate 569 

separation of the gradings - ‘F’ denotes concentrations < 50 mgcm-2kyr-1, ‘S’ ~ 50-250 mgcm-570 
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2kyr-1, ‘S’ ~ 250-1000 mgcm-2kyr-1 and ‘VS’ > 1000 mgcm-2kyr-1, all in the size fraction 63-571 

2000 �m  – the reader needs to note the subjective nature of the grading for many sites. 572 

 573 

Table S1. Data and references that contributed to LGM maps in Fig. 2. References not 574 

in main manuscript are listed below in alphabetically order for each ocean. All data is 575 

from the interval 15-21 kyr BP, and much is approximate, representing a background 576 

from plots shown in the references. 577 

 578 
Pacific     
Location Reference Unit Category Core/Comment 
~ 40oN 135oE Core logs (Ingle 

et al. 1975) 
No record X DSDP Leg 31, 

Sites 299-302 
41.6oN 154.0oE [21] ~0.01 gcm-2kyr-1 F DSDP Site 580; 

250-2000 �m 
fraction 

38oN 153oE Krissek et al. 
(1985) 

0% X DSDP Site 579; % 
in 250-2000 �m 
fraction 

56oN 146oW [23] 1% F DSDP Site 178; % 
in 250 �m-2mm 
fraction [NB: 
occasional sandy 
layer and few 
pebbles in core log 
(Musich & Weser 
1973)] 

47.1oN 161.5oE Krissek (1995) 0.027 gcm-2kyr-1 S DSDP Site 881A; 
250-2000 �m 
fraction 

51.2oN 167.8oE Krissek (1995) 0.015 gcm-2kyr-1 S DSDP Site 883B; 
> 125 �m fraction 

54.4oN 148.5oW Krissek (1995) 0.042 gcm-2kyr-1 S DSDP Site 887A; 
250-2000 �m 
fraction 

54.4oN 148.5oW [24] 0.1 gcm-2kyr-1 S PAR87-10; 180-
500 �m fraction 

54.4oN 149.5oW [24] 0.15 gcm-2kyr-1 S PAR87-01; 180-
500 �m fraction 

54.4oN 149.5oW [24] 0.3 gcm-2kyr-1 S PAR87-02; 180-
500 �m fraction 

53oN 164.6oE [27] 10 gcm-2kyr-1 VS RAMA44PC; > 
150 �m fraction (~ 
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1000 grains g-1 

[36]) 
50.5oN 167.5oE [43] 200 grains g-1 S GC36 
49oN 150oE [43] 7% S V34-90; > 80 �m 

% dry weight (cf. 
2% in Holocene) 

53oN 179oE [43] 400 grains g-1 S GC11 
51.0oN 148.3oE Gorbarenko et 

al. (2004) 
3500 grains g-1; 
5% 

S 936; > 150 �m % 
dry weight (sea-ice 
contamination?) 

42oN 161oE [20] 2.5% F V21-148; > 62 �m 
% dry weight 

47oN 180o [20] 0.05% X V20-109; > 62 �m 
% dry weight 

47oN 170oW [37] 4% S RC10-206; > 250 
�m % dry weight* 

46oN 178oE [37] 2% F RC10-182; > 250 
�m % dry weight* 

42oN 179oW [37] 1.9% F V20-108; > 250 
�m % dry weight* 

46oN 160oW [37] 3% S RC11-171; > 250 
�m % dry weight* 

44oN 162oW [37] 0.2% F V21-173; > 250 
�m % dry weight* 

48oN 180o [37] 5% S V21-172; > 250 
�m % dry weight* 

50oN 165oW [37] 5% S V21-171; > 250 
�m % dry weight* 

52.6oN 161.2oW Creager et al. 
(1973) 

Sand layers & 
scattered pebbles 

S DSDP Site 183; 
core log 

53.7oN 170.9oW “ Sand layers and a 
few erratics 

F DSDP Site 184; 
core log 

54.4oN 169.2oW “ Nothing in right 
time frame 

X DSDP Site 185; 
core log 

51.1oN 174.0oW “ Sand layers or 
odd erratics 

F DSDP Site 186 & 
187; core log 

53.8oN 178.60W “ Nothing X DSDP Site 188; 
core log 

54.0oN 170.2oE “ Nothing X DSDP Site 189; 
core log 

55.6oN 171.6oE “ Sand layers F DSDP Site 190; 
core log 

56.9oN 168.2oE “ Sand layers and 
odd erratics 

F DSDP Site 191; 
core log 

53.0oN 164.7oE “ Scattered erratics S DSDP Site 192; 
core log 

44.6oN 126.3oW Musich & 
Weser (1973) 

Nothing X DSDP Site 174; 
core log 

44.8oN 125.2oW “ Nothing X DSDP Site 175; 
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core log 
45.9oN 124.6oW “ Nothing X DSDP Site 176; 

core log 
50.5oN 130.2oW “ Indistinct sandy 

layers 
F DSDP Site 177; 

core log 
56.4oN 146.0oW “ Occasional 

pebble 
F DSDP Site 179; 

core log 
57.3oN 147.9oW “ Sand layers and 

pebbles 
S DSDP Site 180; 

core log 
57.4oN 148.5oW “ Copious large 

pebbles 
S DSDP Sites 181 & 

182; core log 
40.8oN 154.5oE Gardner (1975) Nothing X DSDP Site 303; 

core log 
39.4oN 155.1oE “ Nothing X DSDP Site 304; 

core log 
32.0oN 157.8oE “ Some pumice & 

chalk – IRD? 
F DSDP Sites 305 & 

306; core log 
20-32oN 160oE-
170oW 

“ Nothing X DSDP Sites 307-
308, 310-311, 313; 
core log 

42.4oN 170.5oE Shambach 
(1980) 

Glacial erratics F DSDP Site 431; 
core log 

41.3oN 170.4oE “ Nothing X DSDP Site 432; 
core log 

44.8oN 170.0oE “ Nothing X DSDP Site 433; 
core log 

40.6oN 143.3oE Lee & Stout 
(1980) 

Pebbles F DSDP Site 439; 
core log 

39.7oN 143.8oE “ Evidence of sand 
layers, pumice 
and pebbles 

F DSDP Sites 435 & 
440-441; core log 

31oN 140oE Barbu & Julson 
(1990) 

Nothing X ODP Sites 787-
791; core log 

32oN 141oE “ Some pebbles F ODP Sites 792-
793; core log 

48.6oN 123.5oW Fox (1998a) Pebbles and sand 
layers 

S ODP Sites 1033-
1034; core log 

48.4oN 128.6oW Fox (1998b) Nothing X ODP Sites 1035-
1038; core log 

39oN 143.3oE Lowe (2000) Some evidence of 
sand layers 

F ODP Sites 1150-
1151; core log 

47.9oN 128.6oW Miller (1998) Nothing X ODP Sites 125-
126; core log 

41.1oN 160.0oE Peters (2001) Nothing X ODP Site 1179 
     
Atlantic     
62.7oN 37.5oW Krissek et al. 

(2004) 
10,000 grains g-1 VS ODP Site 919; > 

150 �m fraction 
59.2oN 30.9oW Van Kreveld et ~ 500 grains g-1 S SO82-05GGC (~ 
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al. (2000) 10% or 0.08 gcm-

2kyr-1, Lackshweitz 
et al. 1998, > 65 
�m % dry weight) 

67.1oN 7.1oE Dahlgren & 
Vorren (2003) 

~0.3 gcm-2kyr-1; ~ 
5 gcm-2kyr-1 

VS JM98-625/1; 500-
2000 �m fraction; 
63-2000 �m 
fraction 

40.6oN 9.9oW de’Abreu et al. 
(2003) 

1-2 % S MD95-2040; > 125 
�m % dry weight   

47oN 8oW [28] 50 gcm-2kyr-1 VS MD95-2002 
49oN 12oW [28] 10 gcm-2kyr-1 ; ~ 

400 grains g-1 
VS NKS512; > 150 

�m fraction 
48.4oN 25.1oW [28] 3 gcm-2kyr-1 VS T88-9P; > 65 �m 

fraction 
62.7oN 4.0oW [28] 19 gcm-2kyr-1 VS ENAM93-21 
48.8oN 12.6oW [28] 15 gcm-2kyr-1 VS OM-5-K 
41.5oN 9.7oW [28] 17 gcm-2kyr-1 VS PO28-1 
49.9oN 24.2oW Bond et al. 

(1992) 
~ 10 gcm-2kyr-1; 
15-20% 
(Hemming, 2004) 

VS ODP Site 609; > 
150 �m % dry 
weight 

54.9oN 16.6oW Richter et al. 
(2001) 

~ 2000 grains g-1; 
10% 

VS ENAM97-09; > 
150 �m fraction,  
% dry weight   

64.9oN 29.3oW Hagen & Hald 
(2002) 

~ 20 grains g-1 S JM96-1225; > 500 
�m fraction 

60.3oN 9.8oW [44] ~ 2000 grains g-1 VS ENAM32; > 125 
�m fraction 

63oN 59oW Andrews & 
Barber (2002) 

2-4% S HU87-009; 65-
2000 �m % dry 
weight 

59.4oN 31.1oW Lackschewitz et 
al. (1998) 

~ 20% S SO82-2; > 63 �m 
% dry weight 

59.0oN 31.1oW “ ~ 25% S LO09-23 
54oN 17oW “ 300 grains g-1 S VM23-81 
67oN 3oW “ 60%; 0.5-1 gcm-

2kyr-1 
S 23071; > 63 �m % 

dry weight 
42oN 55oW Hemming 

(2004) 
20% S CH69-K09; > 150 

�m % dry weight   
43oN 51oW “ >40% VS V23-14; > 150 �m 

% dry weight   
43oN 30oW “ 20% VS SU90-08; > 150 

�m % dry weight   
49oN 23oW “ 20%; 2000 grains 

g-1 
VS V28-82; ; > 150 

�m % dry weight   
47oN 20oW “ 15% S ME69-17; 180-

3000 �m % dry 
weight   

* dating not certain – not used in Fig. 2 but supporting pattern. 579 
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 638 
 639 
S2. Remote Sensing Images 640 
The following figures illustrate and report some of the glacial geomorphological evidence 641 
discovered and that have been used to demarcate the extent of palaeo ice masses. Our 642 
conclusion about a two-stage glaciation style (Figs. 1 and 4 of main text) is based on such 643 
evidence. 105 moraines have been identified, some of which are shown here.  644 
 645 

 646 
Figure S1.  This shows a sequence of end and lateral moraines recording glacier retreat in 647 
these two valleys on the western flank of the main median (Sredinny) ridge of Kamchatka. 648 
Image is a 3-D visualisation (looking east) of Shuttle Radar Topography Mission (SRTM) 649 
elevation data and is centred at 1600 8’ E; 570 58’ N, with a foreground width of ca. 35 km. 650 
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 651 
Figure S2.  Moraine distribution on the west and east flanks of the main median ridge of 652 
Kamchatka. Note that end moraines occupy all major valleys and are positioned 653 
approximately symmetrically around the main divide. We take this systematic pattern to 654 
indicate approximately synchronous end moraine formation recording a stable margin 655 
configuration of a major icefield centred over the high ground. These moraines are consistent 656 
with previously reconstructed LGM ice extent [35], which is portrayed in Figs. 1 and 4 of the 657 
main text. Image is a 3-D visualisation of SRTM elevation data, looking NNE from ca. 1590 658 
21’ E; 560 32’ N, for a distance of around 300 km. 659 
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 660 
Figure S3.  On parts of the eastern shore of Kamchatka, glacier trimlines and moraines 661 
indicate that ice outlets drained directly into the sea. Here lateral moraines are evident 662 
extending to the present day shoreline and end moraines are visible which we interpret as 663 
indicating a stillstand of the margin once ice retreated back onto land. This is consistent with 664 
the LGM ice extent previously reconstructed [35]. Visualisation of SRTM elevation data, 665 
centred on 1610 50’ E; 580 41’ N, and image is 100 km across. 666 
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 667 
Figure S4. In the centre of this satellite image (Landsat ETM+), to the west and east of the 668 

prominent cloud shadow, are a series of channels mostly aligned west-east and which closely 669 

parallel contours along the valley flank. The topographic context of the channels is such that 670 

they cannot have been cut by present day water drainage. We interpret these as lateral 671 

channels eroded by meltwater flowing along a glacier margin. They are at 170 m above sea 672 

level and only 8 km from the present-day shoreline. A lateral margin of an outlet glacier 673 

positioned to create such channels must have extended offshore. Image is 20 km across and is 674 

centred on 1610 49’ E; 580 07 N. The coastline is visible in the southeast of the image. 675 

 676 
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 677 
Figure S5. On the west coast of Kamchatka numerous moraine systems are evident close to 678 
the present day coastline. This visualisation of SRTM elevation data clearly depicts end 679 
moraines at or near the coast and we infer that a major stillstand of the ice margin occurred in 680 
order to generate them. Note that the two main volcanoes acted as obstacles (likely as 681 
nunataks), diverting ice flow around them, and in the case of the large volcano, such that two 682 
ice lobes nearly coalesced in its lee. Ice extent along this west coast, as recorded by moraines 683 
is not consistent with previously mapped extents [35]. In his reconstruction both the LGM and 684 
Quaternary maximum extent of ice cover is restricted to an ice field along the main median 685 
ridge, with ice nowhere reaching the western coastline (and see Fig. 4, in main text). Our 686 
mapping demonstrates that ice definitely reached the coast, and we presume, likely beyond it 687 
with the margin stabilising once it retreated onto land. Image is centred on 1560 43 E; 520 28 688 
N, and is 75 km across. 689 
 690 
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 691 
Figure S6. On the northern shore of the Sea of Okhotsk, near the city of Okhotsk, a similar 692 

pattern emerges; end moraines are found near the coast and some 60 km further out than the 693 

LGM extent previously mapped [35]. Moraines in black are shown on top of a coloured 694 

rendition of elevation. Zamoruyev’s [35] LGM extent is marked in blue. Elevation data is 695 

from SRTM whose northern limit of this dataset is clear to see. Image is centred on 1430 13’ 696 

E; 590 50’ N, and is 350 km in width. 697 
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