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The Modeling of Diffuse Boundaries
in the 2-D Digital Waveguide Mesh

Simon Shelley and Damian T. Murphy

Abstract—The digital waveguide mesh can be used to simulate
the propagation of sound waves in an acoustic system. The accurate
simulation of the acoustic characteristics of boundaries within such
a system is an important part of the model. One significant prop-
erty of an acoustic boundary is its diffusivity. Previous approaches
to simulating diffuse boundaries in a digital waveguide mesh are ef-
fective but exhibit limitations and have not been analyzed in detail.
An improved technique is presented here that simulates diffusion
at boundaries and offers a high degree of control and consistency.
This technique works by rotating wavefronts as they pass through
a special diffusing layer adjacent to the boundary. The waves are
rotated randomly according to a chosen probability function and
the model is lossless. This diffusion model is analyzed in detail, and
its diffusivity is quantified in the form of frequency dependent dif-
fusion coefficients. The approach used to measuring boundary dif-
fusion is described here in detail for the 2-D digital waveguide mesh
and can readily be extended for the 3-D case.

Index Terms—Acoustic materials, acoustic waveguides, acous-
tics, architectural acoustics, diffusion processes.

I. INTRODUCTION

T
HE DIGITAL waveguide mesh (DWM) is an approach
used to accurately model the propagation of sound waves

in 2-D and 3-D acoustic systems. One advantage it has over geo-
metrical room acoustic modeling techniques such as ray-tracing
[1] and the image-source method [2] is that the complex phe-
nomena of sound diffraction and wave interference are modeled
inherently [3], [4]. The ability to model diffuse reflections at a
boundary is important in any room acoustics modeling solution,
as it has a significant effect on the resultant sound propagation.

Specular reflection of sound occurs at smooth boundaries
with the result that the angle of the reflected sound wave is
equal to the angle of incidence. Irregularly shaped acoustic
boundaries result in diffuse reflections, causing a redistribution
of the sound energy across a range of angles upon reflection.
In the most extreme case, the energy is spread evenly in every
direction, whatever the angle of incidence, and this is known
as complete diffusion [5]. Diffuse reflection will result in the
concentrated energy found at certain modal frequencies being
attenuated as standing waves become less prominent due to the
scattering of energy, at boundaries, away from the modal cyclic
paths present in the room [6]. The scale of the irregularities of

Manuscript received November 22, 2006; revised October 4, 2007. This work
was supported by the U.K. Engineering and Physical Sciences Research Council
(EPSRC). The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Rudolf Rabenstein.

The authors are with the Audio Lab, Intelligent Systems Group, Department
of Electronics, York University, Heslington, York, YO10 5DD, U.K. (e-mail:
sbs107@ohm.york.ac.uk; dtm3@ohm.york.ac.uk).

Digital Object Identifier 10.1109/TASL.2007.913407

a boundary determines the range of frequencies for which the
effect of diffusion occurs. In the case where these irregularities
are very small compared to the wavelength of the incident
sound wave, very little diffusion is observed, and the reflection
tends to the specular case [7].

One method to implement diffuse reflections in a computer
model for room acoustics simulations is to intricately build each
individual boundary irregularity directly into the model. Large
boundary irregularities can be modeled in this way with rela-
tive ease. However, this method becomes problematic when the
roughness of the actual real boundary is relatively small scale
and complex, making it difficult to measure and reproduce. If
this is applied to a model of a room in order to predict its room
impulse response, for example, a map of the roughness of every
single diffuse boundary would be required, and this would be
costly in effort and impractical to implement. A model is there-
fore required where the diffuse behavior of boundaries is ap-
proximated in a more general way using a statistical approach.
Such a model should ideally be adjustable so that the diffusive
effects of the simulated boundaries can be optimized to match
those of a wide range of real, irregularly shaped boundaries as
closely as possible.

The general diffusive properties of real boundaries can be
measured and characterized by data, for example using scat-
tering [8] and diffusion coefficients [9]. In turn, this data can
be used when designing boundary diffusion models, allowing
the characteristics of a particular material or boundary to be
applied directly in the simulations. Scattering coefficients are
suitable for geometric modeling techniques as they are compat-
ible with the boundary scattering algorithms they currently use.
Scattering coefficient data, however, only contains information
about the quantity of energy that is moved from the specular
direction and is not concerned with the more detailed diffusive
characteristics of the boundary. Diffusion coefficient data, de-
scribed in Section II, holds more information about the nature of
scattering at a boundary. It is designed as a detailed measure of
the diffusive quality of acoustic boundaries and diffusors; how-
ever, it is not compatible with the diffuse reflection algorithms
currently used in geometric modeling techniques [10].

Methods exist for modeling diffuse reflections in ray-tracing
and image-source models and are based on statistical ap-
proaches [11]. A commonly used technique is to change the
direction of reflected waves (or rays) after they strike the
boundary using a random probability distribution designed to
distribute the reflected energy according to Lambert’s Cosine
Law [12]. This law states that the amount of reflected energy
found at a particular direction from the point of reflection at
the boundary is proportional to the cosine of the angle between
the direction of the reflected energy and the normal of the
boundary, irrespective of the incident angle of the sound wave.

1558-7916/$25.00 © 2008 IEEE
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Partial diffuse boundaries are modeled by allowing a propor-
tion of the reflected rays to reflect in the specular direction. A
random number is typically chosen between 0 and 1 in order to
decide whether the boundary acts as diffuse or specular for each
particular ray. If the number is above a certain threshold the
reflection is diffuse, with the result that not all of the reflected
energy is diffuse and a certain amount of the reflected energy
is specular.

Previous work in implementing diffusing boundaries for a
DWM details the successful implementation of a highly diffu-
sive boundary in a 2-D mesh using a quadratic residue diffusor
[13]. Another technique has been developed that simulates dif-
fusion by randomly rotating incident waves as they approach the
boundary of the mesh [14]. Although effective, neither method
offers a complete, controllable, and accurate boundary diffusion
model, and a full analysis of these techniques in previous work
is limited.

The technique described in [14] allows for control over the
diffusivity of the modeled boundary; however, the method
is limited by an inherent error. The error, described in
Section IV-A, is caused by differences between ideal and
actual mesh configuration conditions, and results in undesirable
inconsistency in diffusion results. An improvement to this
boundary diffusion method, the diffusing layer, has since been
introduced, eliminating the previously identified error [15].
In order that such models can be examined in more detail, a
method to measure their diffusivity has also been described
[16]. The diffusing layer approach is analyzed in detail using
this measurement technique, and the data provided, based
on diffusion coefficients, can be used as a reference when
designing and simulating diffuse boundaries in a DWM.

This paper aims to clearly describe and present a detailed
analysis of the diffusing layer model previously presented in
[15]. These new results give a greater understanding of the be-
havior of the model and show that the model can be used to
simulate diffuse boundaries, with properties comparable to that
observed in real diffuse boundaries. In addition, a multilayered
adaptation of the diffusing layer model is proposed which offers
some control over the frequency dependency of the resultant dif-
fusive characteristics. The methods described here can be used
to measure and compare the diffusivity of any boundary imple-
mented in a DWM. By following the guidelines in this paper,
it is possible to test different diffuse boundaries designed for a
2-D DWM (and by extension a 3-D DWM) and to compare them
with both each other and with real diffuse boundaries.

This paper is organized as follows. In Section II of this paper,
the diffusion coefficient and its measurement and testing condi-
tions are described. Section III revisits the DWM and the theory
behind it, the diffusion layer method used in this paper is de-
scribed in Sections IV and V, and finally a detailed study of this
method is outlined in Section VI, and the results from this are
presented and discussed.

II. DIFFUSION MEASUREMENT AND

THE DIFFUSION COEFFICIENT

In order to accurately measure the effects of the diffusion
model presented in this paper, a procedure is proposed and
implemented for measuring the diffusion coefficient at a DWM
boundary. This is a simulated version of the method outlined by
the Audio Engineering Society (AES) information document

Fig. 1. Diagram showing the setup used for diffusion testing leading to the
measurement of the diffusion coefficient. An impulse is applied at the source,
which is rotated around the semicircle in order to obtain directional diffusion
coefficients.

for room acoustics and sound reinforcement systems entitled
“Characterization and measurement of surface scattering uni-
formity” (AES-4id-2001) [9]. The test for the diffusivity of a
single-plane diffusor (one where the boundary displays distinct
anisotropic behavior) is particularly well suited to the 2-D
DWM case, as the diffusion is measured in one plane.

The diffusion coefficient is a measurement of the degree to
which a boundary uniformly scatters incident sound. The direc-

tional diffusion coefficient can be measured for a particular
angle of incidence. If a sufficient number of directional diffusion
coefficients are obtained for different incident angles, they can
be averaged to give the random incidence diffusion coefficient
of the boundary. The coefficient is measured for each third-oc-
tave band, giving information about the frequency dependency
of the diffusion model. Diffusion coefficients are restricted to a
minimum of 0, for totally specular reflections, and a maximum
of 1, which signifies complete diffusion.

A. Measurement and Geometry

Ideally the real-world test should take place in a space with
no acoustic boundaries, or an anechoic chamber, so that the re-
sults are not compromised by waves reflected from the perimeter
boundaries of the room. It is possible to avoid this problem in
a simulation by making the DWM sufficiently large relative to
the distances between objects. Anechoic boundary implementa-
tions at the perimeter boundaries of the room may also be used,
such as the perfectly matched layer [17].

In the test, a patch of the diffusive boundary is placed in the
middle of the space, and receivers (microphones) are placed in a
semicircle around its face, as illustrated in Fig. 1. An impulse is
applied at a source, placed at an arbitrary point on another semi-
circle, with a radius greater than that of the receiver semicircle.
In the case of a 2-D DWM, measurements can only be taken
on a single plane. However, the test could be extended to a 3-D
DWM, either taking measurements on two orthogonal planes or
at different points on a hemisphere. Fig. 1 is a diagram showing
the test geometry used to achieve the results presented in this
paper, with the source in this case placed at an angle of de-
grees to the normal of the sample boundary under test.

Distances between the boundary under test and source and
receivers within the model should not be less than the distances
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presented here. In the ideal case, distances are sufficiently large
that true far-field conditions are achieved, such that the curve of
wavefront emanating from the point source is allowed to travel
far enough that it can be considered straight when it interacts
with the sample boundary under test. If true far-field conditions
cannot be achieved, it is necessary that at least 80% of the re-
ceivers are positioned outside the specular zone [9]. The sug-
gested requirement according to [9] is that the receivers are sep-
arated by an angle of 5 at most, so that the spread of sound
caused by the diffuse boundary is measured to a sufficiently high
resolution to give accurate and useful data.

In order to calculate the diffusion coefficient of a certain diffu-
sive object, impulse responses should be obtained for the space
both with the diffusor present, and in an empty space
(without the diffusor), . It is then possible, at each receiver
position, to measure the diffusor impulse response, or the im-
pulse response that results only from the signal that has reflected
from the diffusive boundary :

(1)

If the tests are performed in the real world using a loudspeaker
and microphone, it is suggested that the impulse response of the
source/microphone pair is also measured, so that it can be taken
into account in later calculations using a process of deconvolu-
tion [9]. However, this is not necessary in the DWM, as signals
can be directly applied and measured.

The diffusor impulse response is calculated at each receiver
position, and the frequency analysis of these results yields infor-
mation about the diffusive qualities of the boundary for a given
angle of incidence.

B. Calculation of the Diffusion Coefficient

For a fixed source position, the directional diffusion coeffi-
cient can be measured in each 1/3-octave band using the cor-
responding 1/3-octave RMS amplitude levels of the entire dif-
fusor impulse response signals measured at each of the

receivers. A form of autocorrelation is used on these mea-
surements to give the directional diffusion coefficient as de-
scribed in [9]. In this equation, represents the RMS level cal-
culated from the diffusor impulse response signal measured at
receiver for the 1/3-octave band under consideration:

(2)

In order to calculate the random incidence diffusion coefficient,
directional diffusion coefficients are measured for source posi-
tions covering the entire semicircle, with a maximum angular
resolution of 10 (as apposed to the maximum angular resolu-
tion of 5 which applies to the receiver positions). This angular
resolution, according to [9], is enough to give a representative
sample of results for a random incidence coefficient. The mean
of these directional diffusion coefficients is then used to give the
random incidence diffusion coefficient for the material under
test.

C. Discussion

The nature of the measurement technique used in the calcu-
lation of the diffusion coefficient requires that a finite sample

of the diffuse boundary is used and this is problematic for two
reasons. The first is that scattering effects will occur as a result
of sound reflecting from the edges of the sample, with the re-
sult that even a plane specular reflecting boundary will cause
some scattering and therefore yield a diffusion coefficient that
is greater than zero. It is therefore good practice, when consid-
ering diffusion coefficient results from a diffuse boundary, to
have at hand diffusion coefficients from a flat plane boundary
of the same dimensions and measured under exactly the same
test conditions for comparison.

The second issue again is a result of the finite size of the test
sample and is caused by edge diffraction. If reflection from a
plane boundary of finite size is considered, then a cutoff fre-
quency is observed above which the acoustic boundary causes
strongly specular reflection, when the wavelength of the sound
is small relative to size of the boundary. Below this cutoff fre-
quency, however, when the wavelength becomes larger relative
to the size of the boundary, edge diffraction effects begin to
dominate and the reflected sound from the boundary becomes
less specular in nature, with less energy being reflected [18].
Eventually, if the wavelength is very large compared to the
boundary, then no reflection will occur as the panel will have
no effect on the sound wave. The effect is similar to that
of a high-pass filter. The diffusion coefficient measurement
technique is therefore only valid above this cutoff frequency.
A method to calculate the cutoff frequency is proposed in [19]
using a Fresnel integrals approximation. A similar attenuation
of reflection strength below this cutoff frequency is observed
when a diffuse boundary is considered.

For a test sample with width 2 , where is the distance
between the source, and the sample center at angle of incidence

is the distance between the receiver (preferably placed in
the specular zone of reflection) and the sample center and is
the speed of sound, the 3-dB cutoff frequency, of the
reflected sound is given as follows:

(3)

III. DIGITAL WAVEGUIDE MESH

A. Background

The digital waveguide mesh is derived from the 1-D digital
waveguide used extensively for physical modeling synthesis.
The reader is referred to [20] and [21] for a thorough description
and discussion of this area and a full derivation of the equations
that follow in this section. Higher dimension mesh structures are
constructed using bidirectional delay lines and scattering junc-
tions which act as spatial and temporal sampling points within
the modeled space. The digital waveguide mesh is analogous to
the transmission line matrix (TLM) method [22]. The relation-
ship between the two methods is explored in [23]. The sound
pressure in a waveguide is represented by , the particle ve-
locity by , and the impedance of the waveguide by , where

. The input to a waveguide is termed and the
output . The signal therefore represents the incoming
signal to junction along the waveguide from the opposite junc-
tion . Similarly, the signal represents the outgoing signal
from junction along the waveguide to the opposite junction .
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Fig. 2. (a) General scattering junction J with N connected waveguides for
i = 1; 2; . . . ; N . (b) 2-D rectilinear mesh structure. (c) 2-D triangular structure.

By connecting scattering junctions together, it is possible to
model wave propagation in 2-D and 3-D spaces, and different
mesh topologies can be used to model the same physical struc-
ture. For instance, a 2-D space can be modeled using either a
rectilinear mesh or a triangular mesh, diagrams of which can be
seen in Fig. 2(b) and (c), respectively. The choice of topology
dictates the number of neighbors that each scattering junction
has.

The 1-D waveguide is a discretized formulation of the
d’Alembert traveling wave solution to the 1-D wave equation

(4)

This can be implemented using two bidirectional delay lines
as indicated by one of the waveguide connecting elements of
Fig. 2(a) between, for instance, junction and junction . The
sound pressure of a propagating wave signal can be defined as
the sum of these traveling waves or alternatively the input and
output of this waveguide element

(5)

As the waveguides are equivalent to bidirectional unit-delay
lines, the input to scattering junction at time index
is equal to the output from neighboring junction into the con-
necting waveguide at the previous time step . Ex-
pressing this relationship in the -domain gives

(6)

For a lossless junction , the sum of the input velocities is equal
to the sum of the output velocities [24]

(7)

From (5) and (7), and determining also that for a lossless junc-
tion the sound pressures in all crossing waveguides are equal
[24], the sound pressure at for connected waveguides
can be calculated using (8). A full derivation of this equation
can be found in [25]:

(8)

Equation (5), (6), and (8) are collectively termed the scattering
equations of the system. Models that use this implementation of
the digital waveguide mesh are termed W-models or W-DWMs

[26]. By applying an appropriate linear transformation, as de-
scribed in [26] and in [27], an equivalent formulation can be
derived in terms of junction pressure values only

(9)

The expression is also directly derived from a finite-difference
time-domain (FDTD) formulation of the 2-D implementation
of the wave equation. Digital waveguide meshes built using
this alternative implementation, based on Kirchoff variables,
are termed K-models or K-DWMs [26]. The advantage of the
K-DWM approach is its greater computational efficiency over
the W-DWM approach; however, it may be desirable to use
the W-DWM approach to allow the use of scattering-based
boundary termination options. The use of mixed models where
both the K-DWM and the W-DWM implementations can be
interfaced using a KW-pipe is discussed in [27]. This results
in the formulation of a 2-D hybrid DWM [26], [27]. The work
present in this paper is based on a W-DWM implementation
as it is a requirement for the model to be able to access the
incoming wave variables at certain junctions and for
each time step. However, using the KW-pipe approach it is
possible to formulate a hybrid mesh where those junctions
whose incoming wave variables are required are implemented
as W-DWM junctions and other junctions within the mesh are
implemented as K-DWM junctions, therefore improving the
overall efficiency of the model.

B. Mesh Limitations

There are a number of factors that currently limit DWM
models as an optimal solution for full virtual acoustic appli-
cations. The first is dispersion error, where the velocity of the
propagating wave is dependent upon both its frequency and
direction of travel, leading to wave propagation errors and
a mistuning of the expected resonant modes. The degree of
dispersion error is highly dependent upon mesh topology and
has been investigated in [28] and [29]. Both interpolated and
triangular DWM topologies demonstrate dispersion character-
istics that are substantially reduced to a function of frequency
only, with frequency-warping techniques [30], [31] giving
further significant improvements. For this reason, the triangular
DWM is used for the implementation of the diffusion model
discussed in this paper, although the method can readily be
extended for any 2-D W-DWM implementation consisting
of -port scattering junctions. Over-sampling the mesh also
offers improvements in this regard, such that the required
bandwidth lies within accepted limits, typically 0.25
for the rectilinear mesh, and that can be used as a benchmark
figure for other mesh topologies [29], [32], where is
given by

(10)

In this equation, is the speed of sound, is the dimension of
the mesh, and is the spatial distance between mesh junctions.
Ultimately, will dictate the quality of impulse response
output from the mesh with large sample rates requiring denser
meshes, more computer memory, and hence taking longer to
run.
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IV. DIFFUSION MODEL USING CIRCULANT MATRICES

Incoming signals to a scattering junction in a W-DWM
are processed at each time step according to the scattering equa-
tions described in Section III-A, resulting in new outgoing sig-
nals that are received by the neighboring junctions at the next
time step. These signals can be considered as vectors repre-
senting a traveling wavefront. These vectors have directions
that are equal to the directions of the connected waveguides.
Provided that the vectors evenly span a circle, their directions
can be calculated as follows:

(11)

where , equal to the number of connecting
waveguides at the scattering junction.

The magnitudes of the vectors are given by the incoming
signal values . Therefore, the direction of the wavefront
at the junction is

(12)

It is possible to redistribute these signals so that the direction
of travel of the wave at that particular junction is altered by
an arbitrary angle . Care must be taken however to ensure that
signal power and strength is conserved and that the model re-
mains stable. The altered direction of the wave is therefore

(13)

One approach for modeling boundary diffusion in the DWM,
introduced in [14] is to multiply the incoming signals or vector
magnitudes at a boundary by circulant matrices in such a way
that the resultant directions of the traveling waves are ran-
domly altered at each boundary junction just before they are re-
flected.

A circulant matrix is a square matrix where each row vector
is cyclically shifted by one element to the right relative to the
proceeding row vector. Circulant matrices have been previously
used in the field of audio signal processing, although in a dif-
ferent way, providing a special class of feedback delay networks

(FDNs) [33]–[35]. FDNs are used in the design of digital rever-
beration effects based on delay lines interconnected in a feed-
back loop. The feedback signals are processed using a matrix
known as the feedback matrix. It is important that such systems
show stability, and this is controlled by the design of the feed-
back matrix. It is also useful to be able to provide lossless proto-
types as a starting point in the FDN design [35]. One approach
that can be used in the design of the FDN is to use a circulant ma-
trix, which can be made both stable and lossless by positioning
the associated eigenvalues on the unit circle [36]. The positions
of the eigenvalues can then be used to control the distribution
of the resonant peaks and other properties of the resulting arti-
ficial reverb tail [37]. It should be noted that the goal of FDNs
however, is to provide reverberation for a sound as a percep-
tual effect, rather than accurately modeling a particular acoustic
space which is the ultimate goal of the DWM described in this
paper.

In this application, the circulant matrix in the DWM is
used to rotate the direction of the traveling waves at each

Fig. 3. (a) Three-port boundary junction and (b) a six-port junction with con-
necting waveguides.

boundary junction, by a different angle at each time step. The
design and implementation of the circulant matrices is detailed
in Section V. If this angle is varied using an appropriate
random function, the energy of the propagating sound waves is
effectively diffused as it travels through the boundary junctions.
The greater the range of angles by which the propagating
wavefronts are rotated, the greater the spread of energy upon
reflection. Note that for any angle of incidence, this spread
of energy will focus around the specular angle of reflection
provided that the mean of the applied random function is 0 .

A. Rotation Error

Connecting waveguides at the boundary junctions of a 2-D
DWM are generally not distributed uniformly around the
junction, meaning that they are not all separated by equal
angles. An example of this is illustrated in the diagram of a
three-port boundary junction from a 2-D triangular mesh shown
in Fig. 3(a). Similarly, the case also exists where a boundary
junction is connected to only one neighbor, and hence there is
no possibility for any rotation of an incoming signal.

The nature of the circulant matrix transformation tech-
nique means that it is only consistent and without error if the
connecting waveguides are uniformly distributed around the
junction within the DWM, an example of which is shown in
Fig. 3(b). Hence, due to a nonuniform distribution of con-
necting waveguides at a boundary junction, inconsistencies
will occur when the incoming signals are manipulated by the
circulant matrices. This is referred to as rotation error, and
analysis shows [14] that there is a complex nonlinear map-
ping between the intended (ideal) angle of rotation and the
actual (real) angle of rotation that is dependent on two factors.
The first is the amount of rotation that is applied in the ideal
case, and the second is the angle of approach of the incoming
waves. The effects of this discrepancy become less extreme as
the number of waveguides connected to a boundary junction
increases. This implies that there are nonuniform distribution
inconsistencies in this proposed DWM diffusion model, as
different types of boundary junctions exhibit different diffusive
characteristics. The error becomes particularly apparent when
modeling boundaries with low diffusivity, as small angles of
rotation will tend to be distorted into large angles.

V. DIFFUSING LAYER

Rotation error occurs when the circulant matrix transforma-
tion technique is applied to boundary junctions in the DWM.
However, if the same method is applied to a standard -port
air-junction, then the error is eliminated because the connecting
waveguides are uniformly distributed, being separated by equal
angles. In the case of a 2-D triangular DWM, such junctions
have six connecting waveguides, separated by angles of 60 , as
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Fig. 4. Incoming signals at a diffusing junction J (a) before rotation and (b)

after rotation. The resulting incoming signals p are then used in the scattering

equations rather than the original signals p .

Fig. 5. Probability density function of the uniform distribution used in the dif-
fuse boundary model.

shown in 3(b). This is the ideal case for the circulant matrix
rotation technique, as the connecting junctions are evenly dis-
tributed around the junction and hence there is no rotation error.
Therefore, by applying these rotations at air-junctions adjacent

to the boundary, rather than the boundary junctions themselves,
it is possible to achieve diffusion without inherent rotation error.

As a result of this diffusing layer technique, waves that ap-
proach the boundary are usually rotated twice. Once as they
approach the boundary and a second time as they travel away
from it after being reflected. This can be compensated for by
halving the required rotation angles at the junctions adjacent to
the boundary. Undesirable effects may occur, however, when
large rotation angles are applied because waves may be rotated
more than twice or even just once, depending on the angle of
approach and the amount of rotation that is applied.

A. Implementation in the 2-D Triangular DWM

The direction of wave travel, at a six-port air-junction in a
2-D DWM can be rotated by an angle if the incoming signals
are multiplied with a circulant matrix , whose coefficients can
be calculated using the set of eigenvalues , described by (14).
To achieve rotation, the eigenvalues are arranged symmetrically
and are distributed along the unit circle (14), resulting in signal
conservation and stability, as described in [14]. A detailed study
of circulant matrices and their associated eigenvalues is given in
[38]:

(14)

An inverse discrete Fourier transform, performed on these
eigenvalues, yields six real numbers that sequentially make up
the first row of coefficients in the circulant matrix

. The coefficients in subsequent rows can be calculated as
follows:

(15)

The resultant direction of the wavefront at each air-junction,
(defined in (12)) can now be rotated by the angle by multi-
plying the matrix with the incoming signals to produce a

new set of incoming signals, (16). This process is illustrated
in Fig. 4.

...
...

(16)

The new incoming signals at the diffusing junctions are
subsequently used in the scattering equations [(5), (6), and (8)],
and the simulation continues until the next time step when the
next set of incoming signals at each junction are determined and
the rotation process described here repeats itself.

Diffusion is simulated by randomly altering the amount of
rotation of the incoming signals at each of the chosen dif-
fusing junctions at each sample time step, before the scattering
equations are calculated. The rotation is applied to the junctions
found adjacent to the boundary junctions. A different angle of
rotation is randomly chosen for each junction and at each time
step, according to a probability distribution. The amount of dif-
fusion that is modeled can be controlled by limiting the algo-
rithm to a range of angles. For instance, to simulate a relatively
smooth wall the maximum random angle that can be selected
is set to 5 . Greater diffusivity can be achieved by increasing
this angle. In the diffusion model implementation used in this
paper, the rotation angle is selected at random according to
a uniform probability distribution function given by (17)
and illustrated by Fig. 5, with the result that the rotation angle
is limited to degrees and the mean of the distribution is
zero:

(17)

VI. STUDY OF THE DIFFUSING LAYER TECHNIQUE

A series of tests are performed designed to give a detailed
analysis of the diffusing layer approach to modeling diffusion at
the boundary of a 2-D triangular DWM. The tests are described
in this section and the results are presented and discussed.

A. Modal Analysis in a 2-D Lossless DWM

The method proposed in Section V of this paper, in which ro-
tations are performed at junctions adjacent to the boundary, is
referred to here as the diffusing layer method. The method orig-
inally proposed in [14] and described in Section IV, where rota-
tions are performed at the actual boundary junctions of the mesh
themselves, is referred to here as the diffusing boundary method.
In this section, the two methods are compared by defining two
identical 2-D DWM structures. In one structure, the diffusing

layer method is implemented at each of the boundaries and this
structure is named Model A. In the other structure the diffusing

boundary method is implemented at each of the boundaries.
This second structure is labeled Model B. During the simula-
tions that follow, the angle of rotation is selected at random ac-
cording to a uniform probability density function (17), limited
to a specified range of angles by altering the maximum angle of



SHELLEY AND MURPHY: MODELING OF DIFFUSE BOUNDARIES IN THE 2-D DIGITAL WAVEGUIDE MESH 657

Fig. 6. Graphs showing the average amplitudes of the outputs from (a) Model
A and (b) Model B at three modal frequencies for each 4-s simulation.

the probability function . The mean of the function always
remains constant at zero.

The two structures are rectangular in shape, and the 2-D tri-
angular DWM is used. The length of each structure is 1.91 m
and the width 1.10 m, and is set at 44.1 kHz, giving an
internodal distance of 0.0110 m according to (10). Ten con-
secutive simulations, each lasting 4 s, are performed on each
mesh, each with an increasing level of diffusivity implemented
at every boundary. At the start of each simulation, the meshes
are excited with a low-pass filtered impulse applied near a corner
and the outputs are obtained at a junction at the opposite corner.
The maximum angle used in the probability function is 0 in the
first simulation, where effectively no diffusion model is applied.
This maximum diffusion angle increases at each simulation by

5 until the final test when it reaches a maximum of 45 .
In order to compare the effects of the simulated boundary

scattering in the two models, three modal frequencies (449 Hz,
973 Hz, and 1.38 kHz) are arbitrarily selected for analysis. In-
creased scattering at the boundaries results in the average am-
plitudes of the output being diminished at modal frequencies.
As well as this, the bandwidth of energy found at the modal
frequencies increases as energy is spread away from the modal
frequencies [6]. The average amplitude at each of these three
modal frequencies, for each simulation, in both Model A and
Model B is shown in Fig. 6. 10-dB modal bandwidths for the
same three modal frequencies are shown in Fig. 7.

Fig. 7. Graphs showing the 10-dB modal bandwidths of the outputs from (a)
Model A and (b) Model B at three modal frequencies for each 4-s simulation.

B. Discussion

When the diffusion algorithm is limited by a maximum angle
of just 5 , the average amplitude of the output at the selected
modal frequencies is sharply attenuated in Model B in com-
parison to the case where no boundary diffusion is modeled at
all, indicating a relatively high diffusivity at the boundaries. In
Model A, however, this drop in amplitude observed at the modal
frequencies is not so great. For instance, the average amplitude
at the modal frequency of 1.38 kHz is attenuated by 12.0 dB in
Model B; however, it is only attenuated by 2.1 dB in Model A.
As the limit of the angles is increased, the observed diffusivity
of Model B appears to fluctuate to varying degrees at different
modal frequencies. Some fluctuation is also observed in Model
A, but to a lesser extent, and the diffusivity at the boundaries
increases with consistency.

This difference in consistency of the two models can be ob-
served at other modal frequencies and is evidence that the ro-
tation error has a significant effect on the diffusion model. The
mesh structure is rectangular in shape and owing to the nature
of its implementation and the triangular topology of the mesh,
the boundary junctions found along the length of the structure
differ to the boundary junctions located along its width in terms
of their number of connecting waveguides. The inconsistencies
observed between different modal frequencies in Model B are
a result of the inconsistent nature of the rotation error when ro-
tations are applied to boundary junctions with differing num-
bers of connecting waveguides, as discussed in Section IV-A.
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These inconsistencies are also explained by the fact that rota-
tion error is dependent in part by the angle of incidence of the
waves. This is a factor because the angle of incidence of reflec-
tions of a standing wave within the structure vary depending on
its cyclic path. The sharp increase in amplitude levels at modal
frequencies in Model B for relatively small angles of rotation in
comparison with Model A is again a result of the rotation error
because small angles of rotation are distorted into large angles,
as discussed in Section IV-A. The results show that using the dif-
fusing layer method described in Section V, a more controlled
and consistent diffusion model can be achieved. This is partic-
ularly true for small ranges of diffusion angles.

The improved diffusion exhibited by this new method can be
explained by the elimination of the rotation error, implying that
small rotation angles are no longer translated into larger angles.
This has a clear advantage when modeling boundaries with low
diffusivity, commonly found in real-world materials.

C. Early Reflection Testing

The early reflections are the stronger, more distinct, and
widely spaced reflections that are found at the beginning of
the impulse response. They are typically found in the first 100
ms, although this is dependent on the volume of the space
and the geometrical arrangement of the source, receiver, and
boundaries. The early reflections help the listener to determine
source location and information about the geometry of the
space itself. Diffusivity at the boundaries of the room will have
some effect on the early reflections. Generally, small-scale
boundary diffusion results in a slight diminution in the strength
of the early reflections as well as some smearing as the energy
distribution in the space is spread out more evenly. However,
the overall geometry of the room is not changed; therefore, the
early reflections should not be any different in the respect of
timing and their dominance is preserved.

In order to test that the diffusing layer implementation be-
haves correctly and does not result in inaccurate early reflec-
tions being produced by the room model, a simple 2-D DWM
structure is defined. The structure is again rectangular in shape,
the dimensions of which are 8 m by 6 m. Again, is set
at 44.1 kHz, giving an internodal distance of 0.0110 m. Three
simulations are performed, each with a length of 3000 samples,
or 0.068 s. Impulse responses are obtained for each simulation
by exciting the mesh with a low-pass filtered impulse near one
corner and outputs are generated from a junction near the op-
posite corner. In each simulation, the diffusing layer is applied
at the boundaries of the structure, with the limited range of ro-
tation angles set to 0 in the first simulation, 45 in the second
simulation, and 90 in the third. These boundary models are re-
ferred to as MA00, MA45, and MA90, respectively.

Fig. 8 shows the early parts of the impulse responses obtained
using the simulation. The signals have been low-pass filtered at
a quarter of the sampling rate, as the DWM typically is limited
to giving valid results in this bandwidth only as described in
Section III-B. It can be seen that in each test the peaks caused
by early reflections are largely preserved but become slightly at-
tenuated as the range of rotation angles in the diffusion model
is increased. For instance, the second peak, which is the first
first-order reflection to reach the receiver, is attenuated as a re-
sult of the 45 diffusion implementation by just 4.95% and by
5.41% when the maximum angle is set to 90 . Likewise, the

Fig. 8. Graphs showing early part of impulse responses for room simulations
with boundary diffusion models (a) MA00, (b) MA45, and (c) MA90 imple-
mented at each boundary.

third peak (the second first-order reflection) is reduced by 5.30%
when the maximum rotation angle is set to 45 and by 6.50%
when it is set to 90 .

D. Measurement of Diffusion Coefficients

In order to measure the diffusion coefficients for the diffusing
layer model across a range of incident angles for varying levels
of diffusivity, a test is prepared as described in Section II-A
and illustrated in Fig. 1. A 2-D triangular DWM is used with

kHz. The diffusing layer model is implemented
at one edge of a rectangular block placed in the center of the
mesh. A series of simulations are performed for varying levels of
diffusivity. A low-pass filtered impulse is applied as the source,
which is located at a range of incident angles, from 80 to 0 ,
with respect to the normal of the boundary sample under test.
The impulse is applied at a distance of 8 m from the center of
the diffuse boundary in each simulation. Receivers are placed in
a semicircle so that each receiver is a distance of 5 m from the
center of the diffuse boundary. An angular resolution of 5 is
used, with the total number of receivers therefore being 37, run-
ning from 90 through to 90 with respect to the normal of
the boundary. Each simulation is run for sufficient time to allow
the propagating signal to travel from the source to the boundary
sample under test and then to subsequently reflect and propa-
gate to the receivers. The DWM used is sufficiently large that
waves reflecting from the perimeter boundaries do not interfere
with the results. In order to obtain the diffusor impulse response
at each receiver position and for each source position, an im-
pulse response is measured in an empty mesh, so that the direct
responses from source to receiver can be removed according to
(1).
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Fig. 9. Contour plots showing reflection magnitude for �30 incidence,
varying with angle of reflection across the semicircular range of receivers
with (a) MA00, (b) MA15, (c) MA30, (d) MA45, (e) MA60, (f) MA75, and
(g) MA90.

The diffusing layer model is tested for seven different levels
of diffusivity, analogous to seven acoustically reflective ma-
terials with different diffusive properties. The materials are
modeled using a uniform probability function to select the
random angles of rotation, with maximum rotation angles of
0 15 30 45 60 75 , and 90 . For later refer-
ence, these are labeled MA00, MA15, MA30, MA45, MA60,
MA75, and MA90, respectively. Theoretically, the higher the
maximum angle in the random function used to control the
diffusion, the greater the diffusivity of the material.

E. Results and Discussion

Figs. 9 and 10 show a frequency analysis of the diffusor im-
pulse responses for angles of incidence 30 and 0 (normal

Fig. 10. Contour plots showing reflection magnitude for normal incidence
varying with angle of reflection across the semicircular range of receivers
with (a) MA00, (b) MA15, (c) MA30, (d) MA45, (e) MA60, (f) MA75, and
(g) MA90.

incidence), respectively, in the form of contour plots. For each
of the 37 receiver angles, the diffusor impulse response is zero-
padded and a 4096-point fast Fourier transform (FFT) is ap-
plied. The results are presented using an -axis relative fre-
quency scale up to a quarter of the sampling rate.

Patterns of constructive and destructive interference are evi-
dent in the frequency analysis of the diffusor impulse responses
where a specular material (MA00) is used. However, when dif-
fuse materials are used this behavior is eliminated and the spec-
trum becomes more noise-like.

It can be seen in these graphs that as the maximum angle is in-
creased for the uniform random distribution function, the energy
observed at the angle of specular reflection (30 in Fig. 9 and 0
in Fig. 10) reduces, and the total energy observed at other angles
increases. For every test, the amplitude of the reflected energy
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Fig. 11. Polar responses showing scattering of reflected sound energy for�60
incidence in (a) 1000 Hz, (b) 2000 Hz, (c) 4000 Hz, and (d) 8000 Hz 1/3 octave
bands.

diminishes in the low-frequency region due to the wavelength of
the incident sound wave being large in comparison to the width
of the diffusing object, as discussed in Section II-C. According
to (3), the width of the object, 1.1 m, implies that an incident
sound wave will not be reflected effectively below 872 Hz (a
relative frequency value of 0.0198). It is important to note that
the energy in this low-frequency region is not lost as a result of
the diffusion model however, but rather it is not reflected due to
the finite size of the test sample.

The resulting data can also be represented using polar plots as
shown in Figs. 11–13. This time, the data is given for angles of
incidence 60 30 and 0 , respectively. These graphs show
the RMS levels of the diffusor impulse responses computed at
four different 1/3 octave bands with center frequencies at 1000,

Fig. 12. Polar responses showing scattering of reflected sound energy for�30
incidence in (a) 1000 Hz, (b) 2000 Hz, (c) 4000 Hz, and (d) 8000 Hz 1/3 octave
bands.

2000, 4000, and 8000 Hz. These are chosen so that the behavior
of the model can be observed over a range of frequencies. It
can again be seen that the amount of energy that is reflected
diminishes at lower frequencies, below 2 kHz.

This information is used to calculate the diffusion coefficients
for the seven different boundary materials. The autocorrelation
of the measurements taken at each receiver for a specific angle
of incidence gives the corresponding directional diffusion coef-
ficient as detailed in II-B. Fig. 14 shows directional diffusion co-
efficients for each boundary model for angles of incidence run-
ning from 80 to 0 with respect to the normal of the boundary
under test. The diffusion coefficients in these graphs are calcu-
lated using the RMS levels at four different 1/3 octave bands
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Fig. 13. Polar responses showing scattering of reflected sound energy for
normal incidence in (a) 1000 Hz, (b) 2000 Hz, (c) 4000 Hz, and (d) 8000 Hz
1/3 octave bands.

with center frequencies equal to those chosen for the polar re-
sponses (Figs. 11–13). The graphs show a rise in diffusion co-
efficient for most angles of incidence as the maximum rotation
angle used in the boundary models increases. This rise in dif-
fusion coefficient is very slight, however for the lower 1/3 oc-
tave frequency bands. At 1000 Hz, the diffusion coefficients rise
from 0.17 on average across the range of incident angles, to just
0.24 on average. At 8000 Hz however, the average of the diffu-
sion coefficients rises from 0.06 (MA00) to 0.61 for the MA90
material. This again shows that the diffusion model is less effec-
tive at the lower frequencies. The rise in diffusion coefficients
generally levels out at a maximum rotation angle of 60 . Further
tests show that increasing the maximum rotation angle further

Fig. 14. Graphs showing directional diffusion coefficients for the modeled
boundaries in (a) 1000 Hz, (b) 2000 Hz, (c) 4000 Hz, and (d) 8000 Hz 1/3
Octave bands.
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TABLE I
TABLE SHOWING RANDOM INCIDENCE DIFFUSION COEFFICIENTS FOR THE SEVEN BOUNDARY MODELS

does not cause any significant rise in the measured diffusion co-
efficient. For incident angles with the greatest absolute value
( 90 and 80 ) measured diffusion coefficient is unexpect-
edly high, particularly for the boundary models MA45, MA60,
and MA75 (peaking at 0.92 in the 8000 Hz 1/3 ocrave band).
The cause of this inconsistency is not obvious. One reason may
be that incident waves from these shallow angles are far more
likely to be rotated more than twice as they pass over the length
of the diffusing material. Inconsistencies at shallow angles may
also be caused by reflections of sound waves from the edge of
the strip of diffusing material and also by diffraction effects.

Once sufficient directional diffusion coefficients are col-
lected, then the random incidence diffusion coefficient is
determined by calculating their mean [9]. Table I shows the
calculated random incidence diffusion coefficients for the seven
modeled diffusing layer boundaries. The diffusion coefficients
are given for the 1/3 octave bands with central frequencies
running from 1 kHz to 10 kHz. These results are also displayed
in the form of a 3-D graph shown in Fig. 15(a).

It is clear from the random incidence diffusion coefficient
data that the diffusion model becomes more effective as the fre-
quency of the incident sound wave increases. Generally, sound
waves with a frequency of 5000 Hz and above are diffused most
effectively. As can be expected, the diffusive effect of the dif-
fusing layer model increases as the maximum rotation angle that
can be selected by the uniform probability function is increased.
The data also indicates that there is an upper threshold, beyond
which the random incidence diffusion coefficients do not in-
crease. A peak in the data of 0.61 is observed in the 8-kHz 1/3
octave band, when the maximum angle of the diffusion model is
set to 90 . In the 10-kHz 1/3 octave band, where the diffusion
model is more effective, a peak in the random incidence diffu-
sion coefficient of 0.60 is reached when the maximum rotation
angle of the diffusion model is set to 75 . As the maximum
rotation angle is increased, the measured random incidence dif-
fusion coefficient does not increase above this value.

The implementation of diffusing layer boundaries in a DWM
can have a significant audible effect on its output and results in a
more natural reverberant sound. A demonstration of this can be
heard in presentation sound examples which are available on-
line [39]. These were produced using 2-D DWMs to simulate
sound reverberation in identical models with different levels of
diffusivity at the boundaries, including one with specular bound-

aries for comparison. In these examples, a spreading of energy
away from the modal frequencies is clearly audible as the mod-
eled boundary diffusion is increased, particularly at the higher
frequencies. The impulse response is therefore more noise-like
in the higher frequencies, and the ringing modal frequencies
cannot be heard so clearly.

F. Comparison With Real-World Boundary Diffusion

In the study of acoustics, it is observed that the size of the
largest irregularities in a randomly rough reflective boundary
must be at least of a similar size, or greater than half the wave-
length of the incident sound waves in order for diffuse reflection
to occur [7]. As an example, it would take irregularities of 39
cm or more in size to result in the effective diffusion of a sound
wave at 440 Hz for a randomly rough wall. Such large irregu-
larities can be included in the geometrical definition used in a
room acoustic model with ease, as they are large compared to
the boundaries of the room. The results presented in this paper
demonstrate that the diffusing layer model, for a 2-D DWM of
triangular topology and sampled at 44.1 kHz, displays a range
of diffusive properties depending on the maximum angle that
can be selected by the probability function of the modeling al-
gorithm. The high-frequency nature of the model shows that it
effectively models random rough boundaries with maximum ir-
regularities of between 3 and 8 cm in size.

Fig. 15(b) and (c) shows frequency-dependent random inci-
dence diffusion coefficient data for an adapted version of the dif-
fusing layer model. The test conditions in these cases are iden-
tical to those applied to the original diffusing layer model; how-
ever, two and three layers, respectively, of diffusing junctions
adjacent to the boundary are implemented rather than just one.
Here it is observed that such an adaptation has a significant ef-
fect on the frequency dependency of the diffusion model. The ef-
fective cutoff frequency of the diffusion model is reduced as the
number of layers is increased. For the MA90 case, for instance,
the cutoff frequency is reduced from about 4000 Hz for the
single-layer model, to 3150 Hz for the double-layer model and
finally to 2000 Hz for the triple-layer model. Again, an upper
limit is observed in the measured random incidence diffusion
coefficient data for both adapted versions of the model, but with
the threshold slightly greater than the single-layer case, at 0.69
for the double-layer model, and 0.73 for the triple-layer model.
Future work will investigate the possibilities of controlling the
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Fig. 15. Frequency-dependent random incidence diffusion coefficients for (a)
single, (b) double, and (c) triple-layered adaptations of the diffusing layer model.

frequency dependency of the diffusing layer model using such
an approach.

It is noted that the model is dependent on the sampling rate
and the spatial distances between junctions in the DWM. Also,
although it can be readily applied to other mesh topologies, its
effect may vary depending on which topology it is implemented
with. Therefore, further study is also required to investigate how
the nature of the model changes under these different conditions.

TABLE II
TABLE SHOWING RT TIMES OF A DWM STRUCTURE AT DIFFERENT

OCTAVE BANDS WITH EACH OF THE SEVEN DIFFUSION MODELS

IMPLEMENTED AT ALL BOUNDARIES

G. Effect on Absorption Filtering at Boundaries

The diffusion method described in this paper allows for the si-
multaneous application of frequency-dependent absorption fil-
ters at the boundary junctions of the digital waveguide mesh,
because the boundary junctions themselves are not involved in
the diffusion process. However, the nature of the model means
that the energy of incident sound waves at a boundary is scat-
tered both before and after the reflection. This potentially al-
ters the way in which incident waves interact with the boundary
filters when the diffusion method is implemented, compared to
when it is not implemented. The greater the range of rotation an-
gles used in the boundary scattering model, the greater the scat-
tering of the sound wave energy and the greater this potential
effect, with the possibility that some energy is scattered away
from the incident direction completely and therefore does not
interact with the boundary filter at all.

In order to test the effect of the diffusion method on boundary
absorption filtering, a square DWM structure is constructed,
with a side length of 4 m and sampling frequency
of 44.1 kHz. A series of seven simulations are then per-
formed. In each simulation, the diffusing layer method, as
described in Section V, is implemented at all boundaries of
the structure. However, specific maximum rotation angles of
0 15 30 45 60 75 , and 90 are used for
each subsequent simulation. Again, these modeled boundaries
are referred to as MA00, MA15, MA30, MA45, MA60, MA75,
and MA90, respectively. A simple boundary filter is also ap-
plied to all boundaries in the structure, designed to simulate an
absorption coefficient of 0.05 at all octave bands with center
frequencies from 62.5 Hz to 8 kHz.

In each simulation, three impulse responses are obtained by
exciting the mesh with a low-pass filtered impulse near one
corner and generating an output from a junction at random
points elsewhere in the mesh. From these impulse responses,
average values are calculated at octave bands according
to [40]. The results, presented in Table II, show that the effect
of increasing the maximum angle of rotation in the boundary
diffusion model is inconsistent at different octave bands. Al-
though some fluctuation is observed, in general the trend is
for the values to decrease as the maximum rotation
angle is increased. This fluctuation indicates that the effect of
boundary absorption filters is potentially slightly attenuated as
the maximum rotation angle increases.

There are other factors that must be considered that will af-
fect the times given in this result. The main factor is that
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the spread of energy away from the modal frequencies in the im-
pulse response results in shorter decay times at these frequen-
cies, as more boundaries are visited by this energy and the angle
of incidence is more varied [6]. The slight increase in rever-
beration times at certain octave bands, caused by the increase
in rotation angle of the diffuse boundary model can potentially
be compensated for by increasing the absorption coefficient of
the modeled boundary in these octave bands. A more extensive
study is therefore required, to investigate the full effect of the
diffusing layer model on the boundary absorption filtering. This
is the subject of future work.

H. Computational Analysis

In order to test the added computational load that results from
the diffusion boundary model presented in this paper, a simple
rectangular DWM structure, exactly the same shape and size as
that used for model A in Section VI-A is constructed. Again,
the sample rate of the mesh is set at 44.1 kHz. An impulse is
applied to the mesh and the processing time taken to perform a
2-s simulation is measured. The memory used by the DWM im-
plementation is also measured. The test is performed first with
the diffusing layer model applied at all boundaries (the max-
imum angle set at 45 ) and then again with no diffusing layer
model applied at all. The total number of scattering junctions
in the structure (for both tests) is 20 201 junctions. The number
of scattering junctions used for the diffusion model in the first
test is 590, 2.92% of the total amount. The results show that
when the diffusing layer model is implemented at all bound-
aries in the DWM, the increase in memory usage in this case
is negligible (13 772 kb for both simulations). The execution
time of the simulation without the diffusing layer implementa-
tion in this case is 1472.44 s. However, the total computation
time with the diffusing layer implemented is slightly longer by
7.48 s (1479.92 s), an increase of only 0.508%.

VII. CONCLUSION

A method for modeling diffuse boundaries with controllable
boundary scattering has been presented. The method has been
analyzed in depth by implementing a range of boundary models
in specific testing simulations. The results give useful informa-
tion regarding the diffusivity of the models and show that the
method is effective, as well as offering a high degree of user con-
trol. Diffusion coefficient results are valid for frequencies above
5% of the sampling frequency. Information regarding the dif-
fusing layer model’s scattering properties at lower frequencies
can be acquired by increasing the length of the boundary sample
under test, as well as increasing the relative distances between
the boundary and the source and receivers. Results have shown
that for a sampling frequency of 44.1 kHz, the model is most ef-
fective for frequencies over 5000 Hz. In the 8-kHz and 10-kHz
1/3 octave bands, an upper limit of 0.61 is observed in the mea-
sured random incidence diffusion coefficient data. The results
indicate that the model is suitable for modeling small-scale,
random irregularities with maximum sizes of between 3 and
8 cm. It is also shown that by adapting the model so that more
than one single diffusing layer is applied, the model becomes
effective for frequencies lower than 4000 Hz and the diffusion
bandwidth of the model can be increased with higher measured
random incidence diffusion coefficients. It cannot be compared
with commercial diffusors, however, which are designed to give

optimal diffusion over a specific bandwidth and whose diffusive
characteristics are quite different to randomly irregular bound-
aries as a result. Note also that professional diffusors are typ-
ically designed to work at frequencies between about 500 Hz
and 5 kHz. Above 5 kHz, natural surface roughness will often
be sufficient for boundary diffusion.

Future work will concentrate on the simulation of frequency
dependent diffuse boundaries and the extension of the diffu-
sion model to 3-D DWMs. Further acquisition of diffusion
coefficient data is planned, so that frequency-dependent diffuse
boundaries can be accurately designed and implemented in
DWM simulations given their diffusion coefficients. The effect
of applying the model to meshes of different sampling rates
and different mesh topologies on its diffusive behavior in
general will also be investigated. Finally, a more detailed study
is planned of the effect of the diffusing layer model on the
implementation of boundary absorption in the DWM.
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