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Abstract 

Background and purpose: To investigate the accuracy of photon dose calculations performed by the 

Anisotropic Analytical Algorithm, in homogeneous and inhomogeneous media and in simulated 

treatment plans. 

Materials and methods: Predicted dose distributions were compared with ionisation chamber and film 

measurements for a series of increasingly complex situations. Initially, simple and complex fields in a 

homogeneous medium were studied. The effect of inhomogeneities was investigated using a range of 

phantoms constructed of water, bone and lung substitute materials. Simulated treatment plans were 

then produced using a semi-anthropomorphic phantom and the delivered doses compared to the 

doses predicted by the Anisotropic Analytical Algorithm. 

Results: In a homogeneous medium, agreement was found to be within 2% dose or 2mm dta in most 

instances. In the presence of heterogeneities, agreement was generally to within 2.5%. The simulated 

treatment plan measurements agreed to within 2.5% or 2mm.  

Conclusions: The accuracy of the algorithm was found to be satisfactory at 6MV and 10MV both in 

homogeneous and inhomogeneous situations and in the simulated treatment plans. The algorithm was 

more accurate than the Pencil Beam Convolution model, particularly in the presence of low density 

heterogeneities.  
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Introduction 

 
A high degree of accuracy in the delivery of dose is a long-established requirement of radiotherapy 

treatments [4,12]. In order to achieve such accuracy, the uncertainties in all stages of the radiotherapy 

process, from simulation and planning to the treatment delivery, must be reduced as far as possible 

[17]. Crucial to this is a need for knowledge and understanding of the magnitude of the potential errors 

associated with each stage of the process.  

 
The introduction of increasingly complex treatment techniques and with it the possibility for delivering 

higher doses in radiotherapy treatments has reinforced the requirement for accuracy in dose 

calculation algorithms. Historically, one of the most serious weaknesses in treatment planning systems 

has been their ability to accurately predict doses in the presence of inhomogeneities, particularly 

through poor consideration of electron transport [7,22]. Inaccuracies in dose calculation result in 

systematic errors in radiotherapy treatments and so are of particular importance [13].  

 
The Anisotropic Analytical Algorithm (AAA) is the most recent photon dose calculation algorithm to be 

implemented in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA, USA). 

Developed by Ulmer et al. [24,25], it is a convolution superposition model that utilises pre-calculated 

treatment-unit specific parameters together with beam data measured on the end user’s linear 

accelerators to model the clinical treatment beams. The inhomogeneity correction is implemented 

through the scaling of photon and electron scatter kernels anisotropically, according to the electron 

density distribution of the treated medium [26].  

 
In this study, we aim to verify the accuracy of the AAA in a range of situations. The algorithm’s 

performance in homogeneous media is investigated through comparison with measurements in water, 

initially for simple beam geometries and subsequently for more complex situations. Comparisons in a 

series of solid phantoms enable evaluation of the algorithm’s ability to accurately predict the dose in 

inhomogeneous media. Simulated treatment plans are then applied to a semi-anthropomorphic 

phantom in order to test the overall dosimetric performance of the algorithm in clinically realistic 

situations.  

 
Materials and Methods  
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Equipment Used 

Initial beam measurements used for the configuration of the AAA were made using a 0.04 Wellhöfer 

CC04 ionisation chamber (Wellhöfer Dosimetrie, Schwarzenbruck, Germany). The configuration 

process required only open, asymmetric beams measurements to be entered; no measurements with 

the Enhanced Dynamic Wedge (EDW) or MLC were needed, other than the average MLC 

transmission. The configuration parameters used for dose calculations were not manually altered 

following the configuration, with the exception of the EDW parameters, which were adjusted to 

minimise the mean difference between the calculated and measured wedge factors across all wedge 

angles and field sizes.  

 
Measurements were performed on a Varian 2100C/D linear accelerator using 6MV and 10MV X-ray 

beams. Beam profile and depth dose measurements in water were made using the Wellhöfer Blue 

Phantom and WP700 software and a 0.04cc Wellhöfer CC04 ionisation chamber. Measurements in 

inhomogeneous situations were made in solid phantoms constructed of combinations of Plastic 

Water
TM

 (CIRS, Inc., Norfolk, VA), bone-equivalent blocks of relative electron density 1.71 (St. 

Bartholomew’s, London, UK), cork as a lung substitute and Styrofoam to test the algorithm in an 

extreme situation of low density. The relative electron densities of the cork and the Styrofoam were 

0.24 and 0.05 respectively. Measurements in solid phantoms were made using a PTW model 31016 

(0.016cc) pinpoint chamber (PTW-Freiburg, Freiburg, Germany), a 0.6cc Farmer chamber (Thermo 

Electron Corporation, Waltham, MA) and films from a single batch of Kodak XOMAT-V. The films were 

scanned using a VIDAR VXR-12 film scanner (VIDAR Systems Corporation, Herndon, VA), using 75 

dots per inch resolution. The CIRS Thorax phantom was used for the measurement of simulated 

treatment plans.  

 
All planning work was done using parameters representative of those used clinically at Weston Park 

Hospital. All solid phantoms were CT scanned with a slice spacing of either 5mm or 2.5mm. Dose 

calculations were performed using version 7.5.18 of the Eclipse Dose Calculation Server, using a 

2.5mm calculation grid. Calculations performed with the system’s older Pencil Beam Convolution 

algorithm [23] for comparison used the same grid size and an Equivalent Tissue-Air Ratio (ETAR) 

inhomogeneity correction, in line with current practice at our institution. 

 
Experimental geometries 
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Simple, homogeneous, geometries were tested using set-ups S1-S5 in Table 1. Percentage depth 

dose (PDD) curves and both inplane and crossplane profiles were measured through the field central 

axis for square and rectangular fields. Profiles for MLC-defined fields were measured such that the 

plane of measurement was beneath the full thickness of the leaves. (For profiles perpendicular to the 

direction of leaf motion, closed leaf pairs were offset from the field axis by 1cm so that the profiles 

were not measured beneath the rounded leaf ends. For profiles parallel to the direction of leaf motion, 

the chamber was offset by 2.5mm – half the leaf width – from the field axis.) EDW field wedge factors 

were calculated as the ratio of the central axis dose at a depth of 5cm from the open field to the dose 

at the same point from the wedged field and EDW profiles were measured with film.  

 
Except where indicated otherwise, all PDD curves and profiles were normalised independently to the 

depth of dose maximum and the centre of the field respectively. Calculated and measured profiles 

were compared at 0.25mm intervals. PDD curves were compared at depth intervals of 0.25mm. 

Differences between the measured and calculated curves were calculated with respect to the 

measured central axis dose maximum for PDD curves and to the field central axis dose for profiles: 

%
D

DD
100(profiles) difference Dose

CAX meas,

meascalc













 −
×=  

%
D

DD
100(PDDs) difference Dose

measmax,

meascalc













 −
×=  

 
The performance of the algorithm in more complex situations, C1-C5 in Table 1, was then tested. For 

the asymmetric fields, PDD curves were measured at the centre of the fields and profiles were 

measured in the direction of the asymmetry. The effect of oblique incidence was tested by measuring 

vertical PDD curves and horizontal profiles. Calculations with a lack of backscatter material were 

compared to solid water depth dose measurements using the geometry shown in Figure 1 (a), made 

with the couch top removed using the Farmer chamber. Point dose measurements, corrected for 

output, were made at 5mm intervals in the deepest 5cm of the phantom. The effect of missing side-

scatter was investigated using the pinpoint chamber by measuring the dose at a point with a varying 

thickness, x, (from 1cm to 11cm) of side scatter material using tangential fields, as shown in Figure 1 

(b). The set-ups for these measurements are summarised in Table 1. The measurements and 

calculated doses were normalised to the respective doses in the full scatter situation for the missing 

scatter investigations.  
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The third group of measurements investigated the accuracy of the algorithm in the presence of 

inhomogeneities. Firstly, point dose measurements were made at 6MV and 10MV beneath five 

combinations of inhomogeneities and compared to the predicted doses from the AAA. All 

measurements were made using an SSD of 90cm with a Farmer chamber positioned at the isocentre, 

10cm below the surface. The combinations of materials above and below the chamber, from the 

surface down, are listed in set-ups I1-I5 in Table 1. All measurements in set-ups I1-I5 were made 

using a 10x10cm field.  

 
The effect of inhomogeneities on dose profiles was investigated by positioning film at a depth of 10cm 

in a phantom constructed of Plastic Water
TM

 and cork, as in Table 1 (set-up I6). The ability of the AAA 

to model the effect of layers of inhomogeneity on depth doses was investigated using a phantom 

constructed of Plastic Water
TM

 and Styrofoam – set-up I7 in Table 1. Depth dose measurements were 

made through the phantom with a Farmer chamber and compared to the PDD curves calculated by 

Eclipse using both the AAA and the Pencil Beam Convolution (PBC) model with ETAR inhomogeneity 

correction. 

 
Finally, simulated treatment plans were produced to test the performance of the AAA in the presence 

of clinically realistic inhomogeneous situations. The plans were produced using CT data for the CIRS 

Thorax Phantom (CIRS Inc., Norfolk, VA, USA). This semi-anthropomorphic phantom includes lung 

(relative electron density 0.207) and spinal column (relative electron density 1.506) inhomogeneities 

and ten removable inserts allow the use of the pinpoint ionisation chamber for dose measurements in 

various locations. A three-field lung plan was produced for a centrally located tumour and a simple 

parallel pair plan was also created. The plans were calculated using the AAA, as well as the Pencil 

Beam Convolution algorithm with ETAR inhomogeneity correction for comparison. The plans were 

delivered to the phantom and point dose measurements were made using the pinpoint chamber in 

several of the measurement locations. Differences between the measured and calculated doses were 

expressed as a percentage of the measured dose.  

 
Results 

 
Simple Geometries 
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For square and rectangular fields at both 6MV and 10MV, the calculated depth doses beyond dmax 

agreed with measurements to within 1.5% at all points. In the square fields’ build-up region, a 

maximum distance to agreement of 1.1mm was found for 6MV and 1.6mm for 10 MV. For the 

rectangular fields, all isodoses agreed to within 2mm. The mean deviations from the measured depth 

doses tended to increase with field size but were all smaller than 0.5%. Over all field sizes, there was 

a mean difference (AAA – measurement) of 0.2 ± 0.2% (1 s.d.) beyond dmax and 0.2 ± 2.1% (with a 

mean distance to agreement of 0.3 ± 0.7mm) superficial to dmax.  

 
The profiles generally showed excellent agreement between calculated and measured doses. For the 

purposes of this work, the high dose gradient region was defined as an area in which the dose 

gradient exceeded 3% per mm. The low dose, low dose gradient region was defined as a region of low 

dose gradient in which the dose was also below 7% of the central axis dose [28]. Regions in which the 

dose was above 90% of the central axis dose and the dose gradient was no higher than 3% per mm 

were considered to be high dose, low dose gradient regions.  

 

The maximum discrepancy in the low dose, low dose gradient region was 2% with the exception of the 

30x30cm 10MV field, for which the AAA underestimated the dose by approximately 2.5%, while the 

maximum isodose shift in the high dose gradient regions was 1.8mm. (There was a general tendency 

in all profiles for the AAA to underestimate the dose outside the field.) The maximum disagreement in 

the high dose, low dose gradient region was generally better than 2.0% with a few exceptions; some 

fields show higher underestimates in the shoulder region just above the high dose gradient – typically 

around the 90% to 100% isodoses. The largest such difference was an underestimate of 6.7%, found 

in the 40x40cm 10MV field. However, in each of these cases, the predicted and measured curves 

were separated by no more than 2.5mm.  

 
The fields at 90cm and 120cm SSD showed similar levels of agreement to the square fields at 100cm 

SSD. All discrepancies in the PDD curves below dmax were smaller than 1.3% and the maximum 

distance to agreement in the build-up region was 2.0mm. Beyond dmax, the maximum discrepancy 

between calculated and measured PDDs was 1.3%. The maximum isodose shift in the high dose 

gradient region of the profiles was 0.7mm at 90cm SSD and 1.3mm at 120cm. In the low dose, low 

dose gradient region, calculated and measured doses agreed to within 1.6%. Between the high dose 
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gradient regions, maximum dose differences of 1.6% and 2.8% were seen at 90cm SSD and 120cm 

SSD respectively, but all points were within 2mm distance to agreement.  

 

The calculated PDDs for MLC-defined fields also showed excellent agreement with measurement; the 

maximum difference in the build-up region was 1.8mm and beyond dmax, all doses agreed to within 

1.3%. The profiles exhibited the same trends as for the collimator-defined fields. In the regions of high 

dose gradient, the maximum distance to agreement was 1.8mm. In the low dose, low dose gradient 

regions, the maximum dose discrepancies were 1.6% at the lower energy and 2.1% at 10 MV. In the 

high dose region, all but four points agreed to within 2% or 2mm.  

 
The final simple geometries studied were square fields with enhanced dynamic wedges. For all field 

sizes, the predicted wedge factor agreed less well with the measured factor as the wedge angle 

increased. It was decided to configure the wedges such that the maximum error in the wedge factors 

was minimised. Therefore, for smaller wedge angles the predicted value was an underestimate of the 

true wedge factor while for the larger angles, it was an overestimate. As a result, the mean error in the 

wedge factors for any field size was small, not exceeding 0.5%. Two calculated factors (the 60° wedge 

for a 5x5 cm field at each energy) varied from the measured values by more than 2%. Across all field 

sizes and wedge angles, the mean discrepancy was 0.0% ±1.2% (1 s.d.).  

 
The EDW profiles were measured with film and the calibration of the film verified with point dose 

measurements. Excellent agreement was seen between the measured and calculated doses, as 

shown by the example for the 6MV 20x20cm 60° field in Figure 2. Agreement within the high dose 

gradient regions was to within 2mm, while in the wedged part of the field, the maximum discrepancy 

was 1.9%. The AAA slightly overestimated the gradient of the wedged part of the field. Agreement was 

similar for the 60° wedge at 10MV and the 30° wedges.  

 
Complex Geometries 

The calculated half-beam blocked fields’ profiles all agreed with measurement to within 2% or 2mm in 

most areas. There was a tendency to consistently underestimate the dose in the high dose region 

away from the central axis by approximately 1%. There was also a larger underestimate of the dose in 

the less steep low dose part of the penumbra of the jaw aligned with the central axis than was seen for 
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open fields. This effect was exaggerated in the penumbra of the jaw that was moved across the 

central axis, although the distance to agreement remained within 3mm.  

 
The disagreement in the case of the half-beam blocked EDW field, shown in Figure 2, was slightly 

greater than that for the symmetric EDW fields, with a maximum dose discrepancy of approximately 

5%, close to the peak of the profile. Again, the distances to agreement in the steep dose gradients 

were less than 2mm.  

 
The oblique fields’ PDDs in the vertical plane through the isocentre, shown in Figure 3, showed 

generally good agreement, the poorest comparison being in the penumbra region. For the field 

incident at 20°, the algorithm underestimated the dose by more than 3% in the region between 15% 

and 35% of the isocentre dose, the largest discrepancy being 5.7% and the highest distance to 

agreement of any isodose being 6.3mm. The 30° field showed better agreement; although there were 

differences of over 3% in the penumbra region, the penumbra was steeper and so the maximum 

distance to agreement was below 3mm. The same levels of agreement were seen for 10MV as for 

6MV. 

 
The agreement between the calculated and measured horizontal profiles for the obliquely incident 

fields was excellent. In the high dose gradient regions, all isodoses corresponded to within 2mm and 

in the low dose gradient parts of the curves, all calculated doses agreed with measurement to within 

2% and usually to within 1% at both profile depths.  

 
The repeatability of the relative dose measurements in the study of the effect of missing back- and 

side-scatter was better than 0.2% (1 standard deviation). The algorithm underestimated the effect of 

the missing side-scatter, generally overestimating the doses. However, for all fields studied, only when 

the measurement point was within 1.5cm of the lateral extent of the phantom did any significant 

difference between measured and predicted doses of greater than 2% occur. The mean discrepancy 

at 1.5cm from the edge was 1.4% ± 0.3%; at 2.0cm, the mean value was 1.0% ± 0.3% and at 3cm 

0.3% ± 0.2%. The largest dose error was in the presence of just 1 cm of side scatter for the 10x10cm 

field, where the AAA overestimated the dose by 4.0% at both energies.  The effect of missing 

backscatter was not predicted at all by the AAA, the calculated depth doses towards the bottom of the 

phantom being identical to those at the same depths in the presence of full backscatter. This resulted 
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in an overestimate of the dose at a point 1cm from the back of the phantom of up to 1.5% for a 

10x10cm field and up to 2.5% for a 20x20cm field compared to the measured values. The 

overestimate was larger for larger fields and was greater for a 6MV beam than a 10MV beam.   

 

Inhomogeneous Geometries 

The results of the point dose measurements beneath the various inhomogeneity layers are 

summarised in Table 2. Measurements made in a homogeneous Plastic Water
TM

 phantom using the 

same set-up showed agreement with calculation to within 0.3%.  In the presence of inhomogeneities, 

all the point dose measurements agreed with calculation to within 2.5%.  The agreement between 

calculated and measured doses under bone equivalent material was better at 10MV than at 6MV.  

 
As can be seen in Figure 4, the AAA predicts the broadening of the beam penumbra in a low density 

medium well; maximum discrepancies for this relatively shallow depth of cork were 2.5% or 2.5mm, 

apart from in the heel of the curve.  

 
The depth dose curve measured in the Plastic Water

TM
 and Styrofoam phantom, shown in Figure 5, 

demonstrated that while the PBC algorithm does not model the reduction in dose in the low density 

medium, the AAA does predict the reduction and re-build-up. Discrepancies of up to 2% between the 

measured and calculated percentage depth doses in the Styrofoam and between 2% and 3% beyond 

the Styrofoam were seen. However, with an estimated overall uncertainty of approximately 2.5% on 

these measurements using the Farmer chamber in Styrofoam, these discrepancies can not be 

considered significant.  

 
Two of the simulated treatment plans on the CIRS phantoms are shown in Figure 6. A summary of the 

differences between calculated and measured doses in these plans is given in Table 3, with 

corresponding results for the PBC model shown for comparison.  

 
It can be seen that for the AAA all measurement points show agreement to within 2.5% except for two 

points in the 3-field plan – the point near the field edge is in the high dose gradient and the distance to 

agreement is less than 1mm, while the spinal cord point is in a low dose region and has a distance to 

agreement of 1.7mm. The AAA consistently provides better agreement with measurement than the 

PBC model, particularly within the lung regions. While the distance to agreement for the field edge 



  11 

point in the 3-field plan was 1mm for the PBC plan, all other points for which the dose discrepancy 

exceeded 2.5% had associated distances to agreement of between 2.4mm and 11mm.  

 
Discussion 

 
Many recommendations for acceptable levels of accuracy in treatment planning systems have been 

published (for example, [9,11,27,28]). The specific parameters to be tested and their associated 

tolerances vary between these publications, but consensus would appear to be moving towards 

requiring agreement to between 2 – 3% in low dose gradient regions and 2 – 3mm in high dose 

gradients. In the UK, the guidelines in IPEM Report 81 [11] suggest an “ideal” agreement as being to 

within 2% or 2 mm of the beam normalisation value and an “acceptable” level for the same regions are 

3% and 3mm respectively. Van Dyk [27] specified further limits for more complex situations – 3% for 

simple beams with inhomogeneity and 4% or 4mm for more complex situations with inhomogeneities 

(but 3% in low dose gradient regions). In this work, profiles and depth doses were compared at 

0.25mm intervals.  

 
The measurements entered into the planning system during configuration of the AAA are PDD curves 

and profiles at five depths for a range of field sizes from 40x40cm down to at least 4x4cm. The simple, 

unwedged geometries tested demonstrated that the iterative adjustment of the generic beam intensity 

profiles performed during configuration produced unit-specific beams that matched the measured data 

at the “ideal” level. The dose distributions for even the most elongated fields – of clinical relevance in, 

for example, craniospinal treatments – were accurately calculated. Similarly successfully prediction of 

MLC fields, which additionally incorporate the modified phase space modelling of the AAA, was 

achieved.  

 
Larger discrepancies were seen with the Enhanced Dynamic Wedge fields. The largest errors were 

measured at the high dose end of the wedge; this might be expected given that the final separation of 

the jaws during such a treatment is just 0.5cm – somewhat smaller than the smallest field size entered 

in the configuration. The poorer performance for EDW fields agree with those reported by Fogliata et 

al. [8], who also found a wedge angle dependence of the wedge factor (calculated as a wedge 

“transmission factor” in that report). The accuracy of the AAA in the specific case of small fields is of 
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particular importance not only for EDW fields but for IMRT dose calculations and is the topic of 

continuing investigation at Weston Park Hospital. 

 
The algorithm was found to predict the effect of missing side scatter well, especially in the more 

clinically relevant areas. The only significant difference in the case of the oblique fields was the high 

dose gradient region of the vertical depth dose of the 20° incidence field. This was a result of the 

relatively shallow angle at which the plane of the depth dose crossed the penumbra of the angled field, 

but for the 10 x 10 field studied, this occurred at a depth of approximately 20cm and was in a relatively 

low dose region. The profile and depth doses closer to the surface all showed excellent agreement. 

Similarly, the largest discrepancies for the tangential fields occurred in the 1cm closest to the surface. 

Such a situation is clearly of most relevance for glancing beams used in treatments of the breast and 

chest wall. The overestimate of the dose in the most superficial area must be borne in mind when 

evaluating such plans, but the magnitude of the differences are smaller than those of the 

underestimates of the Pencil Beam Convolution model with ETAR correction.  

 
The limitations of pencil beam algorithms in treatments involving low density inhomogeneities are well 

documented [2,5,6,7,15,20,29]. In this study, the AAA has been shown to account for the increase in 

lateral electron transport in terms of the broadening of the penumbra in low density material and 

predicting the reduction in central axis dose in such a low density heterogeneity. It was found to 

slightly underestimate this dose reduction in the Styrofoam, but this material represents an extreme 

situation, having a density significantly lower than that found in the lung [14]. In the more clinically 

realistic situation of the simulated treatment plans, good agreement between the AAA and 

measurement was seen in the lung regions (whose relative electron density was approximately 0.2). 

The model did not appear to predict a build-down region immediately above the Styrofoam, which is 

consistent with the failure to predict the effect of the lack of backscatter, but more detailed 

measurements close to the interface are required to determine the magnitude of this effect.  

 
The point dose measurements below the slabs of inhomogeneity give a general feeling for the ability 

of the algorithm to predict the dose in the presence of laterally extended heterogeneities. It would 

appear that at both energies, the algorithm overestimates the dose beyond the cork inhomogeneity (as 

would be expected from the depth doses with the Styrofoam block), where it does not beyond the air 

gap. The algorithm appeared to overestimate the effect of the bone slab. However, few conclusions 
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can be drawn from these limited measurements and further work investigating the effects of 

inhomogeneities, particularly interface effects close to the boundaries between them, is ongoing.  

 
The simulated treatment plans delivered to the thorax phantom allow some measure of the overall 

performance of the algorithm to be gained. The first plan comprised three fields, all with MLC and two 

with EDW and oblique incidence, the second two wedged fields, also with MLC. The different 

geometries clearly involved passing through different combinations of lung, water-equivalent tissue 

and bone. In both cases, the point dose measurements agreed with the AAA’s predictions to within 

2.5% or 2mm, indicating that in the clinical situation, the algorithm appears to perform to the desired 

level of accuracy.  

 
One further aspect that is of importance in the clinical situation is the speed with which an algorithm 

performs the required dose calculations. Comparisons of calculation time using the PBC and AAA 

models with inhomogeneity correction were favourable. For example, a 3-field lung plan calculated on 

a 120-slice dataset at 2.5mm calculation grid spacing took 265 seconds using our currently 

implemented algorithm, the PBC with ETAR inhomogeneity correction, while the AAA took just 75 

seconds.  

 
The AAA is just one of many convolution-superposition models implemented in commercial treatment 

planning systems; the collapsed cone convolution (CCC) models of the Pinnacle [16,21] and Helax-

TMS [1] planning systems (ADAC, Milpitas, CA, USA and Nucletron, Veenendaal, Netherlands 

respectively) are perhaps the most widely studied in the literature. The accuracy of these two 

algorithms has been evaluated in several studies; while exact comparison of the results in those 

reports with the results obtained in this study is not practical, some general comments can be made. 

Performance in homogeneous conditions was reported at the same level – generally to within 2% or 

2mm – for the three algorithms [3,10,18]. The AAA, in common with the Pinnacle CCC model, 

performed slightly better than the Helax CCC model within low density inhomogeneities, but slightly 

worse beyond them [19]. Similar levels of accuracy in predicting the effect of missing side-scatter were 

seen with the AAA and Helax CCC model, although the latter model predicts the effect of missing 

backscatter while the AAA does not [3,18]. The AAA gave slightly better agreement with measurement 

in the simulated treatment plans compared to similar investigations involving the Helax CCC model. 

The accuracy of the AAA is dependent upon the quality of the initial modelling of the beams in Eclipse; 
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agreement between calculation and measurement may vary between centres according to how well 

the beams are modelled. 

 
Conclusions 

 
In this study we have investigated the accuracy of dose calculations performed with the Anisotropic 

Analytical Algorithm in a range of situations from single fields in homogeneous media to full simulated 

treatment plans applied to semi-anthropomorphic phantoms.  

 
Modelling of homogeneous phantom situations was found to be generally correct to within 2% or 2mm 

agreement, with no systematic differences between 6MV and 10MV. Calculations in the presence of 

inhomogeneities also showed good agreement. Measurements made of the doses in the semi-

anthropomorphic phantom from the simulated treatment plans indicate the overall performance in the 

presence of complex fields, missing tissue geometries and inhomogeneous media. These showed 

very good agreement with calculation, all points agreeing to within 2.5% or 2mm. The accuracy of the 

AAA represents an improvement over the currently implemented Pencil Beam Convolution model, 

particularly in the presence of low density inhomogeneities and compares well with other commercially 

available convolution superposition algorithms. 
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Figures 

Figure 1 Set-ups for the evaluation of (a) missing backscatter and (b) missing side-scatter 
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Figure 2 60° symmetric measured (circles) and calculated (dotted line) EDW profiles and 60° half-

beam blocked measured (crosses) and calculated (solid line) EDW profiles. (The wedged 

field profiles have been reversed for clarity.) All doses are normalised to the measured 

central axis dose for the 60º symmetric EDW field.  

 
 

    
 

 



  20 

Figure 3 Calculated (solid lines) and measured (dashed lines) depth dose curves, measured in the 

vertical plane, for the fields incident at 0°, 20° and 30° to the vertical.  

 

    
  



  21 

Figure 4 Measured (solid lines) and calculated (crosses) profiles within a block of cork. The dotted 

line indicates the calculated profile in water at the same depth, for comparison. The dose 

values are normalised to the central axis dose of the profile in water. 
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Figure 5 Depth doses measured in the Plastic Water
TM

 and Styrofoam phantom (crosses) and the 

curves calculated with the PBC model (dotted line) and AAA (solid line). 
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Figure 6 Treatment plans on the CIRS thorax phantom showing the points of measurement. 
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Table 1 Summary of the experimental set-ups for simple, complex and slab phantom 
geometries 

 

 Description Measurements Field Details SSD 

Simple geometries    

S1 Square fields PDD, Profiles 4x4cm to 40x40cm 100cm 

S2 Rectangular fields PDD, Profiles 4x15cm, 15x4cm, 5x20cm, 20x5cm, 5x30cm, 
30x5cm, 5x40cm, 40x5cm 

100cm 

S3 MLC-defined fields PDD, Profiles 4x4cm, 10x10cm, 20x20cm fields; jaws 2cm beyond 
MLC leaves 

100cm 

S4 Different SSD PDD, Profiles 4x4cm, 10x10cm, 15x15cm, 20x20cm 90cm, 
120cm 

S5 EDW fields WF, Profiles 10x10cm, 20x20cm 

Wedge factors for 15, 30, 45, 60° EDW 

Profiles for 30, 60° EDW 

100cm 

Complex geometries    

C1 Asymmetric fields PDD, Profiles Half-beam block: (5,5)x(0,5), (10,10)x(0,10) 
Jaw over axis: (10,10)x(-2,10) 

100cm 

C2 Asymmetric fields Profiles 60° EDW fields, (5,5)x(0,5), (10,10)x(0,10) 100cm 

C3 Oblique incidence PDD, Profiles 10x10cm, GA = 20°, 30° 
Profiles at d=2.5cm and d=7.5cm 

97.5cm 

C4 Missing scatter Point doses 4x4cm, 10x10cm, 15x15cm, 20x20cm 90/85cm 

C5 Tangential fields Point doses 5x5cm, 15x15cm 
 

85cm 

Inhomogeneous slabs    

I1 Slab phantom Point doses 2cm Plastic Water
TM

 –5cm air–3cm Plastic Water
TM

 
– chamber – 10cm Plastic Water

TM
 

90cm 

I2 Slab phantom Point doses 2cm Plastic Water
TM

 –5cm cork–3cm Plastic 
Water

TM
  – chamber – 10cm Plastic Water

TM
 

90cm 

I3 Slab phantom Point doses 3cm Plastic Water
TM

 –2cm solid bone–5cm Plastic 
Water

TM
  – chamber – 10cm Plastic Water

TM
 

90cm 

I4 Slab phantom Point doses 7cm Plastic Water
TM

 –2cm solid bone–1cm Plastic 
Water

TM
  – chamber – 10cm Plastic Water

TM
 

90cm 

I5 Slab phantom Point doses 2cm Plastic Water
TM

 –2cm solid bone–4cm cork–
2cm Plastic Water

TM
  – chamber – 10cm Plastic 

Water
TM

 

90cm 

I6 Slab phantom Profiles 7cm Plastic Water
TM

 –3cm cork–Film–2cm cork–
13cm Plastic Water

TM
 

100cm 

I7 Low density PDD 5cm Plastic Water
TM

 –14.7cm Styrofoam–10cm 
Plastic Water

TM
 

100cm 
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Table 2 Differences between calculated and measured point doses (%) at 10 cm depth 

Geometry 6MV 10MV 

I1 +0.9 +1.0 

I2 +2.4 +2.3 

I3 -1.3 -0.1 

I4 -1.4 -0.1 

I5 +2.1 +1.9 
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Table 3 Differences between calculated and measured doses (%) for the simulated treatment plans 
in the CIRS thorax phantom using the Anisotropic Analytical Algorithm and Pencil Beam 
Convolution models.  

Reference Point AAA PBC 

3-field plan   

Isocentre +0.5 +0.6 

Mid Lung -0.8 +4.7 

Posterior Lung -2.1 +2.4 

Spinal Cord -2.7 +3.7 

Outside PTV (field edge) +4.0 +4.4 

   

Parallel Pair   

Isocentre -1.2 -2.2 

Mid Lung +1.3 +7.5 

Posterior Lung +1.5 +7.4 

Spinal Cord -0.8 -1.8 

Outside PTV (field edge) -0.8 +0.5 
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