
This is a repository copy of How good are your testers? An assessment of testing ability.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/3670/

Conference or Workshop Item:
Huang, Liang, Thomson, Christopher and Holcombe, Mike (2007) How good are your
testers? An assessment of testing ability. In: Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION, 2007. TAICPART-MUTATION 2007, 12-
14 Sep 2007, Windsor, UK.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

How good are your testers? An assessment of testing ability

Liang Huang, Chris Thomson and Mike Holcombe

Department of Computer Science, University of Sheffield

{l.huang, c.thomson, m.holcombe}@dcs.shef.ac.uk

Abstract

During our previous research conducted in the
Sheffield Software Engineering Observatory [11], we

found that test first programmers spent a higher

percentage of their time testing than those testing after

coding. However as the team allocation was based on

subjects’ academic records and their preference, it was

unclear if they were simply better testers. Thus this

paper proposes two questionnaires to assess the testing

ability of subjects, in order to reveal the factors that
contribute to the previous findings. Preliminary results

show that the testing ability of subjects, as measured

by the survey, varies based on their professional skill

level.

1. Introduction

Sheffield Software Engineering Observatory

(SSEO) was set up to empirically study software

development projects. In this environment, we conduct

experiments with students working with managers and

external industrial clients. Our most recent work has
been to assess the effectiveness of test first

programming in comparison to testing after coding [1]

[2].

Test first programming is a software development

practice which has been in use since the 1980’s [8]

[12]. In this method the automated tests are

implemented before the object code is written, this is in

contrast to the traditional approach where tests are
constructed after development. Our ultimate aim is

designed to validate Chaplin’s test first rule: “If you

can’t write a test for what you are about to code, then

you shouldn’t even be thinking about coding” [4].

The results of our experiments so far however are

unclear, suggesting that the testing ability of subjects

could be an important co-variant in the relationship

between testing method and performance. In order to
distinguish the good and bad testers this paper

describes two questionnaires which assess testing

ability. In order to validate the first questionnaire we

designed and ran an experiment based on the

assumption that second year undergraduates are less

skilled than fourth years.

The rest of this paper is organized as follows:

Section 2 reviews the literature and motivates the

study. Section 3 describes the data collection
environment and method. Section 4 describes the

process of data analysis and preliminary results. Lastly

in section 5 we summaries our findings and suggest

future work.

2. Background

2.1 Previous Studies

There have been a number of controlled

experiments and case studies aiming to investigate the
distinction between test first programming and the test

last method [5] [9] [11] [13] [15] [16].

A comparative study [16] with 19 undergraduate

students involved in an academic setting showed that

test first method did not help programmers obtain

higher productivity or program of higher reliability but

subjects using test first understood the programs better.

A slightly different result was obtained in a formal
investigation [5] with 24 students who worked

independently. They compared the effectiveness of test

first approach with that of test last. It was found that

that test first students wrote more tests but failed to

deliver software of higher external quality. However

the minimum external quality obtained increased with

the number of tests. Moreover, students who wrote

more tests were more productive regardless of testing
strategy employed.

In an industrial setting at IBM, the pair

programmers using test first obtained a 40 to 50

percent improvement of code quality, whereas their

productivity did not decrease correspondingly [15].

Another structured experiment run by George and

Williams [9], delivered an alternative view again. In

this study 24 professional pair programmers were
divided into two groups. It was observed that Test

Testing: Academia and Industry Conference - Practice And Research Techniques

0-7695-2984-4/07 $25.00 © 2007 IEEE

DOI 10.1109/TAIC.PART.2007.16

82

Testing: Academia and Industry Conference - Practice And Research Techniques

0-7695-2984-4/07 $25.00 © 2007 IEEE

DOI 10.1109/TAIC.PART.2007.16

82

Testing: Academia and Industry Conference - Practice And Research Techniques

0-7695-2984-4/07 $25.00 © 2007 IEEE

DOI 10.1109/TAIC.PART.2007.16

82

Testing: Academic and Industrial Conference - Practice And Research Techniques

0-7695-2984-4/07 $25.00 © 2007 IEEE

DOI 10.1109/TAIC.PART.2007.16

82

Driven Development (TDD) programmers were less

productive but produced code of higher quality because

18 percent more black-box test cases were passed

whereas 16 percent more time were consumed in TDD
group.

In our early work in this area [13] our colleague

compared Extreme Programming (XP) with a design-

led traditional method with 96 students, who were

divided into 2 groups working as 19 teams on 4

projects. He observed that that XP teams spent more

time on testing than the teams using traditional method

by statistical methods. This suggests that there was a
difference in testing effort applied by the teams.

To further investigate this effect last year we ran a

controlled experiment in SSEO with 39 students [11].

The only difference between the development

approaches of the subject groups was test first and test

last method. In this experiment the students were

allocated in two treatment groups working as ten teams

competitively on three different projects. Our main
finding was that teams using test first method spent a

larger percentage of time on testing but failed to obtain

significantly higher software external quality,

additionally a strong statistical correlation between the

testing effort and coding effort was also observed.

2.2 Research Motivation

On comparison of previous studies, we located six

published studies [5] [9] [11] [13] [15] [16] on test first

programming with differing conclusions. However, the

reason for this difference remains unknown. There are

a number of factors that could have influenced these

results for example: a large number of unnecessary

tests or too few tests; differences in testing ability; or
differences in test quality. Therefore, it is imperative to

analyze the tests written by subjects and to assess the

subjects’ ability to test. In order to distinguish the good

and bad testers, the controlled experiment previously

conducted in SSEO [11] was replicated in the spring

semester in the academic year 2006-07, and an

additional survey was designed to assess the testing

ability of subjects involved by assuming that the
Genesys group (fourth year undergraduates and

masters students) is better than the Software Hut group

(second year undergraduates).

3. The Experiment

3.1 Subjects

55 students studying in Department of Computer

Science at the University of Sheffield were involved in

this study. Some of them registered for the Software

Hut module and others for the Genesys module.

The Software Hut module consists of the level 2

undergraduate students. They were required to
complete all the courses in level 1 and that in the first

semester of level 2 before registering for the Software

Hut module. The modules that are related to the

Software Hut projects are “Introduction to

Programming”, “Requirements Engineering”, “Object

Oriented Programming”, “System Design and

Testing”, “Functional Programming”, “Systems

Analysis and Design”, and “Database Technology”. In
these modules, they have gained experience of

developing software systems using traditional method

and different programming languages such as Java.

The subjects involved in the “Genesys Solutions”

[10] are the fourth-year MEng and advanced one year

MSc students. They play the role of staff and run the

software development company themselves. It is

assumed that the students in this module have a higher
level of professional skill and that they are more

socially mature compared with the second year

undergraduates. Students in this module are usually

divided into several teams, two of which are

responsible for marketing and company administration,

while other teams are supposed to do the software

development using XP. Lecturers in this module play

the role of external managers rather than instructor.

3.2The Questionnaire

Two questionnaires were proposed to be designed

for the survey with the name of Questionnaire A and

Questionnaire B.

Questionnaire A is code based. It is composed of a
short piece of Java code and 29 potential test cases to

be selected, to assess the testing ability of subjects. The

subjects were asked to make a selection from 29

potential test cases to correspond to the Category

Partition method of testing [17] and to give Branch

coverage [6]. Of all the test cases presented, 22 were

required for the Category Partition method, 7 for

Branch coverage and 7 for both. Questionnaire A and
model answers are presented in Appendix A.

For Questionnaire A, the testing ability of every

subject was measured by: the number of correct

choices he/she made; the branch coverage obtained;

and the number of redundant test cases that were

selected.

Questionnaire B which has not yet been issued will

be specification based. It will consist of the textual
specification for a story [3] to be implemented and a

number of potential test cases to be selected. The

testing ability of subjects will be measured by 1) the

83838383

number of correct choices made, and 2) the number of

redundant test cases that were selected.

3.3 Procedure

The subjects received intensive training before

allocation to the different treatment groups: test first

group and test last group, according to their preference.

They were asked to work as teams which were

composed of 3 to 6 members. They were required to

upload their work including: the code; the tests; and
documentation to the repository at least once a week.

The academic staff reminded them to conform to the

practices throughout the project and ultimately

assessed their level of methodology conformance.

Furthermore the students were encouraged by a

potential reward of up to 50% of the marks being

directly related to the methodology conformance.

The questionnaire A was distributed in the week
before Easter vacation. From the Software Hut students

we obtained 14 responses and 8 were obtained from the

subjects working in the Genesys lab. The response rate

was fairly low due to the complexity of the

questionnaire; however it serves as a trial and will

require further investigation. Questionnaire B will be

issued at the end of the semester.

4. Preliminary Results

The statistical results in this section are based on the

data collected via Questionnaire A. The subjects’
ability to test is assessed using three measurements, as

described in Section 2.2.

Table 1. Comparison of Marks for Category
Partition Method
Subjects Responses Mean Std. Deviation

Software Hut 14 16 5.3

The Genesys 8 18 5.0

As shown in table 1, the mean value of marks

obtained by the Genesys students is higher than that

obtained by the Software Hut students. However,

significance of Mann-Whitney U-test is 0.27, higher

than the 0.1 level (Since the sample size is small, we
used 0.1 as the alpha value) [14].

According to the statistical results shown in Table 2

and Table 3, all the subjects, regardless of their

backgrounds, obtained the same level of branch

coverage. But the mean value of redundant tests

selected by the Genesys students is lower than that

selected by the Software Hut students with a smaller

standard deviation. However, significance of Mann-
Whitney U-test is 0.92, much higher than 0.1.

Table 2. Comparison of the branch coverage
obtained
Subjects Responses Mean Std. Deviation

Software Hut 14 26 4.1

The Genesys 8 26 3.6

Table 3. Comparison of redundant tests
selected
Subjects Responses Mean Std. Deviation

Software Hut 14 8.0 7.4

The Genesys 8 6.5 5.8

When we compared Software Hut students with the

Genesys in terms of marks for Category Partition

method, the result of Mann-Whitney U-test (0.27) is

weak but close to the frontier (0.1). Since the sample
size is small (22 responses only), and the statistical

results exhibit a continuous difference between two

groups of subjects, in terms of correct choices made,

and redundant tests selected, we used Bayesian

approach [7], which is able to provide a numerical

probability, for further analysis.

We identify the students as “Excellent”, if the

numbers of correct choices they made are higher than
or equal to 21 (70% * 29), and “Poor”, if marks given

are less than 15 (50% * 29). In this case, the numbers

of “Excellent” and the numbers of those that are not so

good in Group A and Group B are presented in Table

4.

Table 4. The Number of Excellent and Poor
Subjects Responses Excellent Poor

Software Hut 14 3 6

The Genesys 8 3 1

With this criterion, the probabilities obtained are

listed as follows.

Probability that a Software Hut student is identified as

Excellent:
P (Excellent | Software Hut) = 0.21

Probability that a Genesys student is identified as

Excellence: P (Excellent | Genesys) = 0.38

Probability that a Software Hut student is identified as

the Poor: P (Poor | Software Hut) = 0.43

Probability that a Genesys student is identified as the

Poor: P (Poor | Genesys) = 0.13

According to these results, the Genesys students

have higher probability to be Excellent (38% for

84848484

Genesys whereas 21% for Software Hut), and the

Genesys students have much lower probability to be

the Poor (13% for Genesys while 43% for Software

Hut).

5. Conclusions and Future research

In this experiment, subjects were divided into teams

and assigned to two groups doing a number of projects
using two testing strategies. During the development

process, one questionnaire was distributed and a

further one will be used to measure the testing ability

of subjects.

The difference between testing ability of Software

Hut students and Genesys students measured by

Questionnaire A was analyzed using Mann-Whitney

test and then Bayesian approach, the results of which
showed Genesys students, who has higher level of

professional skills and 2 years’ more experience, failed

to do better using branch coverage, but were more

likely to write tests of higher quality when following

the category partition method. This could be because

the category partition method requires some analysis of

the specification whereas branch coverage is based on

an analysis of code structure. When using the test first
method the tests must be derived from the

specification, therefore these results suggest that test

first programming requires higher level of expertise.

Testing ability measured via the assessment of code

based testing only is not appropriate for test first

developers as we have not yet addressed specification

based testing directly. And in the experiment, the

subjects are asked to select tests from given test sets
rather than generate tests. Therefore subjects will be

required to complete Questionnaire B, which is

specification based, and involve in a more complicated

survey in which subjects will be required to generate

tests themselves, to assess their ability to test with and

without code.

References

[1] K. Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley, Reading, Mass, USA, 2000.

[2] K. Beck, Test Driven Development: By Example, Addison
Wesley, Reading, MA, 2002.

[3] K. Beck and C. Andres, Extreme Programming
Explained: Embrace Change, 2nd Edition, Addison-Wesley,
2004.

[4] D. Chaplin, test first Programming, TechZone, 2001.

[5] H. Erdogmus, M. Morisio, and M. Torchiano, “On the
effectiveness of the Test-First Approach to Programming”,
IEEE Transactions on Software Engineering, Vol. 31, No. 3,
March 2005, pp. 226-237.

[6] N. Fenton, S. Pfleeger, Software Metrics: a rigorous and
practical approach, 2nd edition, International Thomson
Computer Press, London, 1997.

[7] A. Gelman, B. Carlin, H. Stern, and D.B. Rubin,
Bayesian Data Analysis, Second Edition, Chapman &
Hall/CRD, Boca Raton, Florida, 2003.

[8] D. Gelperin, W. Hetzel, “Software quality engineering”,
4th International Conference on Software Testing,
Washington DC, June 1987.

[9] B. George, L. Williams, “A structured experiment of test-
driven development”, Information and Software Technology,
Vol. 46, 2004, pp. 337-342.

[10] M. Holcombe, and M. Georghe, “Enterprise Skill in the
Computing Curriculum”, Ingenia, 2003, pp. 56-61.

[11] L. Huang and M. Holcombe, “Empirical Assessment of
Test-First Approach”, Proceedings of Testing: Academic &
Industrial Conference, IEEE Computer Society, Windsor,

UK, 2006, pp. 197-200.

[12] C. Larman, V. Basili, “A history of iterative and
incremental development”, IEEE Computer, Vol. 36, 2003,
pp. 47-56.

[13] F. Macias, Empirical Assessment of Extreme
Programming, PhD thesis, University of Sheffield, 2004.

[14] H.B. Mann, D.R. Whitney, “On a Test of Whether One
of Two Random Variables is Stochastically Larger than the

Other”, Annals of Math. Statistics, 1947.

[15] E.M. Maximilien, L. Williams, “Assessing test-driven
development at IBM”, Proceedings of the 25th International
Conference on Software Engineering, IEEE Computer
Society, Portland, Oregon, 2003, pp. 564-569.

[16] Müller M., Hanger O., “Experiment about Test-First
Programming”, IEE Proceedings on Software, Vol. 149, No.
5, October 2002.

[17] T.J. Ostrand and M.J. Balcer, “The Category-Partition

Method for Specifying and Generating Functional Tests”,
Communications of the ACM, Vol.31, No.6, June 1988, pp.
676-686.

85858585

Appendix 1: Questionnaire A

To administer this questionnaire, please take the

potential test cases and place three columns next to

them labeled A, B, and C. With a box for free text

labeled D.

The tests required for the category partition method

are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, and 29.

Branch coverage must be calculated for each response.

Instructions:

In column A please select a minimal set of tests for the

code on the right that are required by the category-
partition method of testing. In brief: A category is any

property of either some input to the function, or the

output from it, which can then be used to identify one

or more equivalence classes. A partition of a category

is any equivalence class which can be identified for

that category. So for example if an input (category) is

an integer, you may partition it into MAX_INT,

MIN_INT, and the values between them, leading to
three test cases.

In column B please select a minimal set of tests that

will give branch coverage for the code on the right. For

branch coverage your test set should execute each line,

and each decision in the code. For if for example there

was a line "if (i>10 && s.equals("blogs"))". This

would require two tests, once where it evaluates to
false, and once where it evaluates to true.

In column C please select a minimal set of tests that

you think will test the code best. In box D please

describe the strategy you used to select these tests (if

any).

Potential test cases:

1. Null flowchart; currentNode = -1; P = random

2. One-node flowchart; currentNode = -1; P = not in List or null

3. One-node flowchart; currentNode = -1; P = Node 0

4. One-node flowchart; currentNode = 0; P = not in List or null

5. One-node flowchart; currentNode = 0; P = Node 0

6. 10-node flowchart; currentNode = -1; P = not in List or null

7. 10-node flowchart; currentNode = -1; P = Node 0

8. 10-node flowchart; currentNode = -1; P = Node 5

9. 10-node flowchart; currentNode = -1; P = Node 6

10. 10-node flowchart; currentNode = -1; P = Node 8

11. 10-node flowchart; currentNode = -1; P = Node 9

12. 10-node flowchart; currentNode = 0; P = not in List or null

13. 10-node flowchart; currentNode = 0; P = Node 0

14. 10-node flowchart; currentNode = 0; P = Node 5

15. 10-node flowchart; currentNode = 0; P = Node 6

16. 10-node flowchart; currentNode = 0; P = Node 8

17. 10-node flowchart; currentNode = 0; P = Node 9

18. 10-node flowchart; currentNode = 6; P = not in List or null

19. 10-node flowchart; currentNode = 6; P = Node 0

20. 10-node flowchart; currentNode = 6; P = Node 5

21. 10-node flowchart; currentNode = 6; P = Node 6

22. 10-node flowchart; currentNode = 6; P = Node 8

23. 10-node flowchart; currentNode = 6; P = Node 9

24. 10-node flowchart; currentNode = 9; P = not in List or null

25. 10-node flowchart; currentNode = 9; P = Node 0

26. 10-node flowchart; currentNode = 9; P = Node 5

27. 10-node flowchart; currentNode = 9; P = Node 6

28. 10-node flowchart; currentNode = 9; P = Node 8

29. 10-node flowchart; currentNode = 9; P = Node 9

The code to be tested:

public class NodeSearch {
 public int currentNode = -1; // time saving index.
 public int numNodes = 0; // size of the node list.
 public Node[] nodeList; // a list of sorted nodes
 // which represents the flowchart to be searched.

 /* Other functions are included in this class
 * which will manipulate the class variables
 * defined above. These are the default values.
 */

 /* This function will find the “Node to be found”
 * (p) in a flowchart. If found, the wanted node
 * will be returned, otherwise an exception will
 * be thrown.
 */
 public Node findNode (Node p) throws FGItemNotFound
{
 Node n =null;
 boolean found = false;

 if (currentNode == -1) {
 for (int i = 0 ; (i < numNodes) &&
 (found == false); i++) {
 n = nodeList[i];
 found = n.equals(p);
 } // end of for loop
 }
 else if (nodeList[currentNode].equals(p)) {
 // if p is at the index point
 n = nodeList[currentNode];
 found = true;
 }
 else if (nodeList[currentNode].after(p)) {
 // if the Node to be found is after the
 // currentNode, a true boolean
 // value will be returned by the “.after”
 // method
 for (int i = currentNode +1 ; (i < numNodes)
 && (found == false); i++){
 n = nodeList[i];
 found = n.equals(p);
 }// end of for loop
 }
 else { // if the Node to be found is not after
 // the currentNode
 for (int i = currentNode -1 ; (i >= 0)
 && (found == false); i--){
 n = nodeList[i];
 found = n.equals(p);
 }// end of for loop
 }

 if (found)
 return n; //return the Node that has been found
 else
 throw new FGItemNotFound();
 // Error node not found
 } // end of method findNode
 // Other functions…
}

86868686

