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Finite-Element Analysis on Cantilever Beams Coated
With Magnetostrictive Material

J. Dean, M. R. J. Gibbs, and T. Schrefl

Sheffield Centre for Advanced Magnetic Materials and Devices, Department of Engineering Materials, University of Sheffield,

Sheffield S1 3JD, U.K.

The main focus of this paper is to highlight some of the key criteria in successful utilization of magnetostrictive materials within a
cantilever based microelectromechanical system (MEMS). The behavior of coated cantilever beams is complex and many authors have
offered solutions using analytical techniques. In this study, the FEMLAB finite-element multiphysics package was used to incorporate the
full magnetostrictive strain tensor and couple it with partial differential equations from structural mechanics to solve simple cantilever
systems. A wide range of geometries and material properties were solved to study the effects on cantilever deflection and the system
resonance frequencies. The latter were found by the use of an eigen-frequency solver. The models have been tailored for comparison with
other such data within the field and results also go beyond previous work.

Index Terms—Finite-element modeling, magnetostriction, magnetostrictive actuator, microelectromechanical system (MEMS).

I. INTRODUCTION

T
HE current development and technology for micrometer-

sized devices have been facilitated by multidisciplinary

areas of research, producing devices based on mechanical, op-

tical, electrical, magnetic, and fluidic systems. There have been

significant advances in recent years in constructing micrometer

scaled devices based on electrical and mechanical systems and

there is growing commercial interest. In 1999, devices on the

micrometer scale were primarily used for sensing and actuator

functions, with the U.S. market value in the $100 million range

[1]. The advancement of this technology is being used in many

other processes, with the worldwide market thought to exceed

$8 billion in the next two years and predicted to increase at a

rate of 20% per year, as automotive and telecommunications

drive the applications forward. Within the field of microelec-

tromechanical systems (MEMS), the incorporation of magnetic

materials is presenting a new category of MagMEMS, adding

new capabilities and opening up new markets within biomed-

ical, astronomy, and information technology [2], [3].

A magnetostrictive material is one that develops mechanical

deformations when subjected to an external magnetic field, and

magnetostriction is an effect present in ferromagnetic materials

that undergo part or all of the magnetization process by mo-

ment rotation as opposed to domain wall movement [4], [5]. In

response to a magnetic field, the moments will begin to rotate

toward the field. In general, this changes the total free energy of

the system. The material will minimize this change with adjust-

ments to the bond length between constituent atoms and an in-

ternal strain may be generated within the material. This internal

stain increases until saturation is achieved. In devices such as

switches, valves, or sensors, magnetostriction has merits over

piezoelectric elements due to a higher power density, remote

actuation, lower performance degradation, simpler fabrication

processes, higher response time, and the ability to remotely op-

erate without electrical contacts [3], [6], [7] Bimorphs are one
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of the basic structures in MEMS and are used as devices, but

also for analysis methods such as the calibration of the magne-

tostriction constants within magnetic materials [8], [9]. These

devices are fabricated using lithographic techniques with sac-

rificial layers to form an armature that is pinned rigidly at one

end. Successful utilization depends on the ability to fully un-

derstand the properties and intrinsic interactions these materials

and structures possess, and how they can be incorporated effi-

ciently into practical devices.

II. BACKGROUND

Many authors have worked on a complete mathematical

formalism for magnetostriction by finding the energy stored

within the material. Work performed by Chikazumi [10], Kittel

[11], and du Trémolet de Lacheisserie [5], [12]–[14], among

others used the minimization of the internal energy to find

the internal strain generated by an external magnetic field.

Inconsistencies found within these derivations by Guerrero and

Wetherhold [15], [16] were overcome by minimizing the Gibbs

free energy density, , as defined in (1). This form incorporates

the total internal energy with the stress and strain tensors,

and , respectively

(1)

(2)

It followed that by the minimizing of (1), the strain tensor

was realized, as shown in (2). The matrix can be used to iden-

tify the mechanical strains generated from the application of

an external magnetic field in a direction given by the directional

cosines relative to the crystallographic axes. The magnitude

of the strain is proportional to the magnetostriction constant of

the material , and is dependent on the structure and crystal ori-

entation. This tensor is of the exact same mathematical form

0018-9464/$20.00 © 2006 IEEE
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Fig. 1. Two analytical solutions, Case A [12]–[14] and Case B [17], [18]
compared against FEM modeling (Case C) of the deflection of the center of a
coated cantilever beam. Taken from Watts et al. [20].

as previous authors’ work [5], [10]–[14]; however, these were

classified as macroscopically observed strains . The ability

to now class this matrix tensor as mechanical internal strains,

allows the ability to use similar solving methods that have been

developed for elastic materials, and also allows the simple incor-

poration and coupling of other internal strains within the same

system. These could range for example as strains generated from

piezoelectric materials and thermal expansion.

From (2), if the magnetic field is directed along a crystallo-

graphic axis, the shear terms drop out leaving a nonzero diag-

onal with a maximum strain that is directed in line with the mag-

netic field. This maximum strain will be in the direction of the

applied magnetic field with an opposite strain present along the

other two axes. This importance of this effect and the way it

translates to the magnetic material and its response to magnetic

fields is crucial in understanding the deflections of any device.

Previous authors such as du Trémolet de Lacheisserie [5],

[12] and Marcus [17], [18] have used the minimization of in-

ternal energy and the same general magnetostrictive tensor to

develop analytical models for the solutions to the deflection

of cantilever beams. The model developed by du Trémolet de

Lacheisserie et al. [5], [12]–[14], [19] was solved for a system

that is free to flex across the width. This system was solved using

a pinned single node in the center of one edge implemented with

zero degrees of freedom, shown in Fig. 1 as case A. A different

boundary condition employed by Marcus [17], [18] modeled a

similar type of system but with all nodes within the system un-

able to bend across the width, shown as case B in Fig. 1. One

important feature to note is that these models are both indepen-

dent of cantilever width.

Finite-element modeling by Watts et al. [20] on the same can-

tilever system found that the center deflection was not as simple

as predicted by the analytical solutions, as shown by case C in

Fig. 1. The actual center deflection was between these two lim-

iting cases with a high width to length ratio (w/l) tending toward

case B, and low w/l tending to case A. The model was solved

using the ANSYS package and limited within the application

due to the model having to use thermal expansion with appro-

priate expansion coefficients to approximate the magnetostric-

tion strain.

Fig. 2. A simple cantilever meshed with 400 quadrilateral elements causing
20 000 degrees of freedom. The cantilever is pinned across the width on one
edge boundary.

The development of the multiphysics finite-element package

FEMLAB [21] allows the magnetostrictive strain tensor to be

implemented directly using the actual properties of the mate-

rials involved within the system. We now discuss this imple-

mentation, and the new insights it provides.

III. FEMLAB MODEL

The use of finite-element modeling packages for modeling

systems has dramatically increased with the spread of faster per-

sonal computers. The development of cheaper packages such as

ANSYS and FEMLAB has increased the potential for modeling

devices. FEMLAB 3.0a incorporates its own solver and can be

used as a standalone package encompassing a solid modeling

engine, the meshing algorithms and a selection of solvers. This

package has the ability to create two- and three-dimensional

models which can be solved for linear and nonlinear, stationary,

and time dependent situations, with the capability to perform

eigen-value analysis on them. It also has the capability to com-

bine and couple different partial differential equations (PDEs)

from areas of physics such as stress-strain to the incompressible

Navier–Stokes equations.

FEMLAB incorporates many ways of solving PDEs. The

simplest is a coefficient form and is applicable to linear or near

linear models; however, due to the complexities of this model a

nonlinear solver is required that uses a general or weak solution

forms. Along with the PDE solver, FEMLAB also incorporates

an eigenvalue solver to handle linear eigenvalue problems and

the ability to analyze the frequency response of structures.

Owing to FEMLAB’s limitations for the meshing of large

dimensional thickness ratios between two layers in one model,

such as the case of a thin film on a much thicker substrate, a

simple regimented quadrilateral meshing element is favored

over the tetrahedral 3-D mesh generation using the Delaunay

algorithm. The quadrilateral element structure is sufficient for

a simple square cantilever and allows for significantly faster

solving times compared to that of tetrahedral elements due to

the reduction in the number of nodes from on average 200 000

to 400 with no significant difference between the solutions.

The simple model is shown in Fig. 2 showing the quadrilateral

meshing elements.

To set up the model, a MEMS application mode containing

the structural mechanics PDEs are used. This has the ability to

solve problems using the stress-strain relationship for elastic

materials with structures down to the nano-scale. The strain
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within the system can be described, at a point, by the depen-

dent variables for the displacement components and . The

total strain within the system can also be broken down to three

additive components of thermal, elastic, and internal strain. The

implementation of the magnetostrictive tensor is used within the

internal strain of the PDE. The significance of using the mag-

netoelastic strain within a FEM model is that it requires no ap-

proximations within the PDE for changes in the plate layer and

reduced width ratios. If working with thicker plates, however, a

higher density of mesh elements should be introduced into the

thickness direction to achieve suitable convergence. The effect

of thickness on the cantilevers deflection is at present an on-

going study.

To construct the cantilever, a rectangle to the chosen dimen-

sions of width and length is first drawn in two dimensions,

meshed using the quadrilateral elements and extruded in to

three dimensions. The mesh extrusion is carried out for two

separate layers, the first being for the thickness of the substrate,

usually in micrometers, the second for the film thickness.

Hence once extruded, two separate subdomains are available

for solving, one representing the substrate and the other the

film. The material properties such as the Young’s modulus,

Poisson’s ratio, and density are then implemented and linked

to the appropriate subdomain.

The magnetostriction strain tensor is then incorporated into

the strain-stress PDE for the active magnetic layer only. The

nodal points on one edge of both the domains are then given

the property of zero degrees of freedom, effectively pinning the

edge of the structure to form the cantilever beam.

As this system is a complex system of strains, a stationary

nonlinear solver was used with a relative tolerance for the con-

vergence set at 10 . This solver uses an invariant form of the

damped Newton method whereby an initial estimate to the so-

lution is used [22]. The algorithm solves a linear system to

form a correction U. A new estimate to the solution is formed

from this correction which can be iterated until convergence is

reached. To avoid systems that do not converge, an upper limit

of 25 iterations is employed, however, all results obtained within

this paper from FEMLAB have converged before this upper

limit is reached.

In addition to this stationary solver, an eigenvalue and fre-

quency response solver are also implemented on the model to

find the undamped resonances within the cantilever systems and

the steady-state response to harmonic loads, respectively.

Once the solver had converged, the results can be post-pro-

cessed. These can be shown in various formats; however, for

simplicity and quickness a boundary visualization is employed,

whereby the solved nodes on the boundary of each surface are

used to display the expression desired. As the demagnetized

state of a sample is undefined, two identical models are set up

and solved simultaneously with the directional cosines of the

magnetization set along the and axes, respectively. The post-

processed results shown within this report for all the models are

presented as the difference between these two orthogonal states.

This represents the maximum magnetostrictive strain which can

be generated by pure moment rotation through 90 .

For differing finite-element modeling packages and their

solved solutions, a number of problems can lead to differences

Fig. 3. Deflection of a Permalloy on a glass substrate compared to previous
analytical solutions.

between the final converged answer for the same set problem.

The main source of this discrepancy is that of numerical errors

within the program, such as from the results of the differing

calculation procedures including truncation and rounding er-

rors throughout the convergence sequence. Other sources of

problems can be the optimization of meshing the structure,

the degree of accuracy of the convergence, and the degree of

accuracy of constants used with the software leading to, in

some models, a discrepancy of up to 10%.

IV. CANTILEVER AND DEFLECTION

In Fig. 3, the results from the FEM model developed on

FEMLAB are shown and compared to the limiting solutions

as shown in Fig. 1. Using 72 nm of Permalloy on a 400 m

glass substrate, as per Watts [20], a nonuniform deflection is

produced between the center and edge of the structure. This

comparison between the FEM model performed in FEMLAB

and the ANSYS model performed by Watts et al. in Fig. 1 is

well within the standard 10% error.

The two limiting case models described above also agree with

the deflection obtained from this new modeling, at extreme ge-

ometries for the deflection of the center regions only.

At a large reduced width, there is a significant difference be-

tween the center and edge deflections. This represents curling of

the end of the cantilever, and is a significant contribution to the

overall deflection until a reduced width of 0.1. The stiffness of

the geometry of the structure governs this reduction in curling,

forming a flatter ended cantilever.

As w/l approaches zero, the deflection for the edge and center

begin to converge toward the same value and the du Trémolet de

Lacheisserie limit. For this system, shown in Fig. 4(a), a change

of 0.5 nm across the width is observed. At larger w/l values,

there is a noticeable difference for the deflection with only the

center values converging to the Marcus limit. The far edges of

this shape of cantilever are able to flex by over 60 nm as high-

lighted in Fig. 4(b).

As w/l approaches unity the central deflection appears to be

pinned due to the shape stiffness with a 40 nm change across the

width, as shown in Fig. 4(c). As the silicon substrate is stiffer

than the magnetic material, this governs the development of the

deflection, forcing just the edges to bend until the strain is great

enough in the active material to overcome the stiffness of the
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Fig. 4. Change in deflection at three main points of the w/l ratio using a 4 mm
wide cantilever coupled with the material properties from as given by Watts
[20]. The graph by each image highlights the deflection of the free end across
the width. The w/l ratios of 10, 0.1, and 1 are for cases A, B, and C, respectively.

Fig. 5. Normalized comparison in the deflection at the center of a cantilever
with two differing substrates.

silicon. Thus, the plateau increases as the active layer becomes

less dominant.

The dependence of the deflection characteristics on the sub-

strate is shown in Fig. 5, where comparisons between different

substrates are overlaid. The first system utilizes a 400 m glass

substrate while the other uses a Kapton polyimide substrate of

the same thickness. Both systems are then effectively coated

with 100 nm of Permalloy as the active magnetic material. The

reduction in the extent of the plateau is clearly visible due to the

reduced stiffness of the substrate. Additionally the ratio of the

edge to center deflection for a for glass and Kapton

sees a 0.685 and 0.649 change, respectively. Although a slight

increase is experienced due to the stiffer substrate, this still sug-

gests that the curling of the edges is an inherent shape problem

of the cantilever system and not due to the materials within the

system.

Fig. 6. The first seven eigen-frequencies of the cantilever system using the
properties as used by Guerrero and Wetherhold [22]. Note: Dark areas indicate
zero deflection and white maximum deflection.

V. FREQUENCY RESPONSE

The frequency response solver can be implemented on to

any model to find the mechanical response of the system.

To compare with previously published values, a cantilever of

23 mm 8.5 mm was generated following analytical solutions

by Guerrero and Wetherhold [23].

The structure has a w/l ratio of 0.37 corresponding to a system

with reduced curling due to shape stiffness. Material properties

of the structure were set as a glass substrate of 150 m coupled

with an active layer of 1.1 m implemented with the properties

of the magnetostrictive Tb–Fe alloy Terfenol D [24].

The eigensolver was then used to find the frequencies of

the system. The solver was able to calculate not only the pure

bending frequencies of the system but also the torsional modes.

Within this system, the first seven resonance modes in order

of increased frequency were solved which included four pure

bending modes and three torsional ones as shown in Fig. 6. The

solved values of the first seven eigen-solutions are within 5%

of published analytical data [23] given as 229 Hz, 1332 Hz,

1429 Hz, 4014 Hz, 4208 Hz, 7624 Hz, and 7892 Hz.

Fig. 7, shows the amplitude of the cantilever deflection as a

function of frequency. The peaks correspond to the first three
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Fig. 7. Frequency response of a cantilever system as a function of frequency
where the magnetic field is only directed along the length of the system
producing only longitudinal modes of bending.

Fig. 8. Comparison of the cantilever frequency with a 45 magnetic field
applied.

longitudinal bending modes, as the magnetic field has been ap-

plied along the length of the system, setting in (2).

This, due to the magnetostrictive matrix, only introduces longi-

tudinal modes as no torsional strain is induced. These modes are

spaced out in frequency, and no coupling between them would

be expected.

Introducing a rotating magnetic field causes torsional oscil-

lations. To simplify the model, a magnetic field set at 45 was

used, in (2), and is shown overlaid on the pure

bending modes in Fig. 8.

The resonant frequency of the longitudinal bending modes

are unaffected by the incorporation of a torsional force; how-

ever, the first twisting and second twisting modes are very close

to the second and third bending modes, respectively. One other

important point to note is the inclusion of the shear bending

terms effects the amplitude of the cantilever’s deflection. This

change will be as a function of angle, an issue if a rotating mag-

netic field is used.

To compare how these mechanical resonances are dependent

on width the first five bending modes were plotted as a function

of reduced width as shown in Fig. 9.

Although only the first five eigen-frequencies are plotted,

some important features are still present. The pure bending

modes are shown to be independent of the width, with the

torsional frequencies highly dependent on any change in width.

This would cause problems for cantilever systems that use

rotating magnetic fields and analyze the resonance frequency

Fig. 9. First five eigen-frequencies of the cantilever system plotted as a
function of width.

for a response. At certain w/l ratios, torsional and bending

frequencies are close to each and at some points cross, leading

to possible deflection anomalies if driven close to these fre-

quencies causing the bimorph cantilever to become unstable.

VI. CONCLUSION

The finite-element modeling presented here highlights two

major problems with coated cantilever beams that should be ad-

dressed in any design stage.

The deflection of the edges to the center at the tip of magnetic

coated cantilevers is crucial for any devices used as a switches,

valves, or pump. This would also cause problems in the tech-

nique of calibration of magnetostrictive constants using actua-

tors. The deflection of the beam used, if care is not taken, could

introduce significant errors due to the curling. One way to over

this problem would be to limit the curling by introducing shape

stiffness; however, care should be taken when working with low

w/l ratios as this would expose other problems to the system,

most notable the effect this has on the harmonic series of reso-

nance frequencies.

The torsional mechanical resonance frequencies of can-

tilevers are highly dependent on width, at low w/l ratios, a

high number of these frequencies are close together. If used

with ac fields and the system not tailored correctly, stability

issues could arise. However, if designed correctly, these extra

torsional modes could be beneficial.

This method of modeling is a robust and simple way of mod-

eling magnetostriction within MEMS. This system can be used

not only to calculate the static behavior experienced by differing

materials, but also the natural frequencies of the plates and the

dynamic behavior. FEMLAB also incorporates the ability to

mesh thin structures and much larger structures together and the

capability to change any boundary conditions with relative ease.

This allows structures such as membranes and bridges to be gen-

erate as simply as the cantilever structure. The use of the 2-D

geometry extruded to a 3-D shape allows complex structures to

be built in layers, with the potential to draw any shape.

One important benefit of FEMLAB is the opportunity to

easily couple other partial differential equations to the system

with specific boundary conditions to the magnetostrictive

model. This would allow the possibility to design a complete
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MEMS system with the ability to analyze, for instance, the

deflection and frequency dependence as shown here, along with

thermal expansion and fluidic and heat flow.
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