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Efficient Training Algorithms for
HMM'’s Using Incremental Estimation

Yoshihiko Gotoh,Member, IEEEMichael M. HochbergMember, IEEE,and Harvey F. Silvermarkellow, IEEE

Abstract— Typically, parameter estimation for a hidden to environment is typically achieved through increasing the
Markov model (HMM) is performed using an expectation- sjze of the training data set so that most variation is observed.
maximization (EM) algorithm with the maximum-likelihood s f,rther slows the process of training HMM systems. This

(ML) criterion. The EM algorithm is an iterative scheme that . . :
is well-defined and numerically stable, but convergence may P2PEr Presents an incremental estimation approach to speed-

require a large number of iterations. For speech recognition UP the training of HMM's without any loss of recognition
systems utilizing large amounts of training material, this results performance.

in long training times. This paper presents an incremental

estimation approach to speed-up the training of HMM’s without

any loss of recognition performance. The algorithm selects A. Background

a subset of data from the training set, updates the model  j0n 5 training data set, the EM algorithm iteratively
parameters based on the subset, and then iterates the process - . ) ,
until convergence of the parameters. The advantage of this €Stimates the HMM parameters in two stages; an expectation
approach is a substantial increase in the number of iterations Step (E-step) followed by a maximization step (M-step). In-
of the EM algorithm per training token, which leads to faster stead of performing the maximization directly, the sample data
training. In order to achieve reliable estimation from a small s qugmented witHatent information(e.qg., the hidden state
fraction of the complete data set at each iteration, two training sequence) so that the maximization process becomes more

criteria are studied; ML and maximum a posteriori (MAP)
estimation. Experimental results show that the training of ractable. There have been a number of proposed methods

the incremental algorithms is substantially faster than the for reducing the amount of computation required for this
conventional (atch) method and suffers no loss of recognition process. One of the most common approaches uses Viterbi

performance. Furthermore, the incremental MAP based training  trajining [2] instead of the full forward-backward approach.
algorithm improves performance over the batch version. This approach, however, may cause some degradation in
Index Terms—HMM training algorithm, incremental estima-  recognition performance.
tion, MAP estimation. The use ofincrementaltraining (i.e., using only subsets of
the training data at each iteration) is common in gradient-
I. INTRODUCTION based learning methods (e.g., backpropagation training of

connectionist systems [3], [4]). Recently, Neal and Hinton

T HE HIDDEN Markov model (HMM) is a standard tool have discussed a theoretical justification for implementing an

used n s_peech recognition processing. The HMM rePrcremental E-step for ML estimation [5]. Their rationale is
sents a statistical model of a speech signal (given a certain ed as follows

set) and its utility stems from the fact that the parameters can o _
be easily learned from training data. In most HMM systems If the statistics for the E-step are incrementally collected
training is performed using the maximum-likelihood (ML) and the parameters are frequently estimated, it should
criterion with the expectation-maximization (EM) algorithm SPeed the convergence because the information from the
[1]. The EM algorithm for HMM'’s is simple, well-defined, ~N€W data contributes to the parameter estimation more
and numerically stable, but often convergence can be slow.duickly than the standard algorithm.
Because speech signals can differ substantially for variousThey reported a substantial speed-up in convergence for a
acoustic environments (e.g., talkers, tasks, channels, etc.), inixture estimation problem using such an incremental EM
a fundamental requirement that the training process estimadégorithm. In the work presented here, it was hoped that
the HMM parameters in the most appropriate way. Robustnesggeed improvements could be obtained by applying a similar
technique to HMM training.
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an incremental generalized EM algorithm was also noted lyis the latent information (omissing dath Given x, the
Jordan and Jacobs in their work on hierarchical mixtures BM algorithm maximizes the likelihood(x | 8) over @ in a
experts [10]. On a related note, Huo and Lee have developgeatameter spac® by exploiting the relation

similar approaches to those developed here, but have focused

primarily on the problem of on-line adaptation [11]. f(x]6)= Z fxy186). 1)
M
B. General Approach Suppose that theomplete datgoint likelihood f(x,y | €)
This paper presents several related approaches to HMY@s the regular exponential family form [12], [13], i.e.,
training based orincrementalvariants of the EM algorithm. b(x,y)
The general approach of these algorithms is to select a subset f(x,y10)= ) exp{0°5(x,y)} 2

of data from the training set, update the model parameters
based on the subset, and then iterate the process until cghere * implies the transposef is the set of parameters,
vergence of the parameters. The approaches are considewediS(x,y) is the complete data sufficient statisticg fixed
incremental because, at each iteration, the HMM parametédigiension.. Both8 andS(x,y) are given byL dimensional
are adjusted before all the training data has been processmiumn vectors. Alsoj(-, -) is a real-valued function ot and
This training strategy contrasts sharply to the standeith y, anda(€) is a normalization factor given by
training method where the model is updated only after all the
data in the training set are processed. a(8) = Z b(x,y) - exp{8°5(x,y)}. (3)

In the case of parameter estimation for a complex model Goy)
from limited training data, it can be very easy to overfit i
the model to the training data. The dilemma faced by tHe Standard EM Algorithm
incremental algorithms is to achieve reliable parameter esti-The standard EM algorithm is a procedure that iteratively
mation from a small fraction of the entire data set at eadstimates parameters using the ML criterion. The following
iteration. This leads to a number of different approachéso-stage procedure computesth iteration for an exponen-
based on ML and maximura posteriori (MAP) estimation. tial family distribution [12]:
Section Il presents an incremental ML algorithm that stores
the observed information for both the current and the earlier
iterations in separate storage blqcks, eﬁectlvely taking a large from S+ = E[S(x,y) | x,00)] ()
amount of data into consideration. This approach not only . ; 1

; N M-step: Set the new estimate &tV to

achieves robust estimation, but guarantees stable convergence. the solution ofE[S(x, y) | 8] = S+D)
Two incremental training algorithms based on MAP estimation Y o
are described in Section Ill. The first approach is similar t@here the expectations are computed by
the incremental ML approach but utilizes a MAP training
criterion. The second MAP approach differs from the ML E[S(x,y) [ x,0P] =" f(v | x,69)S(x,y)

E-step: Given9® andx, estimate the
complete data sufficient statistics

version in that robust estimation is achieved by accumulating y
the observed information into the prior parameters. Intuitively, E[S(x,y) | 0] = Z f(xy|0)S(x,y).
the prior acts as a stabilizer for the training process. A (%)

series of experiments (see Section IV) are performed on a ) ) - -
talker-independent, connected-alphadigit recognition task. Thk €ach iteration, the complete data sufficient statistics are

results show that the convergence of the incremental trainiigmPuted over a fixed data set and then the model parameters
algorithm is substantially faster than batch training without arfj € estimated from the sufficient statistics so that the likelihood
degradation in recognition performance. Furthermore—afiMaximized. This approach is referred to as bagch ML
rather unexpected, to be honest—the incremental MAP traff90rithm in the experiments. The algorithm is considered

ing improves performance over the batch version. The paﬂ‘gpmoryless because the sufficient statistics are only collected

concludes with a discussion of the incremental approaches 44if!in an iteration. The algorithm is attractive because the
a listing of the pros and cons. likelihood increases monotonically and stable convergence is

guaranteed [12].

Il. INCREMENTAL ML ESTIMATION 1A sufficient statistic is a function of the data which represents the
) ] ] information needed to estimate the parameters of the distribution. For a typical
This section presents an approach to incremental ML esample, consider a joint normal distribution

timation of HMM parameters. The salient features of both "

the standard EM algorithm and its incremental variant are fx| @, %) ~ Hexp{—%(ft—ﬁ)*z*l(ﬂ—ﬁ)}
summarized. Throughout this paper, an exponential-family =1

distribution is assumed (standard practice for HMM's) an@r data setx = {#}.=. 7. It has a sufficient statisticS =

leads to an extremely simple algorithm employing the conceft/_, 7:, >/_, #2}. The mean and the covariance of the distribution,
of sufficient statistics. i and X, can be estimated frorf. In standard HMM training terminology,
. . the sufficient statistics are the accumulated counts for each of the parameters.
Let x be a sample of observed information roomplete For a formal definition and further discussion, see standard textbooks, e.g.,

data) and assume that there exists a mapping— x, where [14]-{17].
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B. Incremental Variant C. Incremental ML Training Algorithm for HMM Parameters

The incremental variant is applicable when the observedThe incremental ML variant described above leads to the
datax = {#; }+—:1 ... are independent. In this approach, théollowing HMM training algorithm.
data are separated into subsets and then processed incremery |nitialization:
tally in the computation. The incremental ML algorithm can
be implemented as follows [5]. L&}, be the sufficient statistic
associated with the sample dafa

« Initialize the HMM parameter®(®.

« Divide the complete training utterances into A/
disjoint subsetx = {x,, }sn=1,...,m-

« Initialize sufficient statisticssS,, appropriately for

E-step: Choqse some datd, to be processed. each subset,, (e.g., setS,, to zera).
For f|xed0(f:>, Comp“‘ﬁ « Initialize the update counter = 0.
S = f(yt | xt,e(p))St(a:t,yt). 2) E .
Then, compute the complete data (5) ) E-step:
sufficient statisticS@+1) =3 _S,. . Choose an utterance subsst,.
M-step: Set the new estimatiod®+1 to the * Given 8%), compute S, = Y cp, [y | o,
solution of E[S(x,y) | ] = S®+1) . 0WNS,(#,,y;) using forward/backward recursion
over x,,.

Neal and Hinton have shown that stable convergerise * Set sufficient statistics for the whole data seby
guaranteed for this approach [5]. St = > im=1Sm.-

Fig. 1 compares the computational flows for the batch and3) M-step:
incremental ML algorithms. Both algorithms share the same  « Set the new estimate @@®*1) to the solution of
M-step, but differ in the method of computing the sufficient E[S(x,y) | 0] = S¥+Y.
statistics in the E-step. Give), the batch ML algorithm 4 |f no convergence, set— p+1 and repeat from Step 2.

ici istic§ (»+1) . . . L L
comp{uﬁe}s sufﬁme% statistics pt | on t;[whil whole Sgtaf SelThere is a practical consideration in the actual training imple-
X = %=1, 7. TNE INCrEMental method computes 1or o, o hqiinn  Suppose statistis&! is replaced bys2e™ after
a selected subset of the dafa conditioned on@®. The - =upp 5 P Win

complete data sufficient statistics are comouted b ma'nta'n'the forward/backward recursion of,, then the summation at
P utict ISt pu y maintaiNid, = qten can be accomplished 81 = s@ — skl |

the pastS, for 7 = 1,...,7 and 7 # t, and accumulating _[new] . _ .
these values withS, for use in the M-step.Note that the Sm " becauseS; (I # m) is not updated at this iteration.

selection of the sample data can be very flexible; for instance,

the E-step can be processed on a single data item or on IIl. INCREMENTAL MAP ESTIMATION
multiple items and/or the selection can be done sequentiallyThis section presents incremental MAP estimation ap-
or randomly. proaches for training HMM'’s. The resulting model represents a

Because only a subset of the data is processed for egempromise between observed evidence and prior information.
iteration of the algorithm, the amount of computation ren the first approach, a typical MAP formulation is applied;
quired per parameter update can be significantly reducedprior distribution is specified on the parameters and the
The drawback to this approach is that it may cause storag@de of the posterior distribution determines the parameters.
problems when the number of subsets is large. Specificalfhe main focus of this section, however, is orrezursive
the storage requirement is on the order /df x L, where Bayesapproach [14]. This is a variation of incremental MAP
M is the number of training subsets aidis the number of estimation and is the second approach described in this section.
modeled parameters. This can greatly limit the application fifis similar to incremental ML estimation in that it handles a
the algorithm to systems with large numbers of parametessall subset of data at each iteration and frequently estimates
(e.g., phone-based, context-dependent HMM’s). A possiligée model parameters. It is different in that it keeps track of
way around this problem may be accumulation of the sufficieptevious data through an evolving prior. As a consequence, it
statistics (see the related footnote of this section). One sufbes not maintain the relevant statistics on the fixed data set,
method has been proposed where a decay factor is utilizechtt has the advantage that it uses a fixed amount of storage
forget earlier contributions to the accumulation [5], [10]. for any subset size.

270 show st(at)JIe c?n)vergence(for t)he ir(]c)remental variant, it is sufficient & MAP Estimation via the EM Algorithm
show thatQ(8(») | 6(»)) < Q(8(r+1) | g(r)) is satisfied for the standard . . . . .
auxiliary functionQ(6 | 6') 2 éy Fly | %, efflog’f(x,y | 6). In [5], Neal The posterior probability density function (pdf) is calculated
and Hinton basically show that this does indeed hold when sample data By Bayes’ rule as
assumed independent. This implies that the incremental variant is a generalized
EM (GEM) algorithm [12] and that the likelihood will increase monotonically f(x]6)f(8)
to a (local) maximum. f(9 | X) - T ©)
3The replacemens; = f(y: | #:,0))S, (i, ) and the summation
St = S, in algorithm (5) is the “right” approach in a theoreticalwhere f(x | 8) is the likelihood for the observed dataand
sense (e.g., stable convergence is guaranteed). However, many alternatj ) = 9(9'1/)) denotes the prior pdf of the paramet@r
exist and they may provide practical solutions for some cases. One sggg; . ’ . h
method is simply accumulating sufficient statistics at each iteration, i.8.1€ Prior paramete) represents the information knowan
St =8P 4.8, priori. For the general case, finding the mode of the posterior
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first requires computing the marginal density (which can b&#8 | x) = 9(0;1/3) where» and+ are the prior and posterior

very expensive). If the posterior pdf(§ | x) has the same parameters. In this case, the recursive Bayes approach also pro-

functional form asf(8) (i.e., /(8 | x) = ¢(8;¢) where duces a sequence of prior parametef¥, 1) ... @ ...

¢ is the posterior parameter), then the ptlf) belongs to which act as the memory for the previously observed infor-

the conjugate family of distributiorfsThis paper makes usemation. Note that iff(#) is a noninformative prioy then (9)

of a conjugate prior because it leads to simple methods fgives an ML estimate o®.

computing the mode of the posterior pdf's. The incremental (iterative) MAP estimation process can be
The EM algorithm provides an iterative solution for estimattombined with the recursive Bayes approach. Assuming the

ing the MAP parameters [12]. The extension of the standareigular exponential family form (2) for the joint likelihood,

ML approach (4) or its incremental variant (5) is nearlyhe recursive Bayes approach estimates the model parameters

trivial. Suppose the complete data joint likelihogtx.y | @) in the following two-stage procedure.

has the regular exponential family form as in (2), then the E-step: Choose a dat&, to be processed. N
following M-step for MAP estimation replaces that for ML- For fixed@®, compute
based algorithms: S = flye | &, 0PNS,(Ze, 11)-
M-step: Set the new estimatio@”*1) to the solution of M-step: Given f(8) = ¢(8;?)), set the new
E[S(x,y) | 8] = S@+D 1 9 log £(6). estimate of9®+% to thae solution of
_ 06 E[S(x,y) | 6] = S + £ log /().
Note that the E-steps in (4) and (5) are unchanged. For each Also find the posterior parametgr+1). J

iteration, the batch (or the incremental) MAP algorithm com-

7 L (10)
putes the complete data sufficient statistics over whole data set ) ) _
(or subset data), then estimates the model parameters fromB¥e UsSing the conjugate prior pdf, the posterior naturally
sufficient statisticsS®+1 and the prior parameterg(8) so becomes the prior for the next iteration. Gauvain and Lee
that the posterior probability is maximized. When the sufficief{@ve presented the expressions for computing the posterior
statistics are strictly maintained, the posterior probability—n@fStributions and MAP estimates of continuous density HMM
necessarily the likelihood—improves monotonically for botRarameters [18]. Due to space limitation, the reader is directed

the batch and the incremental MAP approaches. to [18] for the HMM formulations of (8) and (9).
In comparison with the incremental ML method in
B. Recursive Bayes Approach Section Il, the difference is evident in handling the relevant

ﬁ@tistics. After computing, for a selected subset, Algorithm

I i +1) _ -
contribution of the complete data set was represented $3) d0€s the summatiofi**t) = 37 S, at the E-step. Thus,
storing the sufficient statistics in separate memory bIocl@e complete data sufficient statistics condition is satisfied

This can cause problems with the amount of required meijfl'en €stimating parameters at the M-step. On the other hand,
ory. A proposed solution utilizes a variation on the reculAlgorlthm (10) directly accumulates; into the prior at the

sive Bayes approach for performing sequential estimatidfi Step-

of model parameters given incremental data [14]. DenoteFig' 2 illustrates the computational flow for the recursive
x, = {71,---,7,} where, is drawn from the whole data Bayes approach. The approach handles a small subset of data

setx = {7, --,Zr} and the sample data are independerfi! each iteration and frequently estimates the model Pgrameters
By the recursive Bayes formula from the posterior. This variant no longer assumes a f_lxed da_ta

o set” and thus does not keep the relevant statistics in a strict
f(@py1 [ 0)1(0 | xp)

In the previously described incremental approaches, t

fO]xp41) = i (7) sense. As a consequence, the monotone convergence property
220 [(@ps1 [ 0)F(0 [ xp) no longer holds. There are, however, a number of advantages
or simply to this approach:
FO ] xpy1) ~ f(&py1 | O)F(O | xp) (8) * the training set can be modified during training (e.g.,

on-line training);

here ~ indi ionali is th i f
where ~ indicates proportionality/(6) is the prior pdf, and ¢ the storage requirements for the algorithm are reduced

f@ | x1) ~ f(#1 | 6)f(6). The recursive Bayes approach . ; X o -
results in a sequence of prior pdff¥8), £(8 | xv), ---, f(8 | because it does not require storing the sufficient statistics

x,),--- and a corresponding sequence of MAP estimates for .each sup§et. o )
5 ... D ... Qi In addition, empirical results indicate that the algorithm does
007017 70p7 given by .
N converge to a useful solution.
0, = argmax f(0 | x,,).
0 C. Recursive Bayes Training Algorithm for HMM Parameters
Recall that the conjugate prior pdf, defined p9) = g(8; ),

results in the the posterior pdf with the same functional form '_Fh_e recursive B.ayes approach leads to the following HMM
training algorithm:

4Methods for handling the conjugate prior are well developed and can bel) Initialization:
found in most textbooks on Bayesian statistics, e.g., [15]-[17]. e Choose a priorf(e) — 9(9; ¢(0)) on the HMM
5The M-step expression is derived from Bayes’ rule (6) and is equivalent parameters.
to the formulation specified in [12]. The theoretical considerations of the s (0)
convergence property (for the posterior probability) are the same as for the * Initialize the HMM parameters by0
ML case. argmaxy f(8).
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( o® ) glp+1)

E-step M-step

— S0 = BlS(z,y) | 2.0] E[S(z,y) | 6] = S¢*V
o

T
batch method
1169 glp+1)

S S ]
1 ]

: — E-step M-step

. g —— MPRERTE Bt \

- LS =Flwd#. 0% = g0 s 1 Eisie 9] = s+l
“Lf | XSt(Ty ) | —= ET: | ! 1St 4) | 6

- Sr
ZT I

mceremental method

Fig. 1. These diagrams compare the computational flow for the batch and incremental ML algorithms. At each iteration, the batch method computes
sufficient statisticsS(P*™') on the whole data set = {Z+}¢=1,...,r. On the other hand, the incremental approach compStefor some datar:, then
accumulatesS(P+!) using statistics from past iterations.

{ 6 pr+l)

prior pdf
: S, = E[S(z.y) | 0] =
" \ 0 £(0) = 9(6: 4
. Syl @, 0PNS (E ) S+ 70 log f(0) )
: E-step M-step

posterior '¢(p~:-1)] prior ' ¢(p) ’
parameter parameter

Fig. 2. Computational flow for the recursive Bayes approach, a variation to the incremental MAP algorithm. In this approach, only a subset of the data
Z; is used at each iteration and previously observed information is accumulated into the prior parameter

* Initialize the update counter = 0. IV. EXPERIMENTS
2) E-step:
« Choose an utterance subse,. The experiments presented here were carried out on a
. Given %), compute S,, = Yex flu | &, talker-independent, cqnnected-alphadigi_t recognit?on task [19].
0NS,(7,,,) using forward/b;f(:k)\c/:/nardt recursionThe vocabulary coqs!sted of the A_merlcan Eljghsh alphabet
over x,,.. ’ _(A to Z) and the digits (zero_to nine). A typical uf[terance
3) M-step: included about 15 vocabulary items and had a duration of 5 s.

_ _ The front-end generated LPC-based mel-cepstral coefficients
* Given a prior pdff(8) = g(6;4)), set the new and energy, computed the temporal differences and divided

estimataee(f““) to the solution ofE[S(x,y) | 8] = the features into three codebooks. The training (testing) data
Sm + g log f (9_)- set contained 3484 (595) utterances from 80 (20) talkers.
« Find the posterior parameteys?+%). No explicit language model was used when measuring the

4) If no convergence, set«— p + 1 and go to Step 2. recognition performance.
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T T T TABLE |
. A ¢ Arioraic o Ao v AR RS <A e PROCESSINGTIME FOR DISCRETE OBSERVATION HSMM'’s wiTH POISSON STATE
DURATIONS ON A SPARC 10-51 WORKSTATION. THE RESULTS ARE FOR ML
BATCH TRAINING (.i.e., SNGLE SUBSET CASE) AND THE INCREMENTAL ML
APPROACHES WITHTHREE, TEN, AND 30 SUBSETS “TO TEN PASSES' | NDICATES
| PROCESSING3484 UrTERANCES TEN TIMES AND “TO 84% LEVEL”
INDICATES REACHING THIS LEVEL OF RECOGNITION PERFORMANCE

L
w
T

log likelihood
|
N

number | uttcrances CPU time (hrs)
-15f 1 of subsets | per subset | to 10 passes I to 84% level
1 3484 14.8 9.1
3 1161 11.8 4.4
10 348 11.0 2.7
a0 30 116 11.9 2.6
~—85f .
< training data (34 840 utterances in total). An interesting ob-
§80‘ 1 servation is that the incremental ML approach decreased this
§75> | processing time by more than 20% over the batch version.
L This improvement is the result of more effective pruning of
870 { unlikely state sequences at earlier stages in the training. The
incremental algorithms are able to refine and apply their model
o 5 10 parameters well before the batch algorithm.
full passes through the data The speed improvement of the incremental ML approach

. - : is also demonstrated by the CPU time required to reach a
Fig. 3. Graphs compare the convergence characteristics for discrete observa-

tion HSMM'’s with Poisson state durations. Log-likelihood and the recognitio@canitiQn_ acc_uracy of _84% (fourth column of _Table_ ). The
performance were shown for (a) ML batch training and the incremental Mpatch training (i.e., the single subset case) required five passes

approaches with (b) three, (c) ten, and (d) 30 subsets. Forhestibsets” gt g cost of 9.1 h of CPU time. The incremental ML with ten
case, one pass is completed when the algorithm has itefdte@mes and

processed each subset, subsets required 1.8 passes and 2.7 CPU h. These numbers
account for savings of about a factor of 2.8 in the number
L of utterances that need to be processed and a factor of 3.4
A. Incremental ML Estimation

' . o in processing time. It is expected that slightly better speed
Experiments for the incremental ML estimation approadfprovements are attainable using greater than 30 subsets.
were performed using a discrete observation HSMM with [tplementing this becomes difficult, however, because the

Poisson distribution on state duration [20]. First, the paramgpproach needs separately maintained sufficient statistics for
ters of the HMM were randomly initializédand the training each subset (see Section II-B).

utterances were separated into one, three, ten, or 30 subsets
(the one subset case is equivalent to batch training). SubsgtsRecursive Bayes Estimation
were then chosen sequentially at each iteration. Fig. 3 shows . . L i
the log-likelihood (on the training set) and the recognition Expe.rlments for the recursive Bayes estimation—a varle}tlon
performance (on the test set) versus the amount of dé?athe mpremgntal MAP gpproach—fgcused on the estima-
processed for the various number of subsets. Note that for R of t|ed_-m|xture, continuous d_ensny HMM _parameters,
“M subsets” case, one pass is completed when the algorit ause this problem had such high computational costs. In
has iteratedV/ times and processed each subset. There ar '“°'."v 'Fher_e were reasonable methods for generating the
few points clearly shown in the figure. prior d|§tr|but|ons. ) L i )
. g . 1) Prior Parameter GeneratioriThe initial tied-mixture
* The likelihood a_nd the recognition performance 'mprovecg}arameters were derived from the discrete observation HSMM
faste_zr for the incremental method than for the bat hich used a Poisson distribution to model state duration. This
version and the effect was more pronounced when tPﬁeodel was then converted to a tied-mixture model by simply
number Of, SUbS?tS was larger. replacing each discrete symbol with suitable parameters for
* The HMM's attained about the same performance level, multivariate normal distribution. Normal means and full
) - " Eadvariances were estimated from the training data. Given
approach d|p| not sacrifice any recognition performamfﬁe above approach, a reasonable method to initialize the
while speedlng the convergen_ce. ) prior was to set the prior parameters such that the mode of
Table | summarizes the processing time on a Sparc 104} distribution corresponded to the initial HMM parameters.
workstation for the various subset sizes. The third columghe employed prior distributions were the normal-Wishart
shows the time required to process ten full passes of thRribution for the parameters of the normal distribution and

6Random initialization of the parameters was performed in a straightforwatide Dirichlet distribution for the rest of model parameters [15].
fashion. The multinomial distribution terms were initialized using a uniform

random number generator and the distributions were normalized to sum-to?Note that if a better initialization (i.e., not randomized) scheme for the
one. The state-duration mean was randomly selected between (roughly) 2@amameters were available, this effect would be greatly reduced. However, the
100 ms. speed-up due to quicker convergence of the algorithm would still apply.
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87} | Fig. 5. Graph (a) shows the recognition performance versus subset size when
, . L . . the training started from a weak prior. Graph (b) shows the performance for
0 5 10 15 20 different initial prior strengths when the subset size was fixed to 20. For
full passes through the data both cases,+,” “ x,” and “o” denote performances achieved after processing

2000, 4000, and 10000 utterances, respectively.
Fig. 4. Comparison of speed of convergence between the batch ML (dashed

line) and the recursive Bayes training with a subset size of 20 utterances (solid

line). One full pass is equivalent to one iteration for the batch ML metho : :
and approximately to 175 iterations for the recursive Bayes approach. ?he conventional EM algomhm that guarantees monotone

likelihood improvement, the recursive Bayes approach does
not possess this nice property at each update. However, it is
The prior strengtf—interpreted as the amount of observedill possible to observe the global trend of the likelihood by
data required for the posterior to significantly differ frontomputing the running average of the past values. Here, the
the prior—was determined empirically. A subjective meayast 175 likelihoods (approximately equivalent to the number
sure of prior strength was used where a very weak prigf ytterances processed by the batch training for one iteration)
was (almost) equivalent to a noninformative prior and @ere averaged.
very strong prior (almost) corresponded to impulses at theThe |og-likelihood curves in Fig. 4 show that the batch ML
initial parameter values. The Poisson duration parametgigining had not converged after 15 full passes while the recur-
were estimated from the multinomial parameters using tf/e Bayes algorithm seemed to converge before processing
system equation approach and the evidence accumulatedif@ full passes. The recognition performance is even more
the Dirichlet prior parameters [21]. The rest of the modehteresting. Performance of batch training reached 89.5% after
parameters—mcludlng'the tran3|.t|on and m|xture_ obseryaugg( full passes (processing approximately 21 000 utterances); it
parameters—were estimated using the expressions given @ ained at this level and then gradually declined. The decline
Gauvain and Lee [18]. _ _ in performance was probably due to overfitting the model to
2) Speed of Convergenceén this experiment, the speed Ofihe gata. On the other hand, the recursive Bayes algorithm
convergence for the incremental training was compared Wihilized after slightly more than one pass (processing about
that of standard batch ML training. For both approacheggng ytterances)—a factor of five faster than the batch al-
the tied-mixture parameters were initialized identically 3Sorithm—to an even higher level of performance. Because
described above. The recursive Bayes training started frofa, oyerhead of the incremental processing is negligible when
a relatively weak prior and iterated the model estimatiofy,mpared with the batch training, the reduction in the total
algorithm using a subset size ‘?f 2,0 randomly-selec?eq Wamber of utterances processed is directly reflected in the
terances. Fig. 4 shows the log-likelihood (on the trainingy aining time. The fact that the algorithm converges after 4000
set) and the recognition performance (on the test set) ggrances (i.e., 200 iterations) is not surprising because the
a function of the amount of utterances processed. Un“lﬁ?ior/posterior terms in the MAP estimator become stronger

81n this experiment, initial prior parameters were derived from the sufficie@®Nd Stronger with each update. As training progresses, each

statistics accumulated from 3484 utterances (byproduct of conventional Miubsequent update has less of an effect.
training in Section 1V-A). The prior strength was decided by simply multiply- 3) Improvement of Performancen the second set of ex-
ing some factor to the accumulation. When 100% level of accumulation was

used for the prior, the new training data did not affect the recursive BayP€riments, the recognition performance of recursive Bayes

g‘f"r?‘lmelter;S“mg“O” very TIPUCE;: thus, it "IZSS referred to asttbag P”Of-l training was tested as a function of the subset size and the
imilarly, the moderate weak an very weakpriors were set apprommatey e : H
to the 10%, 1%, and 0.1% level of accumulation, initial prior strength. Fig. 5(a) shows the performance for

9Random selection was done in order to avoid possible bias in arretngemgﬂ(iereﬂt numb_ers of randomly'selec'[ed Utterar_lces (bEtW_e?n
of training utterances. one and 500) in the subsets. For each subset size, the training
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TABLE I TABLE I
PROCESSINGTIME FOR THE FIRST 1000 UrTERANCES ON A SPARC 10-51 RECOGNITION PERFORMANCESAFTER 4000 UTTERANCES FORRECURSIVE BAYES
WORKSTATION FOR DIFFERENT NUMBERS OF UTTERANCES IN THE SUBSETS TRAINING WITH A NONINFORMATIVE PRIOR VERSUSTHAT WITH A WEAK PRIOR
subset size 1] 2] 5| 10] 20| 50| 100 | 200 | 500 recoguition rate (%)
CPU time (hI'S) 7.8 7.4 7.2 7.1 7.1 7.0 7.0 7.0 7.0 Subs()t IlOIl‘inOrIIlatiVe weak
size prior prior
1 63.3 89.9

started from a weak prior and the performances achieved after

processing 2000, 4000, and 10000 utterances were plotted. 1(1)3 ;3'? gg'e
The best performance (90.4%) was obtained when the subset 500 88.7 89.8

size was between 20 and 50. This represents an 8% reduction
in the error rate from the batch ML training method. This ap-
proach is relatively robust as performance appears independent V. SUMMARY AND DISCUSSION

of subset size for those subsets with less than 50 utterancesyyig paper has presented two approaches (utilizing the ML

However, the performance starts to degrade as the subset §ﬁ8 the MAP criterion) to incremental estimation of HMM

grows .beyond 1:0 utt?rances. f th ; i arameters. Both approaches process only a small subset of the
In Fig. 5(b), the performance of the system for differe Faining data at each iteration, which leads to frequent updating

initial prior strengths is shown. In all cases, a fixed subset SIZ€ the model parameters. Experimental results have shown

of 20 was used. As can be seen from the figure, the ChOit‘ﬁ%t the approaches substantially reduce the HMM training

of the prior parameter strength does seem to have an eﬁﬁﬁ{e without sacrificing recognition performance. Specifically,

on the performance, i.e., there exists some appropriate pgf ocsjve Bayes training of a continuous density HMM, it
strength factor that most enhances the performance. Note thate t,nd that the approach also improved the recognition

\l/)vher? theblmtlal'prlo_lr_rl]s stfrronge;, Lhe rgsult was Ir?ss affectesl itormance over conventional ML. A possible reason for the
_yt_fg subset size. The effect of the prior strzngt may not B formance improvement may be due to accumulation of the
significant as more utterances are processed. priors for infrequently observed events. This may provide a

4) Processing TimeTable Il shows the CPU time requiredg, ihing of the parameter estimates which reduces the effect
to process 1000 utterances for different subset sizes. T overfitting

recursive Bayes training started from a relatively weak prior. It was found that the existence of the prior (and, as a

The table shows a very slight increase in processing tirBgnsequence, the use of MAP estimation) is an important
as fewer utterances were prqcessed per ;ubset. The 1e3500 \when the HMM parameters are estimated frequently
IS Fha.t.the parameter es.tlmauon computqﬂon (M-step) Yidm a very small amount of data. Even a very weak prior
|n§|gn|f|cant compared with the computation of the norm‘?l!/orks far better than does the noninformative prior case.
mlxtu'res for each utt.erance (E-step). Thus, the Processiig itively, the prior must be strong enough to keep the
t|mde 1S dnearl;(/j prop(zcmﬁnal t% the t(_)tal nurgber 0]:jIUtteramcqﬁodel from overfitting the data at the early stages of training.
and independent of the subset size (and, needless to $®wever, the prior must be weak enough so that the data can

independent of the prior strength). o be effectively modeled at later stages of training.
5) Variation—Noninformative Prior:One variation of the

recursive Bayes approach is to use a noninformative pri

This is similar to the incremental ML meth8tdescribed . i o
in Section Il in that both approaches estimate the modelThe two incremental algorithms share similar concepts
parameters solely from the data. The difference is that tife Many respects and, thus, result in similar performance.
incremental ML maintains the relevant statistics for indiflowever, there exists a clear difference in handling the
vidual subsets separately and sums them when estimatitRgerved information. Specifically, the incremental ML al-
the model parameters, while the recursive Bayes traini§§fithm maintains the relr-_zvant statistics from the individual
with the noninformative prior accumulates them into th&Ubsets separately (physically in separate memory blocks),
prior parameters. Table Il shows the recognition performancééile the recursive Bayes accumulates them into the prior
after 4000 utterances for recursive Bayes training with RRrameters. This dlfference characterizes one approach from
noninformative prior versus that with a weak prior. Théhe other in the following manner.
noninformative prior implies a “zero” strength factor. For both * The incremental ML estimation approach has a solid
approaches, not only were the model parameters initialized to theoretical foundation that extends the standard EM al-
identical values, but the same training method was also used. gorithm. An important consequence is that the monotone
The difference in the recognition rate after the training suggests likelihood improvement still holds for this variant and
the importance of prior parameters. It is hypothesized that the stable convergence is guaranteed. On the other hand,
prior acts to keep the early models from overfitting the initial ~ the incremental MAP algorithm used for experiments
subset data. in Section IV is slightlyad hoc because it is, in fact,
the recursive Bayes approach integrated into the iterative
1°Naming of the approach—either incremental ML or recursive Bayes—isa g\ algorithm. No theoretical proof has been given for
matter of convention. In fact, Neal and Hinton [5] and Jordan and Jacobs [10] . L. .
convergence, but the empirical results indicate that it

referred to this (i.e., the recursive Bayes approach with the noninformative "
prior) as a modified incremental ML method. always converges to a useful solution.

A: Pros and Cons for the Incremental Algorithms
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L]

One possible drawback for incremental ML is that this
approach may cause a storage problem because it main-
tains the statistics separately for individual subsets. Thing]
is especially true for the case where the number of model
parameters and/or the number of subsets is very large.
As a consequence, an experiment with more than 3f
subsets was not performed, although it was expected that
further speed improvements were possible. On the ot
hand, recursive Bayes keeps the information as the priar]
parameters (i.e., one place) and utilizes a fixed amount of
storage regardless of subset size.

Continuous density HMM training by the ML method[12]
tended to overfit to the training data. Because conver-
gence of the log-likelihood was not very apparent, it wags)
difficult to determine an appropriate stopping condition
for the training. On the other hand, the log-likelihood b)Ll“]
the recursive Bayes approach showed clear convergens
due to the increasing amount of information in the prior
parameters. Furthermore, the recognition performan[:lgl
reached an even higher level than the standard bafeh
version.

. - [18]
Thus far, the comparison seems to indicate that the recur-

sive Bayes estimation approach is more attractive than jts
incremental ML counterpart. It does not suffer from stora

19]

problem and its slightly weak theoretical underpinning does
not seem to cause any trouble. It even leads to improved

performance. However, it is not a panacea either.

[20]
Unlike the ML method, MAP estimation requires a prior
pdf when the training begins. It was found that theq
performance of the recursive Bayes approach was greatly
dependent on the choice of prior—which is often very
difficult to make and is probably a task-dependent issue.

If a reasonable method is known for preparing the prior (as
in the tied-mixture HMM training case), then incrementa!
MAP (or recursive Bayes) is certainly the choice over th
ML algorithm. On the other hand, if there is no clear schen
for generating the prior, then the incremental ML metho
provides an alternative solution without requiring a prior tha
nevertheless, can achieve far more efficient training than dc
standard batch training.
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