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Abstract  This paper reports a comparison of calculated molecular properties and of 
2D fragment bit-strings when used for the selection of structurally diverse subsets of a 
file of 44295 compounds.  MaxMin dissimilarity-based selection and k-means cluster-
based selection are used to select subsets containing between 1% and 20% of the file.  
Investigation of the numbers of bioactive molecules in the selected subsets suggest: 
that the MaxMin subsets are noticeably superior to the k-means subsets; that the 
property-based descriptors are marginally superior to the fragment-based descriptors; 
and that both approaches are noticeably superior to random selection. 
 
 

INTRODUCTION 
 
Developments in combinatorial chemistry and high-throughput screening over the last 
few years mean that it is now possible to synthesise and test far greater numbers of 
compounds in lead discovery programmes than was previously possible.  However, 
molecules that are structurally similar are likely to exhibit comparable activity 
profiles, and considerations of cost-effectiveness hence dictate that the compounds 
chosen for inclusion in such programmes should be structurally diverse, so as to 
maximise the amounts of structure-activity information that can be obtained without 
redundant experimentation.  The need for structural diversity has resulted in the 
development of computer-based methods for selecting libraries of molecules that 
ensure coverage of the largest possible expanse of chemical space in the search for 
new leads, an area of study that is normally referred to as molecular diversity analysis 
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[1-4].  There is already an extensive literature associated with many aspects of 
compound selection covering topics such as representations to describe the molecules 
for diversity analysis [5], ways of quantifying the degree of structural (dis)similarity 
between pairs of molecules [6], algorithms for identifying the presence of distinct 
clusters of molecules [7] and for identifying structurally disparate database subsets 
[8], and indices to quantify the diversity of such subsets [9].  In this paper, we focus 
on the first of these aspects, viz the structural representations that are used to 
characterise molecules.  Specifically, we report a comparison of two of the most 
common types of description, these being calculated physical properties and 2D 
fragment bit-strings.   
 
Several comparative studies of methods for diversity analysis have been reported 
previously (see, e.g., [10-17]) but this study has two characteristics of particular 
interest.  First, it involves compounds synthesised and tested as part of the ongoing 
commercial operations of Evotec OAI (hereafter EOAI) [18], rather than a standard 
public database such as the World Drug Index or MACCS Drug Data Report files.  
Second, as the aim was to compare two representative, but rather different, 
operational software systems, a detailed experimental design was required to ensure 
the elimination of other features of a diversity analysis and to ensure that the 
comparison focused just upon the particular types of representation studied here.  
These representations were the physical property descriptions used in the Diverser 
software produced by Synt:em [19-21] and the 2D fragment bit-strings used in the 
Barnard Chemical Information (hereafter BCI) software [22-24]: in what follows, we 
shall refer to these as property-based (PB) and fragment-based (FB) descriptors. 
 
 

MATERIALS AND METHODS 
 
Dataset 
The dataset provided by EOAI contains 44295 compounds, each of which had an 
associated biological activity value obtained from a single assay on one specific 
biological target.  The 4505 molecules with a percentage inhibition of >40% are 
regarded as hits by EOAI: in what follows, these will be referred to as ‘Actives’.  Two 
subsets of these compounds were also defined for the purposes of this comparison: the 
2750 ‘Moderately-High Actives’ have inhibitions of >60% and the 1656 ‘High 
Actives’ have inhibitions of >80%.   
 
Structure Representations 
The Diverser software calculates a large number of topological, property and shape 
descriptors for each of the molecules in a dataset, specifically those generated by the 
Molconn-Z software system [25] and then employs a variable-elimination procedure 
to identify a small number of discriminating descriptors.  Here, a total of 327 
descriptors was initially defined for each of the molecules in the dataset. Of these, 45 
were removed as exhibiting null variance and 129 as exhibiting inappropriate 
frequency distributions.  The remaining 153 descriptors then underwent a correlation 
analysis, which eliminated a further 66 variables having correlations ≥ 0.95 with 
descriptors chosen for retention.  The resulting set of 87 statistically significant 
descriptors was then subjected to principal component analysis, yielding a set of 16 
principal components that explained 99.6% of the variance in the original dataset.  
These components formed the structural description for each of the molecules in the 



dataset; specifically, each of the 16 components was encoded in several bits (the 
precise number for each being determined by the percentage of the variance 
explained) and molecular bit-strings finally obtained by concatenating the pattern of 
bits for each component.  The encoding of the features is discussed by Gorse et al. 
[21]. 
 
This PB representation of molecular structure was compared with an FB 
representation, specifically the 2D substructural features that are encoded in the bit-
strings generated by the BCI software; similar sets of features are used in other 
commercial packages for chemical information management produced by 
organisations such as Daylight Chemical Information Systems Inc., MDL Information 
Systems Inc. and Tripos Inc.  The BCI bit-strings encode the presence or absence in 
molecules of 2D substructural fragments from an externally-defined fragment 
dictionary; each bit position is directly associated with a particular fragment, defined 
in the dictionary (in principle, a group of related fragments can be associated with a 
single bit position, though this was not done here.)  BCI provides general-purpose 
fragment dictionaries, but normally expects better results to be obtained from a 
custom dictionary that reflects the substructural occurrences and co-occurrences in the 
specific dataset that is to be processed, and this was found to be the case here.  All of 
the results reported below are based on the use of a custom dictionary, which was 
generated as follows.  First, the EOAI dataset was processed to identify all fragments 
occurring in it in the following five families: Augmented Atom (an atom and its 
immediate neighbours), Atom Sequence (linear atom-bond paths of between 3 and 6 
atoms), Atom Pair (pairs of atoms with the topological distance between them, Ring 
Composition (atom sequences around individual rings) and Ring Fusion (describing 
the fusion patterns in multicyclic systems).  After initial identification, each fragment 
was generalised by replacing the specific atom and bond types by generalised values, 
using intermediate types such as “halogen” and “ring bond”, and fully-generalised 
“any atom” and “any bond” types.  This yielded a total of over 21,000 distinct 
fragments, at specific and generalised levels, which were then reduced by eliminating 
those that occurred in less than 10% or more than 25% of the molecules, or whose 
frequency of occurrence was too close to that of another, less specific fragment of the 
same family.  These eliminations were intended to remove fragments that provided 
little differentiation between the molecules, and to replace groups of less-common 
fragments by their common generalisations, while avoiding the inclusion of redundant 
specific and generalised descriptions of the same features.  The fragment selection 
process requires manual intervention to choose cut-off frequencies etc., and the 
choices made were aimed primarily at producing bit-strings of a size comparable to 
those commonly used in diversity analysis work.  The process (at least in its present 
implementation) is somewhat laborious, with many user-definable options: the final 
dictionary used here contained a total of 1073 fragments selected from the initial set 
of over 21,000 fragments.  The encoding of the features is described on the BCI Web 
site [22]. 
 
Subset Selection 
Two approaches were adopted for subset selection that are available in both the 
Diverser and BCI software: MaxMin dissimilarity-based selection and k-means 
cluster-based selection.   
 



MaxMin is perhaps the most widely used method for dissimilarity-based compound 
selection.  Assume that a Subset of k molecules is to be selected from a Dataset 
containing N molecules.  Then the MaxMin method is as follows: 
1. Initialise Subset with some appropriately chosen seed compound and set x:=1.  
2. For each of the N-x remaining compounds in Dataset calculate its dissimilarity 

with each of the x compounds in Subset and retain the smallest of these x 
dissimilarities for each compound in Dataset. 

3. Select the molecule from Dataset with the largest value for the smallest 
dissimilarity calculated in Step 2 and transfer it to Subset. 

4. Set x:=x+1 and return to Step 2 if x < k. 
 
Cluster-based selection provides an alternative way of identifying a structurally 
diverse database subset.  The k-means method was used here, as follows: 
1. A set of k initial cluster representatives is selected (where k is the number of 

clusters required) and the centroids calculated.  
2. Each molecule in Dataset is assigned to the cluster with the closest representative. 
3. New representatives are calculated for each cluster, reflecting the assignments 

made in Step 2, and Step 2 is repeated if the clustering has not converged. 
4. Subset is then the molecules comprising the final set of cluster representatives. 
 
Care was taken to ensure the removal of possible sources of variation in the two 
software implementations, so that any differences observed could be assumed to result 
from the representations employed.  Factors considered included the following.  First, 
MaxMin requires a starting-point compound: that chosen was the compound closest to 
the centre of the dataset, where centre was defined as the arithmetic mean of the 
representations of the whole dataset.  Second, k-means requires the specification of 
cluster representatives that are updated at the end of each complete pass through the 
dataset, if order-independent subsets are to be obtained: the representative for a 
cluster used here was the individual compound nearest to the arithmetic mean of the 
representations of the compounds in that cluster, with this nearest compound at the 
end of the clustering being the compound that was chosen for inclusion in the selected 
subset.  k-means also requires the specification of an initial set of cluster 
representatives: those used here were the compounds resulting from the MaxMin 
selections.  Finally, both systems used Euclidean distance as the similarity coefficient, 
with some of the FB experiments using the Soergel distance (the complement of the 
Tanimoto coefficient) in the nearest neighbour experiments described below.  These 
two distance coefficients are discussed by Willett et al. [6] and are detailed in Figure 
1. 
 
Subset Evaluation 
Subsets were generated, using the two approaches above, that contained 1, 2, 3, 5, 10 
and 20% of the database, these corresponding to k = 443, 886, 1329, 1772, 2215, 4430 
and 8860 molecules, respectively.  The subsets were then analysed to determine the 
effectiveness of the representations that had given rise to them. 
 
A common procedure in drug discovery is to take an initial set of actives (identified 
by whatever means) and then to use these to retrieve further compounds that have 
high probabilities of activity.  Indeed, the Diverser software uses the actives to build 
sophisticated filters that can then be used for the screening of previously untested 
molecules.  A simpler approach, and the one used here as it is feasible in both of the 



software systems being compared, involves a feedback or expansion experiment, 
which involves taking actives that have been identified in a subset and then using 
these to retrieve further compounds that are expected to exhibit the same activity. 
 
Assume that a classification has been made of a dataset (this is done here using the k-
means clustering method) so that a subset can be obtained by selecting one or more 
molecules from each of the clusters in the classification.  Having identified the actives 
in the subset, and hence the active clusters from which they are derived, one can then 
obtain feedback molecules by considering the other molecules in each of the active 
clusters (as the best classification is presumably one in which the actives are 
maximally clustered together, with the active clusters containing as few inactives as 
possible).  Thus the expansion set here is the compounds that are in the active clusters 
that have been identified.  With a MaxMin-derived subset, expansion is achieved by 
taking molecules similar to the actives in the chosen subset: it was decided to take the 
10 nearest neighbours (NNs), i.e., the most similar compounds, so that the expansion 
set here was the NNs of each of the initial set of actives. The NNs were identified 
using the Euclidean distance (PB) and using the Euclidean distance and the Soergel 
distance (FB).  These coefficients are The latter was found to give slightly, but 
consistently, better results than the Euclidean distance; we hence describe only the 
Soergel NN experiments when discussing the FB results below.  
 
 

RESULTS 
 
The PB MaxMin results are detailed in Table 1 and the FB MaxMin results in Table 
2; the corresponding sets of k-means results are detailed in Tables 3 and 4, 
respectively.  The pairs of columns in Tables 1 and 2 represent the number of actives 
in the MaxMin subset and the mean percentage of actives in the sets of 10 NNs for 
each of the actives in the MaxMin subset.  The pairs of columns in Tables 3 and 4 
represent the number of active clusters and the mean percentage of actives per active 
cluster. 
 
 

DISCUSSION 
 
Comparison Of MaxMin Selections 
A comparison of Tables 1 and 2 leads to two general conclusions.  First, looking at 
the “No. Actives” columns, the PB subsets nearly always contain a larger number of 
active molecules (using any of the three definitions of activity) than do the FB 
subsets.  Second, looking at the “Ave. % NN Actives” columns, the FB feedback 
subsets normally, but not always, contain a larger number of active molecules (using 
any of the three definitions of activity) than do the PB feedback subsets.   
 
These differences are not large but they do apply across the results presented in the 
tables.  For example, considering all of the active molecules (low, medium and high), 
the percentage difference in the number of actives, i.e.,  
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ranges from 1.6% (for the 443-molecule subset) to 11.2% (for the 1772-molecule 
subset), with a median percentage difference of 5.9%.  Again considering all of the 
actives, the percentage difference in the number of NN actives, i.e.,  
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ranges from 0 (for the 443-molecule subset) to 23.3% (for the 4430- and 8860-
molecule subsets), with a median percentage difference of 15.1%.   
 
One may thus conclude that the PB initial subsets are a richer source of actives than 
the FB initial subsets, but that the NNs of the latter sets of molecules are likely to 
produce more actives in the feedback stage.   
 
Comparison Of k-Means Selections 
A comparison of Tables 3 and 4 leads to two general conclusions.  First, looking at 
the “No. Active Clusters” columns, there are no consistent differences and it would be 
difficult to argue that one approach was noticeably superior to the other.  Thus, PB 
yields more active clusters with small and large subsets or when just the High Actives 
are considered, but FB is the better with the intermediately-sized subsets.  Second, 
looking at the “Ave. % Actives in Active Clusters” columns, the PB feedback clusters 
normally, but not always, have a greater percentage of active compounds in the active 
clusters than do the FB active clusters. 
 
Considering the percentage differences (calculated as described above but using the 
cluster representatives rather than the MaxMin molecules) for all of the active 
molecules then the differences range from 1.4% (FB doing better with the 1329-
molecule subset) to 27.9% (PB doing better with the 443-molecule subset), with a 
median difference of 11.1% (BCI doing better with the 1772-molecule subsets).  
 
The differences between the two approaches can, rather crudely, be summarised as 
shown in Table 5.  Here, we have simply considered how many times the PB (or FB) 
result was better than the FB (or PB) result, when summed over all of the entries in 
Tables 1 and 2 and in Tables 3 and 4.  The crudeness arises from the fact that the 
entries in Tables 1-4 are not independent of each other: High Actives ⊆ Mod.-High 
Actives ⊆ Actives and subset-433 ⊆ subset-886 etc. (so that if the first subset is poor 
then subsequent ones are also likely to perform badly).  None the less, the table does 
provide a rapid summary of the trends noted above from the MaxMin and k-means 
experiments. 
 
There has been considerable interest in the evaluation of different types of 
representation for use in diversity analyses, with several of the studies suggesting that 
2D fragment bit-strings provide a generally high level of performance [5, 7, 10-12].  
These studies have generally used public datasets.  Our results, obtained with a large 
operational file, demonstrate that property-based molecular descriptors can provide 
equally effective representations of molecular structure if appropriate variable-
selection and encoding methods are used. 
 
Comparison Of MaxMin and k-Means Selections 
One conclusion that can be drawn from comparing Tables 1 and 2 with Tables 3 and 4 
is that the MaxMin subsets normally, but not always, contain a larger number of 



active molecules than do the k-means subsets.  Moreover, in the case of the FB 
feedback subsets, the sets of top-10 NNs have a rather larger percentage of actives 
than do the molecules in the active clusters from the k-means analysis; there does not 
seem to be such an obvious difference in the case of the PB feedback results.  It is not 
clear why there is such a discrepancy between the MaxMin and k-means feedback 
results, as the initial subsets from the former procedure provided the seeds for the 
clustering experiments.  This might possibly be related to the “natural” number of 
clusters in the dataset: the Average % Actives in Active Clusters columns in Tables 3 
and 4 certainly suggest that a plateau of performance is reached around 1772 
molecules, whereas no such trend is seen with the MaxMin results. 
 
As the MaxMin results are generally superior to the k-means results, we have carried 
out a further comparison of the two sets of feedback compounds.  Specifically, Table 
6 lists the average percentage of actives in the NNs of actives molecules from the 
initial MaxMin subsets and the average percentage of actives in the NNs of inactive 
molecules from the initial MaxMin subsets.  It will be seen that there is a very well-
marked concentration of actives around the actives in the initial subsets, as against the 
inactives in the initial subsets: we hence deduce that only a small number of active 
molecules are lost by feedback experiments that consider the NNs of just the initial 
actives. 
 
Comparison With Random Selection 
The last comparison to be reported is with the numbers of actives (all classes of 
actives are considered here) that would be expected in subsets obtained by random 
selection, these expected numbers being calculated from the total number of actives in 
the dataset and from the subset sizes.  This comparison is summarised in Table 7, 
where it will be seen that with two exceptions (one PB and one FB) the systematic 
subsets contain more active molecules than would be expected by simple random 
selection.  
 
Conclusions 
In this paper we have compared the use of property-based and structure-based 
molecular representations for molecular diversity analysis.  Our results suggest that 
the MaxMin method for dissimilarity-based selection is superior to the k-means 
method for cluster-based selection.  Of the two representations, the property-based 
descriptors generally permit the generation of subsets that contain a larger number of 
active molecules than do the fragment-based descriptors; that said, some of the 
differences in performance are very small and there are many cases where the 
fragment-based subsets are to be preferred.  Finally, and perhaps most importantly, 
comparison with random selection demonstrates that both approaches provide an 
appropriate way of selecting molecules from computer databases that could be used in 
an operational context for synthesis and/or biological testing. 
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Subset Actives Mod-High Actives High Actives 

 No. Actives Ave. % NN 
Actives  

No. Actives Ave. % NN 
Actives 

No. Actives Ave. % NN 
Actives  

443 62 37 42 35 25 36 
886 125 33 90 31 53 29 

1329 181 32 123 30 72 28 
1772 238 33 164 32 100 31 
2215 290 33 194 31 119 29 
4430 547 30 345 28 205 26 
8860 1080 30 657 29 391 26 

 
Table 1: Property-based MaxMin selection 

 
 
 

Subset Actives Mod-High Actives High Actives 
 No. Actives Ave. % NN 

Actives 
No. Actives Ave. %  NN 

Actives 
No. Actives Ave. % NN 

Actives 
443 61 37 39 36 25 30 
886 118 37 76 36 39 28 

1329 176 37 109 37 60 28 
1772 214 37 135 37 77 28 
2215 268 38 169 38 103 30 
4430 525 37 328 36 200 30 
8860 1009 37 633 36 375 31 

 
Table 2: Fragment-based MaxMin selection 

 
 
 

Subset Actives Mod-High Actives High Actives 
 No. Active 

Clusters 
Ave. % Actives 

in Active 
Clusters 

No. Active 
Clusters 

Ave. % Actives 
in Active 
Clusters 

No. Active 
Clusters 

Ave. % Actives 
in Active 
Clusters 

443 55 29 32 28 24 24 
886 107 35 62 37 43 27 

1329 147 36 94 37 67 28 
1772 188 36 119 37 82 30 
2215 225 35 144 35 95 27 
4430 463 34 286 35 187 29 
8860 993 28 587 29 366 25 

 
Table 3: Property-based k-means selection 



 
Subset Actives Mod-High Actives Highly Active 

 No. Active 
Clusters 

Ave. %. Actives 
in Active 
Clusters 

No. Active 
Clusters 

Ave. % Actives 
in Active 
Clusters 

No. Active 
Clusters 

Ave. % Actives 
in Active 
Clusters 

443 43 31 23 31 18 22 
886 93 33 55 32 39 28 

1329 149 35 89 36 62 30 
1772 209 35 133 36 93 28 
2215 251 33 153 33 95 29 
4430 486 28 297 27 181 23 
8860 919 23 560 22 343 19 

 
Table 4: Fragment-based k-means selection 

 
 
 

Approach MaxMin k-Means 
 No. Actives Ave. % NN 

Actives 
No. Active 

Clusters 
Ave. % Actives in 

Active Clusters 
Property-Based 20 3 12 16 
Fragment-Based 0 16 8 5 

 
Table 5: Numbers of times that each approach was superior to the other 

 
 
 

Subset Property-Based Fragment-Based 
 Ave. %. Actives 

in NN Actives 
Ave. %. Actives in 

NN Inactives 
Ave. %. Actives 
in NN Actives 

Ave. % Actives 
in NN Inactives 

443   37 8 37 7 
886 33 8 37 7 

1329 32 8 37 7 
1772 33 8 37 8 
2215 33 8 38 8 
4430 30 8 37 8 
8860 30 8 37 8 

 
Table 6: Percentage of actives in feedback sets based on MaxMin initial actives and inactives  

 
 
 

Subset Random Property-Based Fragment-Based 
  MaxMin k-Means MaxMin k-Means 

443 45 62 (+38%) 55 (+22%) 61 (+36%) 43 (-4%) 
886 90 125 (+39%) 107 (+19%) 118 (+31%) 93 (+3%) 

1329 135 181 (+34%) 147 (+9%) 176 (+30%) 149 (+10%) 
1772 180 238 (+32%) 188 (+4%) 214 (+19%) 209 (+16%) 
2215 225 290 (+29%) 225 (0%) 268 (+19%) 251 (+12%) 
4430 451 547 (+19%) 463 (+3%) 525 (+16%) 486 (+8%) 
8860 901 1080 (+20%) 993 (+10%) 1009 (+12%) 919 (+2%) 

 
Table 7: Numbers of actives in random, property-based and fragment-based selections 

 
 



Figure 1:  The Euclidean distance and the Soergel distance.  In the case of continuous attributes, let 
the molecules A and B be represented by vectors such that xjA is the value of the j-th attribute (1≤j≤n, 
the total number of distinct attributes) in molecule A (and similarly for molecule B).  In the case of 
binary attributes, a, b and c denote the numbers of bits set to “on” in A, in B, and in both A and B, 
respectively.  
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