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Abstract  This paper reports an evaluation of both graph-based and fingerprint-based measures of 

structural similarity, when used for virtual screening of sets of 2D molecules drawn from the 

MDDR and ID Alert databases.  The graph-based measures employ a new maximum common 

edge subgraph isomorphism algorithm, called RASCAL, with several similarity coefficients 

described previously for quantifying the similarity between pairs of graphs.  The effectiveness of 

these graph-based searches is compared with that resulting from similarity searches using BCI, 

Daylight and Unity 2D fingerprints.  Our results suggest that graph-based approaches provide an 

effective complement to existing fingerprint-based approaches to virtual screening. 
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INTRODUCTION 

 

Public databases, corporate compound collections, combinatorial synthesis programmes and 

commercial compound suppliers provide a rich source of data for the identification of novel 

bioactive molecules.  This has led to much interest in the development of methods for virtual 

screening, which enables the rapid identification of that small subset of a database that has a high 

a priori probability of exhibiting the bioactivity of interest [1,2].  Similarity searching based on 2D 

representations of molecular structure is one of the simplest, and most common, approaches to 

virtual screening.  It involves taking a molecule with the required activity, such as a weak lead 

from a high-throughput screening programme, and then searching a database to find the molecules 

that are most similar to it, using some measure of inter-molecular structural similarity [3]; these 

similar molecules (or nearest neighbours) are expected also to exhibit the activity of interest, and 

are thus candidates for biological screening.   

 

Many different measures of chemical similarity have been described in the literature (see, e.g., [4-

7]) but they all involve three principal components: a representation of molecular structure; a 

coefficient that quantifies the degree of resemblance between two such representations; and a 

weighting (or standardization) scheme that is used to highlight (or to normalize) different parts of 

the chosen representation.  In this paper, we focus on just the first two of these components.  

Specifically, we consider two unweighted 2D structure representation: graphs based on the 

connection tables that describe conventional structure diagrams; and fingerprints or bit-strings (we 

will use the former terminology in what follows) generated from such graphs.  Each of these two 

types of representation is processed using several different similarity coefficients. 

 

Most similarity-based methods for virtual screening employ 2D fingerprints, typically with the 

Tanimoto coefficient being used to compute the degree of similarity between a pair of 

fingerprints.  Graph-based measures,  where the degree of similarity is computed as the result of a 

graph-isomorphism procedure, are far more demanding in computational terms than fingerprint-

based approaches and have, accordingly, been far less used for virtual screening applications.  

However, we have recently described [8,9] an efficient algorithm, called RASCAL, for this 

purpose.  RASCAL calculates the similarity between two chemical graphs using an approach 
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based on the maximum common edge subgraph (MCES).  The MCES between two chemical 

graphs can be thought of as the largest substructure common to both molecules, and can be either 

a connected or a disconnected subgraph.  We have previously demonstrated the efficiency of 

RASCAL [8]; in this paper, we report an investigation of its effectiveness when used for virtual 

screening and compare the results obtained with those from conventional, fingerprint-based 

approaches. 

 

MEASURES OF CHEMICAL SIMILARITY 

 

All graphs referred to in the following are assumed to be simple, undirected graphs.  A graph G 

consists of a set of vertices V(G) and a set of edges E(G).  The vertices in G are connected by an 

edge if there exists an edge ( , ) ( )i jv v E G∈  connecting the vertices v  and vi j in G such that 

and .  In 2D chemical graphs, the vertices of the graph correspond to the 

atoms of the molecule, and the edges represent the chemical bonds.  The number of vertices and 

edges in a graph will be denoted by |V(G)| and |E(G)|, respectively, and |G| refers to the sum of 

|V(G)| and |E(G)| unless otherwise noted.  G

( )iv V G∈ ( )jv V G∈

12 denotes the graph corresponding to the MCES 

between two graphs G  and G1 2, i.e., the largest substructure common to two molecules in the 

present context. 

 

Sanfeliu and Fu [10] have categorized graph distance/similarity coefficients into two classes.  In 

feature-based distances, a set of features or invariants is established from a structural description 

of a graph, and these features are then used in a vector representation to which various distance or 

similarity measures can be applied.  In cost-based distances, the distance or similarity between 

two graphs reflects the number of edit operations that are required in order to transform one graph 

into the other.  In this paper, the feature-based distances and the cost-based distances correspond 

to the use of fingerprints and structure diagrams, respectively. 

 

Similarity coefficients obtained using the feature-based approach are based on formulae that are 

functions of the relative number of bit positions that are set in each fingerprint representation of a 

graph (as reviewed in [3]).  Here, we use the 2D fingerprints used in the Barnard Chemical 

Information (BCI), Daylight and Unity systems for chemical information management [11-13], 
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with the choice of three common approaches providing a firm basis for the evaluation of graph-

based approaches to virtual screening that is the principal focus of this paper.  For each fingerprint 

scheme, ten different association coefficients were used to calculate the degree of similarity 

between two chemical graphs.  These association coefficients d(G1,G2) are listed in Table 1 and 

mostly range from 0 to 1 where 0 denotes that the structures are maximally dissimilar (i.e., the 

similarity is at a minimum) and 1 denotes that the structures are maximally similar.  Numerous 

other similarity coefficients continue to be reported in the literatures of many disciplines (see, e.g., 

[14-16]). 

 

The cost-based distance between two graphs corresponds to the number of predefined edit 

operations necessary to transform one graph into another graph, and there have been several 

reports of graph edit operations including vertex (edge) deletion, edge rotation, and edge slide 

(see, e.g., [17-19]).  Of interest to this work are the graph distance/similarity coefficients based on 

the MCES between two graphs [20], as the MCES between two chemical graphs provides a 

natural, convenient means for visualising the similarity between the corresponding molecules.  It 

has been shown that the maximum common subgraph (MCS) and related forms such as the MCES 

are directly related to the cost-based distance between graphs [18, 19], and we have used several 

coefficients based on this concept here, as detailed in Table 2 along with their possible value 

ranges. 

 

It is interesting to note that the Wallis et al. [21] formula (C1) is mathematically equivalent to the 

Tanimoto [3] formula (F1), and the Johnsonb [22] measure (C5) is equivalent to the cosine [3] 

measure (F2) squared.  In addition, C4, the normalized variation of another measure attributed to 

Johnson [23], is equivalent to a feature-based similarity measure (F4) proposed by Dice [3], and 

the Bunke and Shearer [24] measure (C2) corresponds to a feature-based formula proposed by 

Braun-Blanquet [16] (F9).  This suggests that it may be possible to derive more effective MCES-

based similarity measures using established fingerprint-based similarity coefficients; in fact, 

measures C3, C6, C7, and C8 are published, feature-based coefficients that have been adapted by 

us for use in a graph-based context. 
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The cost-based approach offers considerable flexibility with regard to the form of the calculated 

similarity measure.  In the simple coefficients presented in Table 2, atoms and bond pairs are 

treated equally (i.e., ⏐G12⏐=⏐V(G12)⏐+⏐E(G12)⏐).  Since |V(G12)| can contain isolated vertices, it 

is reasonable to assume that |E(G12)| should be assigned a greater weight, reflecting the greater 

significance of matching bond pairs.  Also important is the concept of what we will refer to as 

fragmentation.  If a particular MCES between two graphs is composed primarily of a single large 

subgraph, it is intuitive to assume that it more closely exemplifies chemical similarity than an 

MCES that is composed of several small, unconnected subgraphs [25].  In order to discourage 

excessive fragmentation in the MCES, the value of |G12| can be modified to account for multiple 

subgraph components.  The coefficients in Table 2 can be customized to reflect these concerns by 

simply substituting the quantity 

( )( )12 12 12( ) 1 ( , ) 1 ( )V G n p G E Gβ α+ ⋅ − ⋅ − ⋅  

for G12, 

1 1( ) ( )V G E Gβ+ ⋅  

for G , and 1

2 2( ) ( )V G E Gβ+ ⋅  

for G .  The function n(p,G2 12) represents the number of unconnected subgraph components in the 

MCES (G12) containing p or more edges.  If all subgraphs have fewer than p edges, then n(p,G12) 

will be assumed to be the total number of subgraph components.  The constant β  reflects the 

additional weight assigned to matched bond pairs with respect to compatible atoms, and the 

constant α  is a penalty score for each unconnected component present in G12.  In preliminary 

studies, we have found values of  p=3, = 0.05α , and 2.0β =  seem to be effective in discerning 

chemical similarity, and are used in all of the experiments reported here. 

 

Figure 1 illustrates the effect of penalizing comparisons in which G12 is fragmented.  Using the 

standard definition of the G12, both comparisons have approximately the same value of similarity 

using measure C5 from Table 2.  However, when the modified definition (C5frag) is used, a clear 

separation develops, and it is apparent that its use provides a more chemically intuitive notion of 

similarity.  In fact, detailed studies of the two types of coefficient (using the evaluation methods 

described in the next section) demonstrate clearly the superiority of coefficients that penalise 
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fragmentation: it is these coefficients, accordingly, that have been used to obtain all of the results 

presented later in this paper. 

 

EVALUATING THE EFFECTIVENESS OF VIRTUAL SCREENING 

 

The dataset used in the following analysis contained 11,607 compounds from the ID Alert 

database that have been classified according to pharmacological activity.  One hundred similarity 

search target structures were obtained as follows: 100 activity classes were selected at random, 

subject to there being at least 20 compounds with that activity; one of the compounds was then 

chosen at random from each of the selected activity classes; each such resulting compound was 

used as the target structure for a similarity search of the ID Alert file.  The effectiveness of each 

search was determined by seeing how many of the top-ranked molecules belonged to the same 

activity class as the target structure, i.e., would exhibit the same activity in a real screening 

programme. 

 

Edgar et al. have reviewed several measures for the effectiveness of similarity searching in 

chemical databases, drawing primarily upon measures described for evaluating the performance of 

text search engines [26].  They found that the cumulative recall and the “Goodness of Hit List” or 

Guner-Henry (G-H) score [27] were among the most successful of those tested for measuring the 

effectiveness of similarity retrieval.  The additive G-H score investigated by Edgar et al. is based 

on the recall (R) and precision (P) of a search.  Recall is defined as the fraction of the active 

structures that are retrieved in the search (a) over the total number of active structures in the 

database (A), i.e.,  

aR
A

= , 

with the cumulative recall being simply the recall at some fixed cut-off number of top-ranked 

molecules, e.g., the top-20 nearest neighbours.  The precision is defined to be the fraction of the 

active structures that are retrieved (a) over the number of structures retrieved (n), i.e.,  

aP
n

= . 

The additive G-H score is calculated as: 
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G-H
2

P Rα β⋅ + ⋅
=  

αwhere  and β  are weights describing the relative significance of the recall and precision terms.  

Guner and Henry have extended the utility of the G-H score by addressing some of the 

weaknesses of the additive form, and proposed a modified G-H score of the form [28]:  

(3 )G-H 1
4

a A n n a
n A N A
⋅ + −⎛ ⎞ ⎛= ⋅ −⎜ ⎟ ⎜⋅ ⋅ −⎝ ⎠ ⎝

⎞
⎟
⎠

, 

where N is the total number of structures in the database.  We have used the cumulative recall and 

the modified G-H score to evaluate the effectiveness of the various similarity measures presented 

previously. 

 

Typically, similarity searching is performed by ranking the compounds in a dataset according to 

decreasing similarity and then selecting a specified number or percentage of the top-ranked 

compounds.  This presents no problems when the recall at some fixed cut-off is used as a 

performance measure to compare different similarity measures.  It can, however, have a 

significant impact on the value of the G-H score, and we have hence additionally used an 

evaluation approach based on identifying that cut-off that results in an optimal value for the G-H 

score.   

 

The G-H score process is accomplished by first calculating the pair-wise similarity coefficient 

between the target structure and each member of the database using one of the similarity formulae 

in Table 1 or 2.  The resulting similarity values are sorted in order of decreasing similarity so that 

the nearest neighbours are listed first.  The G-H score is then calculated for every structure in this 

ranking, and the structure corresponding to the maximum G-H score in the list is determined.  The 

position in the ranking (iGH) corresponding to the maximum G-H score represents the cut-off 

position for the optimal search hit list, i.e., the collection of compounds from rank-1 to rank-iGH.  

Since there are 100 activity classes, the selection process is taken over all 100 possible queries, 

giving 100 resultant maximal G-H scores for each similarity measure.  A minimum acceptable G-

H score is then specified, and all queries resulting in maximal G-H scores less than this threshold 

are removed from consideration: these queries will be referred to as the discards (D) since they 

represent ineffective target structures.  The average value of recall (R) and precision (P) for the 
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retained queries provide a means of evaluating the relative performance of each similarity 

measure as does the number of discarded queries (D).  In addition, the calculated mean cut-off 

similarity value can be used as a benchmark similarity threshold for future searching of datasets 

when the number of actives is not known. 

 

In order for the proposed analysis to be effective we must first determine an acceptable value for 

the G-H score cut-off.  Guner and Henry proposed an idealized ranking of six archetypal search 

scenarios: 

• Best Case:  n = a = A.  All of the active compounds are retrieved with no false positives. 

• Worst Case: a = 0, n = N – A.  All compounds except the actives are retrieved. 

• Extreme Precision:  a = 1, n = 1.  Only a single, active structure is retrieved. 

• Extreme Recall:  a = A, n = N.  The entire database is retrieved, i.e., no screening of the 

database at all. 

• Typical Good:  R = 0.8, P = 0.4.  Retrieval results in high recall and medium precision. 

• Typical Bad:  R = 0.5, P = 0.05.  Retrieval results in medium recall and low precision. 

Of these six scenarios, Extreme Recall and Worst Case represent unacceptable levels of 

performance for a search system, and we have hence taken the G-H score corresponding to 

Typical Bad as a minimal cut-off, i.e., we are only interested in searches that achieve at least 

R=0.5 and P=0.05.  Using our dataset, N=11,607, and the number of actives (A) corresponding to 

each of the 100 target structures ranges from 21 to 250 with a mean of 58.  This results in G-H 

scores of 0.16, 0.13, and 0.15, respectively, and we have hence decided to take a cut-off G-H 

score of 0.20 as an acceptable threshold value.  The appropriateness of this value is supported by 

an inspection of the recall and precision values corresponding to the G-H score ranking for each 

query, with a value of 0.20 corresponding closely to the point at which the quality of the hit list 

starts to deteriorate rapidly, giving increasingly large numbers of inactive molecules. 

 

EXPERIMENTAL RESULTS 

 

We discuss first the feature-based similarity measures, so as to provide a baseline of performance 

for the subsequent evaluation of the novel, cost-based measures. 
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Table 3 lists the results of the maximum G-H score analysis performed for all coefficients listed in 

Table 1 with each of the three types of fingerprint.  R and P here are the mean recall and precision 

values and d(G ,G1 2) the mean similarity at the cut-off, in each case averaged over the non-

discarded queries.  It appears from the data in the table that the BCI fingerprints performed 

slightly better than either the Unity or Daylight fingerprints for this set of target structures, in that 

the BCI fingerprints have the fewest discards and the highest recall (though, hardly surprisingly, 

the lowest precision).  It is also evident from Table 3 that similarity coefficients F1 through F5 

and F7 are markedly consistent in terms of recall, precision, and the number of discarded queries, 

the only discernable differences being in the average similarity cut-off.  There is a notable 

difference, however, between these coefficients and coefficients F6 and F8-F10, which performed 

notably worse with respect to recall and/or the number of discards.  F8 is particularly interesting, 

exhibiting both the most discards of any coefficient and very high values of recall. 

 

Table 4 presents the corresponding results when the searches are evaluated by means of the 

cumulative recall for hit-lists containing 25, 50, 75, and 100 compounds.  From this data, it can be 

seen that the coefficients exhibit a comparable degree of similarity to that displayed in Table 3.  It 

is interesting, however, that as the size of the hit-list increases the slight advantage that the BCI 

fingerprints displayed in detecting active structures (Table 3) begins to diminish. 

 

As previously mentioned, one very noticeable trend in the data presented in Tables 3 and 4 is that 

many of the similarity coefficients seem to perform comparably.  This result is not surprising, 

however, when one investigates the coefficients in more detail.  Table 5 presents the results of 

comparing each of the top-100 nearest neighbours from Table 4 using BCI fingerprints to each 

other.  Hit-list similarity is determined using the asymmetric coefficient c/min{a,b} (cf F8 in 

Table 1).  Here, a is the number of actives retrieved using for a particular similarity coefficient 

(from Table 1) when summed across all 100 searches; b is the number of actives retrieved using 

another similarity coefficient; and c is the number of actives common to both sets of searches.   

 

Table 5 illustrates much of the same degeneracy between similarity coefficients presented in 

Tables 3 and 4.  It is clear that methods F1, F4, and F5 are essentially monotonic, as are F3 and 

F7.  In fact, only F8, F9, and F10 exhibit any significant degree of dissimilarity with any of the 
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other coefficients.  The experimental relationships between the coefficients presented in Table 5 

can be explained qualitatively by investigating the mathematical properties of some of the 

coefficients.  For this analysis we limit ourselves to coefficients F1 through F5.  First we observe 

that, coefficients F8 (x/min{y,z}) and F9 (x/max{y,z}) are mutually independent and that 

coefficients F1-F5 are all simple functions in three variables (x, y, and z).  It is then a matter of 

simple algebra to transform the formulae corresponding to coefficients F1-F5 into functions 

whose two independent variables are simply F8 and F9.  Therefore, coefficients F8 and F9 can 

serve as the independent variables for coefficients F1-F5, and we can observe the properties of 

coefficients F1-F5 as the values of F8 and F9 change. 

 

Figure 2 illustrates the behavior of coefficients F1-F5 with respect to varying values of F8 and 

F9, with each plot corresponding to a fixed value of F9 and a range of values for F8.  From 

Figure 2, it can be seen that the curves corresponding to coefficients F1, F4, and F5 are 

essentially parallel for all depicted values of F8 and F9.  This explains the monotonicity observed 

in Table 5.  Take, for instance, the curve corresponding to F5 in the plot for F9=0.2, which is 

essentially the same curve as F1 and F4 but shifted vertically on the plot.  This would correspond 

to adding a constant to the similarity values in the ranking corresponding to coefficient F5 to 

produce the rankings for coefficients F1 or F4. 

 

Note that in the plots in the bottom half of Figure 2, all of the depicted similarity coefficients 

produce essentially parallel lines.  This explains the marked degree of degeneracy noted between 

many of the coefficients considered in Table 5.  Since a relationship of activity between two 

molecular structures typically involves structures of comparable size and complexity, the 

differences in values between coefficients F8 and F9 are typically not great enough for a 

comparison to be located in either of the top two plots.  Since most comparisons will, therefore, 

fall into plots resembling the bottom two plots, it is clear why there is such a high degree of 

dependency between the various similarity coefficients compared in Table 5.  Unless an 

occasional comparison falls into a plot resembling one of the top two plots, the resulting rankings 

will be essentially identical between the similarity coefficients, differing only by a constant value 

corresponding to a vertical shift between the lines depicted in the bottom two plots of Figure 2.  It 

does appear from Table 5, however, that similarity searching may potentially be improved by 
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employing one of the coefficients in F1-F7 in conjunction with coefficients F8, F9, and F10, as 

these coefficients seem to exhibit a relatively significant degree of variability with respect to each 

other. 

 

In addition to considering the differences between similarity coefficients, we have considered the 

differences between the three types of fingerprint, as detailed in Table 6.  Here, we have compared 

the top-100 nearest neighbour hit-lists obtained using different fingerprints.  Inspection of the 

values in Table 6 suggests at least some level of variability between the three types of fingerprint, 

especially between BCI and the other two types.  This raises the possibility that the effectiveness 

of searching using fingerprints might be increased by employing multiple fingerprints with the 

same similarity coefficient (as an alternative to the use of multiple similarity coefficients with the 

same fingerprint that has been reported recently [29]). 

 

Similar procedures were used to investigate the effectiveness of the cost-based similarity 

measures that employ the RASCAL algorithm for the identification of the MCES, as shown in 

Tables 7 and 8.  As noted previously, these results use the versions of the coefficients that include 

a penalty for fragmentation of G12.  It is evident from both Tables 6 and 7 that the effectiveness of 

the RASCAL approach is comparable to the results observed using the fingerprint methodologies. 

 

It will be seen from Tables 7 and 8 that, with the exception of C3frag, all of the graph-based 

coefficients give very similar results to each other, and this is confirmed by the data shown in 

Table 9.  Here, we have used the asymmetric coefficient approach used in Table 5 to assess the 

degree of similarity between the numbers of active molecules retrieved using pairs of different 

coefficients.  This analysis reveals that all of the coefficients have very high similarities with each 

other, with the sole exception of the outlier C3frag.  This is consistent with the pattern observed 

using the fingerprint similarities in Table 5, which underscores the importance of optimal 

similarity coefficient selection when implementing data fusion for enhanced similarity search 

effectiveness [29]. 

  

Having determined the absolute performance of the two classes of similarity measure, we now 

compare them directly.  While Tables 3 and 7, and Tables 4 and 8, show that the current 
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implementation of RASCAL results in retrieval effectiveness comparable to the fingerprint 

methods, they provide no information as to the nature of the active compounds retrieved by the 

two approaches.  This question is addressed in Table 10, which again uses the asymmetric 

similarity approach.  In order to perform the comparison in an appropriate manner, only those 

fingerprint-based coefficients in Table 1 that had an equivalent corresponding graph-based 

coefficient in Table 2 were considered.  Table 10 lists the asymmetric similarity in the types of 

active structures retrieved for each of these pairs of coefficients.  It will be seen from this data that 

there are substantial differences between the two sets of hit-lists, with about 30% of the active 

molecules being different.  This suggests that there is potential in using both methods in a 

complementary fashion when carrying out virtual screening on databases of 2D chemical 

structures. 

 

To confirm the complementarity of the two similarity approaches, another set of ten virtual 

screening searches was applied to a different drugs file, specifically a set of 99,603 molecules 

from the MACCS Drug Data Report (MDDR) database.  Representative molecules from ten 

activity classes were chosen, and searches carried out for evaluation by means of cumulative 

recall.  To simplify the evaluation, the BCI fingerprint was selected to represent the three types of 

fingerprint, owing to its slightly better performance in the previous, ID Alert-based  analyses.  In 

addition, only a single similarity coefficient was used, viz the Kulczynski coefficient (F3 and C7), 

owing to its excellent performance in both the fingerprint-based and graph-based searches.  The 

results of these ten searches are detailed in Table 11.  The two types of search are seen to be 

relatively consistent in the numbers of active structures retrieved, with about a 20% difference in 

the constitution of the retrieved active structures.  A Sign Test was used to test the hypothesis that 

there was a statistically significant difference in the numbers of actives retrieved by the two types 

of coefficient.  No such difference (at the 0.05 level of statistical significance) was observed at 

any of the five cut-offs (25, 50, 75, 100 and 150).  

 

One obvious way of exploiting the observed degree of complementarity is to apply data fusion 

(sometimes called consensus scoring) to the graph-based and fingerprint-based similarity 

rankings.  Table 11 includes the number of actives discovered when the two rankings F3(BCI) and 

C7frag are fused using Tzitzikas’ democratic data fusion algorithm [30].  Table 11 shows that the 
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fusion generated hit-lists often contain more actives than either of the original candidate rankings.  

Equally significant is the fact that only two out of fifty (4%) of the fused hit-lists contained fewer 

actives than either of the original hit-lists.  This is an important observation, which suggests that 

data fusion can condense the information contained in a set of candidate rankings, potentially 

resulting in better quality hit-lists than any of the hit-lists from the candidate rankings while 

minimizing the risk that the fused hit-list will be of poorer quality than the original hit-lists.  The 

enhanced performance is highlighted by the data in Table 12, which lists the total numbers of 

actives retrieved by the fingerprint-based, graph-based and fused coefficients.  The fused totals are 

greater at all cut-offs, with the average percentage enhancement of 5.4% over the better of the two 

individual search types. 

 

There is another way in which the two approaches could be combined.  While RASCAL is very 

fast in operation [8], it is still slower than a fingerprint-based similarity search and one might thus 

consider using it to process the output from a conventional Tanimoto-based search.  Graph-based 

coefficients are local coefficients, using the terminology of [31], in that they provide not only a 

quantitative value for the degree of resemblance between two molecules, but also an alignment of 

them.  Thus if RASCAL is used to align the target structure and a database structure by 

superimposing the MCES, then the user is provided with a clear visual impression of the structural 

relationship between the two molecules.  In such a two-stage procedure, then, the fingerprint 

coefficient would be used to generate the initial output ranking, and the RASCAL algorithm 

would be used to visualise the similarities between the target structure and the nearest neighbours 

from that ranking.  

 

CONCLUSIONS 

 

Fingerprint-based methods are very widely used for virtual screening of chemical databases where 

there is a need to identify bioactive compounds using the concept of 2D structural similarity.  

Although both efficient and effective in operation [3], fingerprint-based methods exhibit several 

undesirable characteristics [32, 33], and there is thus continuing interest in alternative approaches.  

We have recently described an algorithm, called RASCAL, that enables efficient graph-based 

similarity searching of large chemical databases, and here we have shown that the such searches 
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are effective in a simulated virtual screening environment,.  Experiments with a range of 

similarity coefficients demonstrate that RASCAL-based searches are comparable in effectiveness 

to conventional, fingerprint-based similarity searching, when evaluated using cumulative recall 

and G-H score.  It is also shown that the RASCAL and fingerprint measures identify non-identical 

sets of active molecules, suggesting the use of RASCAL as an effective complement to existing 

procedures for virtual screening of databases of 2D chemical structures. 
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Table 1.  Feature-Based Similarity Coefficients.  In these formulae, x = the number of bits set in 
both fingerprints, y = the number of bits set in the first fingerprint, z = the number of bits set in 
the second fingerprint, and w = the total number of bits in the bit string.  In F6,  

{ , }1 /
{ , }

min y z (2)X log log
max y z

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
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2{ , }2 /

1
min y z xY log log
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−
⎛ −⎛ ⎞= +⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
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1 1
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x xlog log
y z

Z
log

⎛ ⎞ ⎛ ⎞+ ⋅ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠= . 

 

d(GID Reference 1,G2) Range

x
y z x+ −

  Tanimoto [14] 0 to 1 F1 

x
y z⋅

  Cosine [14] 0 to 1 F2 

( )
2

x y z
y z

⋅ +
⋅ ⋅

  Kulczynski [14] 0 to 1 F3 

2x
y z+

  Dice [14] 0 to 1 F4 

2 2 3
x

y z x+ −
  Sokal/Sneath [14] 0 to 1 F5 

X Y Z⋅ ⋅ Tullos [15] *F6 0 to 1  

( )x y z y z
y z

⋅ + − ⋅
⋅

  McConnaughey [14] -1 to 1 F7 

min{ , }
x
y z

  Asymmetric [14] 0 to 1 F8 

max{ , }
x
y z

  Braun-Blanquet [16] 0 to 1 F9 

x
w

 Russel/Rao [14] F10  0 to 1 
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Table 2.  Cost-Based Similarity Coefficients.  In these formulae, |G12| is the size of the MCSE 

between two graphs of sizes of |G1| and of |G2|. 

 

ID Reference d(G1,G2) Range 

C1   Wallis et al. [21] 12

1 2 12

G
G G G+ −

 0 to 1 

C2   Bunke and  
  Shearer [24] 

12

1 2max{ , }
G
G G

 0 to 1 

C3   Asymmetric [14] 12

1 2min{ , }
G
G G

 0 to 1 

C4   Normalized  
  Johnsona [22,23] 

12

1 2

2 G
G G
⋅
+

 0 to 1 

C5   Johnsonb [22,23] 
2

12

1 2

G
G G⋅

 0 to 1 

C6   Sokal and Sneath [14] 12

1 2 122 2 3
G

G G G+ −
 0 to 1 

C7   Kulczynski [14] 12 1 2

1 2

( )
2

G G G
G G
⋅ +

⋅
 0 to 1 

C8   McConnaughey [14] 1 1 1 2G G G G G
G G

⋅ + ⋅
⋅

2 2 12

1 2

G⋅ −
 -1 to 1 
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Table 3.  Maximum G-H Score Retrieval Results for Fingerprint-Based Similarity Coefficients.  All the mean values are taken over 
the set of (100–D) non-discarded queries 
 

ID R P d(G1,G2) D ID R P d(G1,G2) D 

F1(BCI) 0.084 0.77 0.70 40 F6(BCI) 0.067 0.81 0.69 41 

F1(Unity) 0.066 0.85 0.73 44 F6 (Unity) 0.061 0.88 0.72 46 

F1(Daylight) 0.061 0.83 0.67 45 F6(Daylight) 0.065 0.86 0.63 44 

F2(BCI) 0.082 0.76 0.82 40 F7(BCI) 0.083 0.75 0.66 40 

F2 (Unity) 0.064 0.85 0.85 44 F7 (Unity) 0.062 0.84 0.70 43 

F2(Daylight) 0.055 0.85 0.80 45 F7(Daylight) 0.056 0.84 0.62 45 

F3(BCI) 0.084 0.76 0.83 41 F8(BCI) 0.208 0.45 0.91 73 

F3(Unity) 0.062 0.84 0.85 43 F8(Unity) 0.100 0.63 0.95 70 

F3(Daylight) 0.056 0.84 0.81 45 F8(Daylight) 0.141 0.56 0.94 68 

F4(BCI) 0.084 0.77 0.82 40 F9(BCI) 0.078 0.81 0.80 41 

F4(Unity) 0.066 0.85 0.84 44 F9 (Unity) 0.053 0.91 0.83 48 

F4(Daylight) 0.061 0.83 0.79 45 F9(Daylight) 0.065 0.88 0.75 45 

F5(BCI) 0.083 0.77 0.56 40 F10(BCI) 0.069 0.77 0.09 58 

F5 (Unity) 0.066 0.85 0.60 44 F10(Unity) 0.059 0.81 0.21 61 

F5(Daylight) 0.061 0.83 0.53 45 F10(Daylight) 0.061 0.88 0.12 58 
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Table 4.  Ranking Results for Fingerprint-Based Similarity Coefficients.  The values listed are 
the mean recall for all 100 queries for hit-lists of sizes 25, 50, 75, and 100 compounds. 
 

ID R25 R50 R75 R100 ID R25 R50 R75 R100

F1(BCI)
0.085 0.122 0.141 0.154 F6(BCI) 0.081 0.116 0.134 0.147 

F1(Unity)
0.075 0.108 0.126 0.142 F6 (Unity) 0.072 0.099 0.121 0.135 

F1(Daylight)
0.078 0.109 0.127 0.142 F6(Daylight) 0.076 0.107 0.126 0.138 

F2(BCI)
0.086 0.122 0.142 0.155 F7(BCI) 0.085 0.124 0.141 0.154 

F2 (Unity)
0.075 0.108 0.128 0.144 F7 (Unity) 0.075 0.107 0.127 0.141 

F2(Daylight)
0.077 0.107 0.128 0.141 F7(Daylight) 0.075 0.103 0.124 0.137 

F3(BCI)
0.085 0.124 0.141 0.155 F8(BCI) 0.037 0.062 0.078 0.094 

F3(Unity)
0.075 0.107 0.127 0.141 F8(Unity) 0.033 0.054 0.067 0.080 

F3(Daylight)
0.075 0.103 0.124 0.137 F8(Daylight) 0.028 0.043 0.058 0.071 

F4(BCI)
0.085 0.122 0.141 0.154 F9(BCI) 0.079 0.110 0.124 0.139 

F4(Unity)
0.075 0.108 0.126 0.142 F9 (Unity) 0.068 0.095 0.113 0.127 

F4(Daylight)
0.078 0.109 0.127 0.142 F9(Daylight) 0.071 0.105 0.122 0.135 

F5(BCI)
0.085 0.122 0.141 0.154 F10(BCI) 0.054 0.077 0.098 0.107 

F5 (Unity)
0.075 0.108 0.126 0.142 F10(Unity) 0.047 0.066 0.079 0.086 

F5(Daylight)
0.078 0.109 0.127 0.142 F10(Daylight) 0.052 0.075 0.092 0.099 

 



Table 5.  Comparison of Mean Hit-List Similarity between BCI Similarity Coefficients. 

Similarity is calculated for the top-100 hit-lists for all 100 queries using the asymmetric 
coefficient c/min{a,b} where a is the number of actives retrieved using one similarity measure 
over all hit-lists, b is the number of actives retrieved using the other similarity measure over all 
hit-lists, and c is the number of actives common to both similarity measures over all hit-lists).  If 
min{a,b}=0 for a particular query, then the asymmetric similarity is set to one. 
 

F2(BCI) 0.98  
 

F3(BCI) 0.96 0.98  
 

F4(BCI) 1.0 0.98 0.96  
 

F5(BCI) 1.0 0.98 0.96 1.0  
 

F6(BCI) 0.94 0.93 0.91 0.94 0.94 

F7(BCI) 0.95 0.97 1.0 0.95 0.95 0.90 

F8(BCI) 0.84 0.85 0.89 0.83 0.83 0.75 0.89 

F9(BCI) 0.92 0.90 0.88 0.92 0.92 0.97 0.87 0.69 

F10(BCI) 0.83 0.84 0.86 0.83 0.83 0.78 0.86 0.74 0.73 

 F1(BCI) F2(BCI) F3(BCI) F4(BCI) F5(BCI) F6(BCI) F7(BCI) F8(BCI) F9(BCI)
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Table 6.  Comparison of Mean Hit-List Similarity between the Fingerprint-based Similarity 
Coefficients (using the asymmetric coefficient approach described in the caption to Table 5). 
 

BCI-
Daylight 

Unity-
Daylight  BCI-Unity 

F1 0.76 0.79 0.81 

F2 0.76 0.79 0.81 

F3 0.77 0.80 0.81 

F4 0.76 0.79 0.81 

F5 0.76 0.79 0.81 

F6 0.74 0.77 0.78 

F7 0.76 0.80 0.81 

F8 0.61 0.69 0.79 

F9 0.73 0.74 0.76 

F10 0.78 0.78 0.84 

 

Table 7.  Maximum G-H Score Retrieval Results for Graph-Based Coefficients.  All the mean 
values are taken over the set of (100–D) non-discarded queries 
 

R P d(GID 1,G D 2) 

C1frag 0.083 0.82 0.75 41 

C2frag 0.082 0.84 0.83 46 

C3frag 0.072 0.83 0.91 44 

C4frag 0.083 0.82 0.85 41 

C5frag 0.083 0.83 0.73 41 

C6frag 0.083 0.82 0.61 41 

C7frag 0.082 0.84 0.86 41 

C8frag 0.081 0.84 0.71 41 
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Table 8.  Ranking Results for Graph-Based Similarity Coefficients.  The values listed are the 
mean recall for all 100 queries for hit-lists of sizes 25, 50, 75, and 100 compounds. 
 

R R R RID 25 50 75 100

 C1frag 0.087 0.119 0.134 0.148 

 C2frag 0.080 0.105 0.120 0.127 

 C3frag 0.061 0.089 0.105 0.119 

 C4frag 0.087 0.119 0.134 0.148 

 C5frag 0.088 0.119 0.138 0.151 

 C6frag 0.087 0.119 0.134 0.148 

 C7frag 0.087 0.123 0.140 0.152 

 C8frag 0.087 0.123 0.141 0.152 

 

Table 9.  Comparison of Average Hit-List Similarity between Graph-Based Similarity 
Coefficients (using the asymmetric coefficient approach described in the caption to Table 5). 
 
 
 C2frag 0.94  

 
 C3frag 0.80 0.65  

 
 C4frag 1.00 0.94 0.80  

 
 C5frag 0.99 0.93 0.83 0.99  

 C6frag 1.00 0.94 0.80 1.00 0.99 

 C7frag 0.98 0.92 0.85 0.98 0.99 0.98 

 C8frag 0.98 0.92 0.85 0.98 0.99 0.98 1.00 

 C1frag C2frag C3frag C4frag C5frag C6frag C7frag C8frag
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Table 10.  Comparison of Average Hit-List Similarity between the Fingerprint-Based and Graph-
Based Similarity Coefficients (using the asymmetric coefficient approach described in the 
caption to Table 5). 
 

 RASCAL-
BCI 

RASCAL-
Unity 

RASCAL-
Daylight 

C1frag / F1 0.69 0.70 0.67 

C2frag / F9 0.65 0.64 0.60 

C3frag / F8 0.61 0.68 0.70 

C4frag / F4 0.69 0.70 0.67 

C6frag / F5 0.69 0.70 0.67 

C7frag / F3 0.68 0.71 0.69 

C8frag / F7 0.68 0.71 0.69 



 24

Table 11.  Similarity Searches Of The MDDR Database 

 

 Active Compounds Retrieved Hit-List Similarity 
(Asymmetric) 

Activity 
Class 

MDDR 
ID 

Number 
in 

Activity 
Class 

Similarity 
Coefficient 25a  25

fuseda 50a  50
fuseda 75a  75

fuseda  100a  100
fuseda 150a  150

fuseda
100 

Compound 
Hit-List 

150 
Compound 

Hit-List 

 F3(BCI) 14 17 17 17 19 Acetylcholine 
Esterase Inhibitor 9221 679 

 C7frag 13 
13 

15 
15 

15 
16 

16 
18 

21 
23 0.75 0.68 

 F3(BCI) 25 32 39 40 44 Prolylendopeptidase 
Inhibitor 9248 300 

 C7frag 24 
25 

40 
41 

46 
50 

51 
56 

56 
72 0.68 0.66 

 F3(BCI) 11 13 13 13 14 Lipid Peroxidation 
Inhibitor 12453 609 

 C7frag 12 
13 

15 
13 

15 
15 

15 
16 

16 
17 1.00 1.00 

 F3(BCI) 20 22 24 24 26 Excitatory Amino 
Acid Inhibitor 12454 216 

 C7frag 9 
14 

15 
22 

20 
24 

25 
28 

26 
30 0.92 0.84 

 F3(BCI) 23 39 59 71 83 
CCK Antagonist 42711 456 

 C7frag 24 
24 

45 
49 

60 
70 

72 
82 

98 
93 0.65 0.75 

 F3(BCI) 22 35 47 62 92 H+/K+ ATPase 
Inhibitor 54112 698 

 C7frag 22 
23 

36 
37 

48 
52 

58 
64 

77 
91 0.57 0.74 

 F3(BCI) 17 27 31 32 35 
IL-1 Inhibitor 2450 364 

 C7frag 18 
21 

28 
27 

35 
31 

39 
34 

51 
41 0.88 0.83 

 F3(BCI) 9 11 11 11 11 Dopamine (D1) 
Agonist 11124 65 

 C7frag 11 
10 

11 
11 

11 
12 

11 
13 

11 
13 0.91 0.91 

 F3(BCI) 10 19 25 36 44 
Xanthine 27120 112 

 C7frag 8 
11 

16 
18 

24 
25 

33 
30 

37 
38 0.58 0.70 

 F3(BCI) 10 10 10 11 13 Leukotriene B4 
Antagonist 27214 285 

 C7frag 10 
10 

10 
11 

11 
11 

13 
12 

13 
12 0.91 0.85 

 



Table 12.  Total Numbers Of Actives Retrieved by Graph-Based, Fingerprint-Based and Fused 
Similarity Coefficients.  The Percentage Enhancement is defined as 

(BCI) frag

(BCI) frag

( ) max{ (F3 ), (C7100
max{ (F3 ), (C7 )}

a Fused a a
a a
−

×
)}  

where a(X) is the number of active molecules retrieved by similarity coefficient X  
 

Total Active Compounds Retrieved  
 a a a a a25 50 75 100 150

 F3(BCI) 161 225 276 317 381 
 C7frag 151 231 285 333 406 
 Fused Search 164 244 306 353 430 
 Percentage Enhancement 1.9 5.6 7.4 6.0 5.9 
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Figure 1.  Difference in C5 Similarity Values Resulting from the Modified Definition of the 
MCES.  The atoms and bonds corresponding to the respective MCES between each pair of 
molecules are highlighted in boldface. 
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Figure 2.  Relative Behavior of Similarity Coefficients 
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