
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in The Visual
Computer.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/3562/

Published paper
Gamito, M.N. and Maddock, S.C. (2007) Ray casting implicit fractal surfaces with
reduced affine arithmetic, The Visual Computer, Volume 23 (3), 155-165.

eprints@whiterose.ac.uk

The Visual Computer manuscript No.
(will be inserted by the editor)

Manuel N. Gamito · Steve C. Maddock

Ray Casting Implicit Fractal Surfaces
with Reduced Affine Arithmetic

Abstract A method is presented for ray casting implicit sur-
faces defined by fractal combinations of procedural noise
functions. The method is robust and uses affine arithmetic
to bound the variation of the implicit function along a ray.
The method is also efficient due to a modification in the af-
fine arithmetic representation that introduces a condensation
step at the end of every non-affine operation. We show that
our method is able to retain the tight estimation capabilities
of affine arithmetic for ray casting implicit surfaces made
from procedural noise functions while being faster to com-
pute and more efficient to store.

Keywords Affine arithmetic· Implicit Surfaces· Proced-
ural Noise Functions· Ray Casting

1 Introduction

This work develops an algorithm for ray casting implicit
fractal surfaces generated from procedural noise functions.
An implicit surface is defined as the set of all points for
which the evaluation of some continuous functionf : R

3 →
R gives zero. If the functionf is a fractal with dimension
D f , the implicit surface, being a zeroset of this function, is
also fractal with dimensionD f −1 [28]. A common proced-
ural technique to obtain functions that are fractal over a finite
range of scales is to accumulate several layers of noise. Each

The first author is supported by grant SFRH/BD/16249/2004 from
Fundação para a Ciência e a Tecnologia, Portugal.

Manuel N. Gamito
Department of Computer Science
The University of Sheffield
Tel.: +44 114 22 21877
Fax: +44 114 22 21810
E-mail: M.Gamito@dcs.shef.ac.uk

Steve C. Maddock
Department of Computer Science
The University of Sheffield
Tel.: +44 114 22 21830
Fax: +44 114 22 21810
E-mail: S.Maddock@dcs.shef.ac.uk

layer consists of a scaled and frequency shifted copy of some
original band-limited procedural noise functionn [24].

Implicit fractal surfaces are one example ofhypertex-
tures [23]. Hypertextures use functions to add volumetric de-
tail to the surface of objects, thereby increasing their visual
complexity. Hypertextured objects can either be visualised
with a volume rendering approach or converted to an impli-
cit surface representation [10].

Another application for implicit fractal surfaces is inpro-
cedural planet modelling [18]. One seeks to describe the ter-
rain of an entire planet by perturbing the surface of a sphere
with an appropriate fractal function. If the terrain is to be
realistic, however, the implicit surface cannot be allowedto
split into separate disconnected pieces. This possibilityis
currently avoided with the use of procedural noise functions
in the formn(x/‖x‖), effectively turning the implicit surface
into a procedural displacement map over the sphere.

An implicit fractal surface is very irregular. The attempt
to render such a surface by first converting it into a poly-
gon mesh would require a very high polygon count if the
surface was to be represented with any reasonable fidelity
[3,14]. The best way to visualise implicit fractal surfaces
is to directly render them with ray casting. The ray casting
algorithm must be guaranteed to find all correct ray inter-
sections. Failure to provide such a guarantee would produce
the familiar “surface acne” problem, which can potentially
crop up in all rendering algorithms that rely on ray-surface
intersection tests. Our algorithm evolves from the work of
Mitchell where interval arithmetic was used to obtain estim-
ates on the variation of the implicit surface’s function along
the ray [15]. However, we replace interval arithmetic (IA)
with affine arithmetic (AA) since the latter is able to provide
much tighter estimates for the aforementioned variation [6].

Ray casting with affine arithmetic was developed by de
Cusatis Jr. et al. [4]. When comparing AA against IA, de
Cusatis Jr. et al. reported mixed results for several textbook
mathematical surfaces like the Steiner surface or the double
torus. Our work focuses, instead, on implicit surfaces gener-
ated from specific classes of procedural noise functions that
find much employment in the field of computer graphics [5].
We have found that a direct implementation of AA, as pro-

2 Manuel N. Gamito, Steve C. Maddock

posed by de Cusatis Jr. et al., is less efficient than the IA
implementation of Mitchell for ray casting implicit surfaces
generated from fractal sums of procedural noise functions.
This has motivated our work in obtaining a reduced repres-
entation for AA, which is just as accurate as the original one
while being more efficient. It is this reduced AA represent-
ation for ray casting implicit surfaces based on procedural
noise functions that is the focus of this paper.

Section 2 presents previous work in this area. Section 3
gives a general formulation for procedural noise and applies
this formulation to three commonly used noise functions.
Understanding how noise functions are procedurally evalu-
ated is essential to understanding why our reduced AA rep-
resentation works. Section 4 presents affine arithmetic and
explains how it is used to solve the ray-surface intersec-
tion problem of ray casting. Our reduced AA framework is
then presented and shown to be a simple modification of
the standard AA framework. Section 5 shows results and
presents a comparison between reduced AA, standard AA
and IA. Section 6 presents conclusions, suggests possible
enhancements, and shows other areas where our technique
can be successfully applied.

2 Previous Work

Many methods have been presented to solve the intersection
problem between a ray and an implicit surface. We concen-
trate here on methods that are robust. These methods can al-
ways find the correct intersection point and are limited only
by the floating point precision of the machine. A survey of
such methods is given by Hart [8].

Robust implicit surface intersection methods were ini-
tially developed for surfaces with a simple and well known
shape. If the functionf (x) is a polynomial then the impli-
cit surface is said to bealgebraic and the intersection points
can be obtained with polynomial root finders [7]. Surfaces
generated by sweeping a sphere along a curve, calledgener-
alised cylinders, and surfaces that are subject to non-linear
deformations have also been considered [29,1].

Implicit surfaces based on the blending of compactly
supported radial basis functions are popular because of their
ability to model objects with complex topology. Many au-
thors who have worked with this type of surface have also
developed ray intersection algorithms for them. Such au-
thors include Blinn with hisblobby model, Nishimura et
al. with metaballs and Wyvill and Trotmann withsoft ob-
jects [2,19,32]. Sherstiuk has developed a general intersec-
tion method for surfaces generated from sums of compactly
supported basis functions [25]. His method approximates
any basis function with piecewise Hermite polynomials, the
roots of which can then be found with analytical formulas.

Two general approaches can be followed to find the in-
tersection between a ray and an implicit surface when the
function f that generates the surface has an arbitrary shape.
One approach is based onLipchitz bounds and the other is
based oninterval arithmetic. Lipchitz bounds impose a limit

on the maximum rate of change thatf can take inside some
region of space. Kalra and Barr successfully renderedLG-
surfaces by advancing rays inside an octree structure [12].
Inside each cell of the octree, a Lipchitz boundL is used for
f and another Lipchitz boundG is used for the derivative
of f along the ray direction. Hart also uses Lipchitz bounds
in his sphere tracing method [9]. Unlike Kalra and Barr, it
is not necessary to employ Lipchitz bounds for the derivat-
ives of f . The method works by marching along a ray with
steps that are guaranteed not to cause intersection with the
surface. In both the LG-surface method and in sphere tracing
it is necessary to specifya priori Lipchitz bounds related to
the functionf that one wishes to use. That can be difficult in
a general case although Kalra and Barr and also Hart present
bounds for some commonly used functions. If the Lipchitz
bounds are not optimal, these methods will converge more
slowly.

Worley and Hart introduced several optimisations in the
sphere tracing method for the case of implicit surfaces gen-
erated from hypertextures [31]. The improved sphere tracing
method takes into account the fact that hypertextured objects
are often generated from the sums of many procedural func-
tions. Other optimisations include a spatial coherence tech-
nique to reduce the number of function evaluations and im-
age coherence and overshooting techniques to increase the
stepping size along the rays.

Mitchell computes ray-surface intersections with inter-
val arithmetic [15]. Interval arithmetic (IA) is a framework
that replaces arithmetic operators and function evaluations
on real numbers with equivalent operators and functions that
are evaluated on intervals [16]. With IA it is possible to ob-
tain interval bounds for the variation off along some arbit-
rary span along a ray. The method by Mitchell performs a
recursive binary subdivision along the length of a ray, com-
puting interval bounds for the function and its derivative in-
side each ray span. Newton’s method is used to find the root
once the interval bounds indicate the function has become
monotonic inside some ray span. The method by Mitchell
was later extended to use affine arithmetic (AA), instead of
IA [4]. Ray casting with AA produces interval bounds that
are much tighter than those obtained with IA, therefore in-
creasing the efficiency of the intersection algorithm. One ad-
vantage of interval methods over Lipchitz methods is that
interval bounds are computed automatically and on the fly.
It is not necessary to supply some initial parameter, in the
form of a conservative estimate for the Lipchitz bound, that
will ultimately determine the efficiency of the algorithm.

3 Procedural Evaluation of Noise Functions

Procedural noise functions generate random fluctuations that
possess a band-limited spectrum. These functions implement
what is calledprocedural noise because it can be embodied
as a procedure in a computer program. Procedural noise is
commonly used as a building block to construct complex
and natural looking textures, terrain elevation data and dy-

Ray Casting Implicit Fractal Surfaces 3

namic phenomena such as fire, water or clouds [5]. The key
to the success of procedural noise functions is that they can
be evaluated independently at any desired point in space.

The value of a procedural noise functionn at some point
x in R

3 depends on the position ofx relative to a discrete but
infinite setS = {xi ∈ R

3 : i = 0,1,2, . . .} of node pointsxi
that are distributed throughout space. BecauseS has an infin-
ite number of node points, the evaluation ofn(x) is feasible
whenn(x) is made to depend only on a small subsetS(x)
of S. At each locationx, the subsetS(x) is the finite set of
node points inS that surroundx according to some specified
criterion.

For our purposes, we can define the value of a procedural
noise functionn at x as a sum of kernel functionsφk that
depend on the displacement vectors betweenx and the node
points inS(x):

n(x) =
L

∑
k=0

φk(d0,d1, . . . ,dN), (1)

whered j = x− x j andx j, with j = 0,1, . . . ,N, belongs to
S(x). The characteristics of each particular noise function
come from the choice of several factors, namely:

– The shape of the kernels.
– The numberL of kernels used.
– The criterion used to defineS(x).
– The distribution of thexi in space to formS.

The random fluctuations exhibited by procedural noise
result from the introduction of stochastic components into
some of the previous factors. In some cases of procedural
noise functions, the distribution of node points through space
follows a desired probability density. Random variables are
also often included in the definition of the kernel functions.

3.1 Perlin Gradient Noise Functions

Perlin’s gradient noise function was the first procedural noise
function to be proposed in the literature [21]. In this noise
function, the node pointsxi coincide with the vertices of
a regular lattice placed at integer coordinate positions:S =
{(u,v,w) : u,v,w ∈ Z}. For each locationx, the setS(x) is
made of the eight node points at the vertices of the lattice
cell in which x resides. There are eight kernels and each
one depends on a single node point fromS(x). A kernel φ
that depends on the displacementd j = (x j,y j,z j), relative to
node pointx j, is written as:

φ(d j) = (ξ1x j +ξ2y j +ξ3z j)h(x j)h(y j)h(z j). (2)

The functionh is a cubic hermite polynomial and the
vector (ξ1,ξ2,ξ3) is randomly distributed over the surface
of a sphere with unit radius. There are several variations
of Perlin’s gradient noise function, which include Perlin’s
value noise function and value-gradient noise function, but
these will not be described here [20]. They fit easily into for-
mulation (1) with kernels that are similar to (2). Recently,

Perlin improved his gradient noise function by using quintic
hermite polynomials forh and having(ξ1,ξ2,ξ3) be a ran-
dom vector that can only take values from a discrete set of
vectors [22].

3.2 Sparse Convolution Functions

Sparse convolution noise functions were first proposed by
Lewis [13]. As with Perlin’s noise functions, a regular lat-
tice placed at integer positions is also used. Inside each cell
in this lattice,K node points are uniformly distributed. This
simple scheme attempts to approximate a Poisson-disc dis-
tribution of node points. The value ofn at each locationx
depends on the node points of the cell that containsx plus
the node points in the twenty six surrounding cells. The set
S(x), therefore, always contains 27K node points. There is
an equal number of kernels, one for each node point. A ker-
nelφ depends only on the distance‖d j‖ to its corresponding
node point:

φ(d j) = ξ h(‖d j‖). (3)

The scalarξ is a gaussian random variable and the func-
tion h can take any shape as long as it is compactly suppor-
ted on the interval[0,1]. This last requirement is necessary
to guarantee that only the 27K node points in the cell that
containsx and in its immediate neighbours can possibly in-
fluence the value ofn(x).

Sparse convolution noise functions are more expensive
to evaluate than gradient noise functions. A total of 27K
kernels need to be evaluated against only eight for Perlin’s
gradient noise function. Sparse convolution functions, how-
ever, have the advantage of providing exact control over the
frequency spectrum of the resulting noise. It is possible to
show that the spectrum ofn for sparse convolution noise
functions is proportional to the spectrum of the functionh
that is chosen for (3) [13].

3.3 Cellular Texture Functions

Cellular texture functions, proposed by Worley, rely on a
Voronoi decomposition of space based on the location of the
xi node points [30]. As with sparse convolution functions, an
approximation to a Poisson-disc distribution of node points
is generated inside an integer lattice, although the technique
used to achieve this effect is slightly different from the one
employed by Lewis. The kernels for cellular texture noise
functions consist of the ordered set of increasing distances
between any locationx and the node points. For some loc-
ation x, let D(x) = {‖di‖ : i = 0,1,2. . .} be the set of dis-
tances fromx to all node points inS. Let alsop : N0 → N0
be a permutation of the indices inD(x) so that the new set
D(x) = {‖d j‖ : j = p(i), i = 0,1,2. . .} is ordered by increas-
ing distances. Thej-th kernel function is then taken as the
j-th element in the ordered setD(x):

φ j = a j‖d j‖, (4)

4 Manuel N. Gamito, Steve C. Maddock

wherea j is some chosen scaling constant. Worley points out
that only the kernel functionsφ0 to φ3 are useful for texture
synthesis. Theφ j with j > 3 resembleφ3 and do not add sig-
nificant new details. With the first four kernel functions, sev-
eral interesting combinations are possible by choosing the
appropriate values of thea j constants. Kernel functions can
also be turned off by settinga j = 0.

The technique Worley employs to distribute the node
points throughout the integer lattice guarantees that for every
locationx the four nearest node points will always be found
inside the lattice cell that containsx or inside one of its
neighbours. Similarly to sparse convolution noise functions,
the setS(x), used to computeφ0 to φ3, is then made of all
the node points that are contained inside the 3×3×3 cube
of lattice cells that is centred on the cell containingx.

4 Robust Ray Casting of Implicit Surfaces

Ray casting an implicit surface consists of determining the
intersection point between the surface and any ray, paramet-
erised asr(t) = o+ t l with t > 0. Because the implicit sur-
face is the zeroset of some functionf , ray casting amounts
to finding the first root of the non-linear equation:

f (r(t)) = 0. (5)

Let the parameter along the ray vary inside some inter-
val T = [tmin, tmax]. For simplicity of notation, let us also in-
troduce the auxiliary functiong = f ◦ r . We wish to find an
interval estimateG(T) of the corresponding variation ing(t)
ast takes values fromT . The functionG is called aninter-
val extension of g. The interval extension function provides
information about the presence of roots of (5) inside some
interval. If 0 6∈ G(T) then no root can be present inT . If,
on the other hand, 0∈ G(T), a root may or may not exist
in T . This is because current techniques for computingG
can only provide a conservative interval estimate that con-
tains the true variation ofg. The fact that 0∈ G(T) does
not necessarily mean thatg(t) = 0 for somet ∈ T . The best
strategy in this case is to splitT into smaller intervals and
test the interval extension function on each of them.

Figure 1 lists a robust algorithm, calledRayIntersect,
that is used to find the first intersection point between a ray
and the implicit surface. The algorithm relies on the subdi-
vision of an initial intervalT0 and the information returned
by the interval extension functionG. A stack is used to store
the subdivided intervals that are waiting to be tested for the
existence of roots. The algorithm terminates either when a
small enough interval bounding a root has been found or
when the stack becomes empty. The latter scenario occurs
in situations where a ray does not intersect the surface. The
order with which the two subintervals are pushed onto the
stack, in the case where both may contain a root, is not arbit-
rary. By pushingTr first and thenTl , the nearest intersection
is guaranteed to be found.

push T0 onto stack;

while stack not empty

pop T = [tmin,tmax] from the stack;

if tmax − tmin < ε
return tmin;

let ti = (tmax + tmin)/2;
let Tl = [tmin,ti] andTr = [ti,tmax];

if 0∈ G(Tr)
push Tr onto stack;

if 0∈ G(Tl)
push Tl onto stack;

Fig. 1 TheRayIntersect algorithm.

TheRayIntersect algorithm is a simplified version of
the interval algorithm by Mitchell [15]. In Mitchell’s ori-
ginal algorithm, an interval extensionG′ of the derivative of
g along the ray was also computed. When 0∈ G(T) and 06∈
G′(T) were both verified, the function was known to have
an isolated root inside the intervalT and Newton’s method
could then be used to provide quadratic convergence. In the
case of fractal combinations of procedural noise functions,
however,g varies erratically and only for very small inter-
vals do the conditions for monoticity exist that enable us to
isolate a single root. We have found that the use ofG′ does
not provide any speedup while ray casting fractal implicit
surfaces and, in fact, slows down the algorithm since two
interval extensions have to be computed instead of one. de
Cusatis Jr. et al. reached the same conclusion for the type of
implicit surfaces that they were interested in rendering [4].

4.1 Standard Affine Arithmetic

Affine arithmetic is a technique proposed by de Figueiredo
and Stolfi [6]. This technique can provide accurate estim-
ates for the interval extension functionG(T) featured in the
RayIntersect algorithm. Affine arithmetic represents an
improvement over the previous interval arithmetic technique
[16]. The representation of some quantity with affine arith-
metic (AA) tries to model the uncertainties about that quant-
ity so that it is always bounded inside a known interval. The
advantage over the simpler interval arithmetic framework is
that AA tries to keep correlations between quantities, cal-
culated along some arbitrarily long chain of computations.
AA keeps correlations between similar quantities through
the use oferror symbols. A quantity t̂ in AA is represen-
ted as a central valuet0 plus a sequence of error symbolsei,
each with its associated error coefficientti:

t̂ = t0 + t1e1 + t2e2 + · · ·+ tnen. (6)

The error symbols lie in the interval[−1,+1] but are oth-
erwise unknown and the coefficientsti express the contribu-
tion of each symbol to the AA quantity. Error symbols can
be shared among several AA quantities and that is how cor-
relation information can be kept among related quantities.

Ray Casting Implicit Fractal Surfaces 5

The computation of affine operations on AA quantities does
not result in the creation of any new error symbols1. For two
AA quantities ˆu, v̂ and a scalarα, the affine operations are:

α û = (αu0)+(αu1)e1 + · · ·+(αun)en,

û±α = (u0±α)+u1e1 + · · ·+unen,

û± v̂ = (u0± v0)+(u1± v1)e1 + · · ·+(un ± vn)en.

(7)

For non-affine operations, like multiplication or square
root, a new error symbol must be introduced to express the
non-linearity of the operator. The result of some non-affine
operator is a new AA quantity ˆw = w0+w1e1+ · · ·+wnen +
wkek, where the extra error symbolek has been added to the
representation. For example, if ˆw = ûv̂, the coefficients of ˆw
are given by:

w0 = u0v0,

wi = u0vi + v0ui, for i = 1, . . . ,n,

wk =
n

∑
i=1

|ui| ·
n

∑
i=1

|vi|.

(8)

The coefficientwk in (8), associated with the newly in-
serted error symbolek, is positive and represents the mag-
nitude of the error introduced by the linearisation of ˆuv̂ into
an affine form. The same property ofwk holds in the case of
all the other non-affine operations.

As a sequence of AA operations progresses, quantities
have an increasingly larger number of error symbols, slow-
ing down subsequent AA computations and increasing the
memory requirements. This is because, if the uncertainty as-
sociated with some error symbolei of an AA quantity is
not shared with any other AA quantities, the latter must all
have a null coefficient forei. When implementing AA, cum-
bersome book-keeping routines are required to manage the
large but sparse sequences of error coefficients2. This ineffi-
ciency associated with AA representations has been acknow-
ledged by Stolfi and de Figueiredo [26]. They recommend
that a procedure calledcondensation be periodically applied
on an AA quantity when its sequence of error symbols grows
too large. An AA quantity ˆu, with m error symbols, can be
condensed to form another quantity ˆv, with n < m error sym-
bols, according to:

vi = ui, for i = 0, . . . ,n−1,

vn =
m

∑
i=n

|ui|.
(9)

Condensation brings some large AA quantity ˆu down
to a more manageable size but it also destroys the correla-
tion information that was kept in the error symbolsei, with

1 Assuming that rounding errors are ignored. Otherwise, affine oper-
ations, just like their non-affine counterparts, require the insertion of a
new error symbol that accounts for the rounding error of the operation.

2 A simpler alternative would be to store in full all the coefficients
of an AA quantity. This would be wasteful of memory, considering
that many of those coefficients are zero. It would also be wasteful of
CPU cycles. As example (8) shows, the computation of AA operations
involves a loop over all theei error symbols. If the sequence of coeffi-
cients is sparse, many of the loop iterations become unnecessary.

n < i 6 m. This is not a problem if the aforementioned error
symbols were unique to ˆu. The accuracy of subsequent com-
putations is affected, however, if theei were being shared
with other AA quantities that are involved in those compu-
tations.

4.2 Reduced Affine Arithmetic

The problem of having to deal with ever increasing sets of er-
ror symbols in standard AA has motivated our development
of a reduced AA form for ray casting implicit surfaces made
from procedural noise functions. As equation (1) shows, pro-
cedural noise functions are built from sums of independent
kernel functions. No correlations exist between the sequence
of computations that are performed for any two kernel func-
tions φi and φ j during the computation ofn. Correlations
during the evaluation of a procedural noise function have a
very localised nature and are isolated inside the sequence
of computations for each individual kernel. The only global
correlation that is expected to exist throughout the computa-
tion of n is related to the uncertainty with the position of the
root t along a ray. This happens whenn is embedded in the
equationg(t) = 0 that must be solved by the ray caster.

A reduced AA representation̂t keeps only two error sym-
bols from the original AA representation: the symbole1, ex-
pressing uncertainty along the ray, and the symbole2, ex-
pressing uncertainties involved in the computation oft̂ alone.
The error symbole1 is the only symbol that is shared between
t̂ and other AA quantities. The expression fort̂ is:

t̂ = t0 + t1e1 + t2e2. (10)

The starting point for the computation of the interval ex-
tensionG(T), as part of theRayIntersectalgorithm, is the
conversion of the intervalT = [tmin, tmax] into the reduced
AA form t̂:

t0 =
tmax + tmin

2
,

t1 =
tmax − tmin

2
,

t2 = 0.

(11)

Reduced AA operations that have a non-affine nature are
always followed by a condensation step to remove the extra
error symbole3 that would have been introduced otherwise.
Reduced AA can, therefore, be seen as a modification of af-
fine arithmetic that employs an aggressive form of condens-
ation. The condensation of a three error symbol AA form ˆu
to a two error symbol AA form ˆv is a simplified version of
(9):

v0 = u0,

v1 = u1,

v2 = |u2|+ |u3|.

(12)

In practice, all non-affine operations in reduced AA are
modified so that the condensation step (12) is automatically

6 Manuel N. Gamito, Steve C. Maddock

built into them. For example, the multiplication ˆw = ûv̂, that
in standard AA was given by (8), now becomes:

w0 = u0v0,

w1 = u0v1+ v0u1,

w2 = |u0v2 + v0u2|+(|u1|+ |u2|) · (|v1|+ |v2|) .

(13)

The last stage in the computation of an interval extension
for ray casting is the conversion of the reduced AA form
ĝ = g(t̂) into the intervalG(T) = [gmin,gmax], which allows
the test 0∈ G(T) to be performed trivially:

gmin = g0−|g1|− |g2|,

gmax = g0 + |g1|+ |g2|,

0∈ G(T) ⇔ gmin 6 0 6 gmax.

(14)

An analysis of the localised nature of the correlations
during AA computations, as part of the evaluation of a pro-
cedural noise function, requires that the kernels for each in-
dividual noise function be examined in turn. In the case of
Perlin’s gradient noise function, the kernel (2) has three AA
multiplications, each of which would introduce a new er-
ror symbol in a standard AA representation. However, once
these three multiplications are performed, the evaluationof
φ(d j) is complete and the new error symbols can be safely
condensed. At the same time, the AA evaluation of the cubic
hermite polynomialh is performed through a direct process
of Chebyshev affine approximation rather than applying all
the usual algebraic operations [26,11]. This means that no
internal correlations have to be considered during the eval-
uation of h because the reduced AA result is computed in
one single step. In the end, it is possible to say that the eval-
uation ofφ(d j) with reduced AA does not lose any correl-
ation information and has the same accuracy as a standard
AA evaluation.

In the case of Lewis’s sparse convolution noise func-
tion, the kernel (3) depends only on the distance‖d j‖ to
some node pointx j. This distance computation features four
non-affine operations, namely three squares and one square
root operation. The distance‖d j‖, however, is involved in
the computation ofφ j alone and does not influence the other
φi kernels (withi 6= j) that are required for the evaluation
of n. The condensation of the four new error symbols from
the evaluation of‖d j‖ does not, therefore, lead to any loss
of accuracy. The evaluation of the functionh is performed
directly by Chebyshev approximation and, again, we can
say that a reduced AA computation ofφ j is as accurate as
a standard AA computation.

In the case of Worley’s cellular texture function, the ker-
nel is evaluated by iteratively applying a binary minimum
operator min(li, l j) on all the pairs of distanceslk = ‖dk‖
from x to the node points that belong to the setS(x). The
minimum operator is evaluated with affine arithmetic ac-
cording to the expression:

min(li, l j) =
li + l j

2
−

∣

∣li − l j
∣

∣

2
. (15)

tmin

tmax

to
min

to
max

Fig. 2 The information conveyed by reduced affine arithmetic for the
behaviour of the functiong inside an intervalT = [tmin,tmax].

For example, ifli > l j we have min(li, l j) = (li + l j)/2−
(li − l j)/2 = l j. This exact cancellation effect can only be
achieved if all correlations betweenli = ‖di‖ andl j = ‖d j‖
are maintained. However, the distance computations with re-
duced AA involve the condensation of four error symbols, as
we have seen in the case of Lewis’s sparse convolution noise
function, and an exact cancellation cannot be obtained. For
this reason, the application of reduced AA to cellular tex-
ture functions incurs a loss of accuracy. In Section 5, the
loss of accuracy of reduced AA will be compared against its
increased performance relative to standard AA for cellular
texture functions.

4.3 Interval Optimisation

The idea of optimising the size of the interval bounding the
first root of (5) was initially presented by de Cusatis Jr. et al.
[4]. We present it here again in the framework of reduced af-
fine arithmetic. When implementing theRayIntersect al-
gorithm with affine arithmetic, it is possible to reduce the
size of the intervalT being tested at the start of each itera-
tion, and prior to its subdivision, by taking advantage of the
extra information provided by reduced AA.

Figure 2 shows an example of the information conveyed
by a reduced AA representation of the functiong, evaluated
inside some intervalT = [tmin, tmax] along the ray, for a situ-
ation whereg increases smoothly. The purpose of the ray
casting algorithm is to find the point where the graph ofg
crosses the horizontal axis. The reduced AA representation
g(t̂), wheret̂ encodesT in reduced AA form according to
(11), is geometrically equivalent to a parallelogram that en-
closes the graph ofg for the intervalT . The bounding inter-
val can be optimised by reducing it toT o = [to

min, t
o
max] prior

to subdivision. It is clear from the drawing that significant
convergence towards the root is achieved with just a single
evaluation ofg(t̂) in reduced AA form.

The optimised intervalT o is obtained from the reduced
AA representationŝt = t0 + t1e1 for the interval andg(t̂) =
g0 +g1e1 +g2e2 for the functiong in the following way:

Ray Casting Implicit Fractal Surfaces 7

to
min = max

(

t0−
g0

g1
t1−

∣

∣

∣

∣

g2

g1

∣

∣

∣

∣

t1, tmin

)

,

to
max = min

(

t0−
g0

g1
t1 +

∣

∣

∣

∣

g2

g1

∣

∣

∣

∣

t1, tmax

)

.

(16)

A derivation of these equations is given in Appendix A.
The optimisation step (16) is inserted into the ray casting
algorithm between the third and fourth lines of code (refer
to Figure 1), i.e. after an intervalT is retrieved from the top
of the stack but before it is subdivided3.

5 Results

A hypertextured implicit surface generated by the following
function was used to test our reduced affine arithmetic ray
casting method:

f (x) = ‖x‖−1+0.6
3

∑
k=0

2−0.8kn(2k+2x). (17)

The term‖x‖ − 1 is responsible for giving an overall
spherical shape to the surface. The remaining summation on
the right of (17) employs a procedural noise functionn and
represents the hypertexture, being responsible for the gen-
eration of all the surface detail. This summation produces a
fractal surface with a dimension of 2.2, according to Saupe4

[24].
Figure 3 shows, from left to right, a rendering of the

implicit surface whenn is Perlin’s improved gradient noise
function, Lewis’s sparse convolution function withK = 2
(refer to Section 3.2) and Worley’s cellular texture function
with a0 = 1 anda1 = a2 = a3 = 0 (refer to Section 3.3). We
have implemented a reduced affine arithmetic model of cel-
lular texture functions that can use linear combinations of
theφ0 andφ1 kernels only. We have found that theφ2 andφ3
kernels are too complex to implement when using AA. This
is due to the difficulty in determining the third and fourth
smallest distances in the setS(x) when all the‖d j‖ have an
arbitrary degree of uncertainty. For this reason, our current
implementation of Worley’s cellular texture functions must
enforce the restrictiona2 = a3 = 0.

Tables 1, 2 and 3 show some statistics that enable a com-
parison between all the interval estimation techniques for
the procedural noise functions under consideration. We have
compared the performance of interval arithmetic (IA), stand-
ard AA, reduced AA and reduced AA with interval optim-
isation. The rendering time was obtained for a 800× 600

3 Wheng1 → 0, the enclosing parallelogram in Figure 2 tends to-
ward an axis aligned rectangle. In the limit, no optimisation is possible
and the original intervalT must be subdivided.

4 To be more precise, a fractal surface with dimension 2.2 would
result if the summation had an infinite number of terms, withk ∈ Z.
As it stands, the function (17) produces a fractal surface only over a
limited range of scales.

Table 1 Statistics for Perlin’s gradient noise function.

Avg. Evals. p/ray Time

IA 82.04 10m06.2s
Standard AA 38.24 42m43.3s
Reduced AA 38.24 6m50.2s

Reduced AA + Int. Opt. 11.92 4m02.9s

Table 2 Statistics for Lewis’s sparse convolution noise function.

Avg. Evals. p/ray Time

IA 51.95 27m56.4s
Standard AA 26.76 38m26.5s
Reduced AA 26.76 12m22.0s

Reduced AA + Int. Opt. 14.84 6m52.5s

Table 3 Statistics for Worley’s cellular texture function.

Avg. Evals. p/ray Time

IA 50.30 33m22.2s
Standard AA 37.16 3h21m17.1s
Reduced AA 48.37 33m01.0s

Reduced AA + Int. Opt. 22.80 15m39.2s

resolution image on a dual Athlon 2.1GHz processor. The
average number of function evaluations per ray tells how of-
ten an interval extensionG(T) had to be computed as part of
theRayIntersect algorithm. This statistic is a measure of
the accuracy of each particular interval estimation technique.
A more accurate technique causes the ray casting algorithm
to converge to the intersection point with fewer iterations
and fewer interval extension computations.

As expected, the IA intersection algorithm needs a large
number of function evaluations due to the excessive con-
servativeness of IA estimates. Interval arithmetic, however,
compensates for this lack of accuracy by being quite fast,
which makes it competitive with some of the more advanced
algorithms. Straightforward replacement of the IA opera-
tions with AA equivalents leads to a more inefficient al-
gorithm, due to the need to compute sequences of error sym-
bol coefficients that grow progressively larger. Nevertheless,
standard AA is able to reduce the average number of func-
tion evaluations, which shows that AA does have the poten-
tial to optimise ray-surface intersection algorithms, if only it
can be implemented in a more efficient manner.

The better performance of IA over standard AA for the
evaluation of procedural noise functions was already acknow-
ledged implicitly by Heidrich et al. [11]. In their work, IA
was used for computing the interval estimates of a Perlin
noise function. These interval estimates were then converted
into AA form for use in the rest of the application. The au-
thors do not state a reason for preferring IA over AA when
computing a Perlin noise function but it is symptomatic that
such a decision was taken in a paper whose purpose was to
propose AA as a better alternative to IA.

Efficiency with AA is obtained in the reduced AA rep-
resentation, where a maximum of two error symbols per

8 Manuel N. Gamito, Steve C. Maddock

Fig. 3 An implicit surface representing a sphere that has been hypertextured with three layers of (from left to right) Perlin’sgradient noise
function, Lewis’s sparse convolution noise function and Worley’s cellular texture function.

quantity are used. As we had predicted in Section 4.2, no
accuracy is lost by the use of reduced AA for the gradient
noise function and the sparse convolution function. There is
a loss of accuracy in the case of the cellular texture function,
which is compensated by its increased computation speed so
that, overall, reduced AA performs much better than stand-
ard AA for all three procedural noise functions. The final im-
provement comes from optimising the size of the intervals,
as explained in Section 4.3. Reduced AA combined with in-
terval optimisation gives the lowest rendering statisticsof all
interval estimation techniques.

Figure 4 shows a procedurally defined planet. The impli-
cit surface uses a combination of the procedural noise func-
tions studied in this paper. The faceted aspect of the terrain,
in particular, is a consequence of the Voronoi regions created
by the cellular texture function. In this example, no attempt
was made to avoid the occurrence of disconnected pieces of
terrain that arise naturally from the implicit representation,
giving the planet a somewhat surrealistic look. This image
took roughly 16 hours to render with reduced AA and in-
terval optimisation. Given the results in Tables 1 to 3, no
attempt was made to render this image with any of the other
interval estimation techniques. This is an example of a com-
plex surface, with detail that is visible over a wide range of
distances, that would have been impracticable to render with
standard AA and whose rendering becomes barely feasible
with reduced AA.

6 Conclusions and Future Developments

Ray casting implicit fractal surfaces with affine arithmetic
becomes efficient only with the introduction of a reduced
representation for uncertain quantities. The representation
of an uncertain quantity with reduced affine arithmetic uses
a maximum of two error symbols. It has been shown that
without this reduced representation affine arithmetic would
not be able to compete against a simpler interval arithmetic
representation. These results were obtained while ray cast-
ing implicit surfaces generated from procedural noise func-

tions that are widely used in computer graphics. Such pro-
cedural noise functions are based on the summation of sev-
eral statistically independent terms. By maintaining onlythe
correlation related to the uncertainty in the position of the
root along the ray, reduced affine arithmetic can achieve the
same results as standard affine arithmetic while being more
efficient.

As predicted in Section 4.2 and subsequently confirmed
in Section 5, the application of reduced AA to cellular tex-
ture functions incurs a loss of accuracy. This is ultimately
due to the destruction of important correlation information
through the condensation of error symbols. The loss of ac-
curacy, however, is compensated by the greatly increased ef-
ficiency that comes from dealing with only two error sym-
bols for each AA quantity, with a rendering time that drops
from 3 hours and 21 minutes with standard AA to only 33
minutes with reduced AA. It is possible, however, that for
some other procedural noise functions, with kernels that we
have not tested, the loss of accuracy may be more significant.
In such a case, standard AA can be used for the calculation
of the kernelφ(d1,d2, . . . ,dn) and a switch to reduced AA
can be done for the remainder of the calculations in (1).

Standard and reduced AA quantities can easily be inter-
changed. Any reduced AA quantity is also a valid standard
AA quantity that happens to have only two error symbols.
The second error symbole2 has to be given a new and unique
index number, after conversion to standard AA, to express
the fact that it is not shared with any other standard AA
quantities. A standard AA quantity can be transformed to a
reduced AA quantity through condensation. For ray casting
purposes, it is required that both AA representations agree
that the common error symbole1 is used to express un-
certainty relative to the position of the root along the ray.
This is so that the interval optimisation procedure of Sec-
tion 4.3 can be properly implemented. In a situation like that
of Figure 4, where several procedural noise functions are
used, the majority of the noise functions would be entirely
computed with reduced AA while only the more problem-
atic ones would use standard AA internally to compute their
kernel functions.

Ray Casting Implicit Fractal Surfaces 9

Fig. 4 A procedural planet represented as an implicit surface witha radius equal to the radius of the Earth and seen from an altitude of 100
metres. The implicit surface uses a mixture of all three procedural noise functions that are studied in this paper.

Interpolating implicit surfaces have gained much pop-
ularity in recent years because of their ability to interpol-
ate any set of constraint points [27,17]. Interpolating im-
plicit surfaces are now the method of choice to generate a
continuous and smooth surface approximation from a set of
scattered data points. From a structural point of view, in-
terpolating implicit surfaces are entirely similar to sparse
convolution noise functions, with equation (1) being used
to sum the contribution of several independent radial basis
functions (RBFs). Each RBFφ(di) depends only on the dis-
tance‖di‖ to constraint pointxi. An RBF is written asφ(di)=
aih(‖di‖), whereh is some continuous and differentiable
function. The difference between this RBF and (3) is only
in the meaning of the scaling constantai or ξ , respectively.
Theai are pre-computed so as to cause the surface to inter-
polate through the required constraint points whereasξ is
the outcome of a random variable.

Given the structural similarity between sparse convolu-
tion noise functions and interpolating implicit surfaces made
from sums of RBFs we can say that our reduced affine arith-
metic method can also be used successfully to render the
latter with ray casting. Current methods for rendering inter-
polating implicit surfaces resort to sphere tracing, wherea
Lipchitz bound must be supplied by the user before render-
ing takes place [9]. The Lipchitz bound for a continuous and
differentiable functionf in three dimensions, such as the one
generated through (1) for sums of RBFs, is the maximum
magnitude‖∇ f‖ of the gradient vector. For an arbitrary set
of constraint pointsxi, this maximum gradient magnitude
can only be found through a costly global optimisation pro-
cedure. Morse et al. avoid this procedure by evaluating‖∇ f‖
at a large set of random points and using the maximum value
thus obtained as their Lipchitz bound [17]. Clearly, this does

not lead to a robust rendering algorithm as it is not possible
to guarantee that all correct ray-surface intersections will be
found. Problematic areas will be those where the value off
changes more rapidly than predicted by the Lipchitz bound
that Morse et al. use. By ray casting interpolating implicit
surfaces with reduced affine arithmetic, one has an auto-
matic, robust, efficient, and verifiable method of computing
all ray intersections without the burden of having to estimate
the Lipchitz bound as a pre-computation step.

A Derivation of the Interval Optimisation Equation

When computing ˆg = g(t̂), we have that ˆg = g0 +g1e1 +g2e2 andt̂ =
t0 + t1e1, where the error symbolse1 ande2 are unknown but vary in
the interval[−1,+1]. Replacing the expression fort̂ in the expression
for ĝ, by way of thee1 error symbol, we have:

ĝ =
g1

t1
(t̂ − t0)+g0 +g2e2. (A.1)

Equation (A.1) is the equation for a line in the ˆg-t̂ plane with a
slope ofg1/t1. By letting e2 vary in [−1,+1] and keepingtmin 6 t̂ 6

tmax we sweep the parallelogram that is shown in Figure 2. The upper
and lower edges of this parallelogram are obtained from (A.1) when
e2 = ±1. The intersections of these two edges with the horizontal axis
give the new and optimised limits for the interval. Setting (A.1) equal
to zero, withe2 = ±1, and rearranging, we have:

t̂ = t0−
g0

g1
t1±

g2

g1
t1. (A.2)

Independently of the signs ofg1 andg2 (t1 is always positive be-
cause of (11)), the left and right solutions to (A.2) along the horizontal
axis are, respectively:

to
min = t0−

g0

g1
t1−

∣

∣

∣

∣

g2

g1

∣

∣

∣

∣

t1,

to
max = t0−

g0

g1
t1 +

∣

∣

∣

∣

g2

g1

∣

∣

∣

∣

t1.

(A.3)

10 Manuel N. Gamito, Steve C. Maddock

We only use the results from (A.3) if they lead to a tighter interval
than the original[tmin,tmax], hence the min and max functions in (16).

Acknowledgements The authors would like to express their gratitude
to Luiz Henrique de Figueiredo for graciously making available the
source code used by de Cusatis Jr. et al. [4].

References

1. Barr, A.H.: Ray tracing deformed surfaces. In: D.C. Evans, R.J.
Athay (eds.) Computer Graphics (SIGGRAPH ’86 Proceedings),
pp. 287–296. ACM Press (1986)

2. Blinn, J.F.: A generalization of algebraic surface drawing. ACM
Transactions on Graphics1(3), 235–256 (1982)

3. Bloomenthal, J.: Polygonisation of implicit surfaces. Computer
Aided Geometric Design5(4), 341–355 (1988)

4. de Cusatis Jr., A., de Figueiredo, L.H., Gattas, M.: Interval meth-
ods for raycasting implicit surfaces with affine arithmetic. In:
Proc. XII Brazilian Symposium on Computer Graphics and Im-
age Processing (SIBGRAPI ’99), pp. 65–71 (1999)

5. Ebert, D.S., Musgrave, F.K., Peachey, D.R., Perlin, K., Worley,
S.P.: Texturing & Modeling: A Procedural Approach, 3rd edn.
Morgan Kaufmann Publishers Inc. (2003)

6. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and ap-
plications. Numerical Algorithms37(1–4), 147–158 (2004)

7. Hanrahan, P.: Ray tracing algebraic surfaces. In: P.P. Tanner (ed.)
Computer Graphics (SIGGRAPH ’83 Proceedings), pp. 83–90.
ACM Press (1983)

8. Hart, J.: Ray tracing implicit surfaces. In: Modeling, Visualizing
and Animating Implicit Surfaces, pp. 13.1–13.15 (1993). SIG-
GRAPH ’93 Course Notes 25

9. Hart, J.C.: Sphere tracing: A geometric method for the antialiased
ray tracing of implicit surfaces. The Visual Computer12(9), 527–
545 (1996)

10. Hart, J.C.: Implicit representation of rough surfaces.Computer
Graphics Forum16(2), 91–99 (1997). ISSN 0167-7055

11. Heidrich, W., Slusallek, P., Seidel, H.: Sampling procedural
shaders using affine arithmetic. ACM Transactions on Graphics
17(3), 158–176 (1998)

12. Kalra, D., Barr, A.H.: Guaranteed ray intersections with implicit
surfaces. In: J. Lane (ed.) Computer Graphics (SIGGRAPH ’89
Proceedings), vol. 23, pp. 297–306. ACM Press (1989)

13. Lewis, J.P.: Algorithms for solid noise synthesis. In: J. Lane (ed.)
Computer Graphics (SIGGRAPH ’89 Proceedings), vol. 23, pp.
263–270. ACM Press (1989)

14. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution
3D surface construction algorithm. In: M.C. Stone (ed.) Computer
Graphics (SIGGRAPH ’87 Proceedings), vol. 21, pp. 163–169.
ACM Press (1987)

15. Mitchell, D.P.: Robust ray intersection with interval arithmetic.
In: Proceedings of Graphics Interface ’90, pp. 68–74. Canadian
Information Processing Society (1990)

16. Moore, R.: Interval Arithmetic. Prentice-Hall (1966)
17. Morse, B.S., Yoo, T.S., Chen, D.T., Rheingans, P., Subramanian,

K.R.: Interpolating implicit surfaces from scattered surface data
using compactly supported radial basis functions. In: B. Werner
(ed.) Proceedings of the International Conference on ShapeMod-
eling and Applications (SMI-01), pp. 89–98. IEEE Computer So-
ciety (2001)

18. Musgrave, F.K.: Mojoworld: Building procedural planets. In: D.S.
Ebert, F.K. Musgrave (eds.) Texturing & Modeling: A Procedural
Approach, 3rd edn., chap. 20, pp. 565–615. Morgan Kauffman
Publishers Inc. (2003)

19. Nishimura, H., Hirai, M., Kawai, T., Kawata, T., Shirakawa, I.,
Omura, K.: Object modeling by distribution function and a method
of image generation. Trans. IECE Japan, Part DJ68-D(4), 718–
725 (1985)

20. Peachey, D.R.: Building procedural textures. In: D.S. Ebert, F.K.
Musgrave (eds.) Texturing & Modeling: A Procedural Approach,
3rd edn., chap. 2, pp. 7–94. Morgan Kauffman Publishers Inc.
(2003)

21. Perlin, K.: An image synthesizer. In: B.A. Barsky (ed.) Computer
Graphics (SIGGRAPH ’85 Proceedings), pp. 287–296. ACM
Press (1985)

22. Perlin, K.: Improving noise. ACM Transactions on Graphics (SIG-
GRAPH ’02 Proceedings)21(3), 681–682 (2002)

23. Perlin, K., Hoffert, E.M.: Hypertexture. In: J. Lane (ed.) Computer
Graphics (SIGGRAPH ’89 Proceedings), vol. 23, pp. 253–262.
ACM Press (1989)

24. Saupe, D.: Point evaluation of multi-variable random fractals. In:
H. Jüergens, D. Saupe (eds.) Visualisierung in Mathematikund
Naturissenschaften - Bremer Computergraphik Tage, pp. 114–
126. Springer-Verlag (1989)

25. Sherstyuk, A.: Fast ray tracing of implicit surfaces. Computer
Graphics Forum18(2), 139–147 (1999)

26. Stolfi, J., de Figueiredo, L.H.: Self-validated numerical methods
and applications (1997). Course notes for the 21st Brazilian Math-
ematics Colloquium

27. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that in-
terpolate. ACM Transactions on Graphics21(4), 855–873 (2002)

28. Voss, R.F.: Fractals in nature: From characterization to simulation.
In: H.O. Peitgen, D. Saupe (eds.) The Science of Fractal Images,
chap. 1, pp. 21–70. Springer-Verlag (1988)

29. van Wijk, J.J.: Ray tracing objects defined by sweeping a sphere.
Computers & Graphics9(3), 283–290 (1985)

30. Worley, S.P.: A cellular texture basis function. In: H. Rushmeier
(ed.) Computer Graphics (SIGGRAPH ’96 Proceedings), vol. 30,
pp. 291–294. ACM Press (1996)

31. Worley, S.P., Hart, J.C.: Hyper-rendering of hyper-textured sur-
faces. In: Proc. of Implicit Surfaces ’96, pp. 99–104 (1996)

32. Wyvill, G., Trotman, A.: Ray-tracing soft objects. In: Computer
Graphics International’90, pp. 469–475 (1990)

Manuel N. Gamito is currently
a PhD student at the Univer-
sity of Sheffield. He received a
MSc in Electrotechnical Engineer-
ing from Lisbon Technical Univer-
sity in 1996. His research interests
are in procedural modelling, land-
scape modelling and the visual sim-
ulation of natural phenomena. He is
a member of ACM SIGGRAPH and
Eurographics.

Steve C. Maddockis a lecturer in
computer science at the University
of Sheffield. His research interests
are in computer facial modelling
and animation, human figure anima-
tion, procedural modelling, and sur-
face deformation techniques. He re-
ceived a PhD in computer science
from the University of Sheffield in
1999. He is a member of ACM SIG-
GRAPH

