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Ray Casting Implicit Fractal Surfaces
with Reduced Affine Arithmetic

Abstract A method is presented for ray casting implicit surlayer consists of a scaled and frequency shifted copy of some
faces defined by fractal combinations of procedural noiseiginal band-limited procedural noise functiof24].
functions. The method is robust and uses affine arithmetic Implicit fractal surfaces are one example yfpertex-
to bound the variation of the implicit function along a raytures[23]. Hypertextures use functions to add volumetric de-
The method is also efficient due to a modification in the affail to the surface of objects, thereby increasing theinais
fine arithmetic representation that introduces a cond@msatcomplexity. Hypertextured objects can either be visudlise
step at the end of every non-affine operation. We show thwith a volume rendering approach or converted to an impli-
our method is able to retain the tight estimation capabditi cit surface representation [10].
of affine arithmetic for ray casting implicit surfaces made Another application for implicit fractal surfaces ispro-
from procedural noise functions while being faster to congedural planet modelling [18]. One seeks to describe the ter-
pute and more efficient to store. rain of an entire planet by perturbing the surface of a sphere
with an appropriate fractal function. If the terrain is to be
realistic, however, the implicit surface cannot be allowed
split into separate disconnected pieces. This possikgity
currently avoided with the use of procedural noise funcion
in the formn(x/||x||), effectively turning the implicit surface
1 Introduction into a procedural displacement map over the sphere.

An implicit fractal surface is very irregular. The attempt

This work develops an algorithm for ray casting implicito render such a surface by first converting it into a poly-
fractal surfaces generated from procedural noise funstio§on mesh would require a very high polygon count if the
An implicit surface is defined as the set of all points fopurface was to be represented with any reasonable fidelity
which the evaluation of some continuous functibnR3 — [3,14]. The best way to visualise implicit fractal surfaces
R gives zero. If the functiorf is a fractal with dimension IS to directly render them with ray casting. The ray casting
Dy, the implicit surface, being a zeroset of this function, idlgorithm must be guaranteed to find all correct ray inter-
also fractal with dimensioB; — 1 [28]. A common proced- Sections. Failure to provide such a guarantee would produce
ural technique to obtain functions that are fractal overitefin the familiar “surface acne” problem, which can potentially

range of scales is to accumulate several layers of noisé. ESEOP up in all rendering algorithms that rely on ray-surface
intersection tests. Our algorithm evolves from the work of

The first author is supported by grant SFRH/BD/16249/20@fr Mitchell where interval arithmetic was used to obtain estim
Fundagao para a Ciéncia e a Tecnologia, Portugal. ates on the variation of the implicit surface’s functionrajo
the ray [15]. However, we replace interval arithmetic (I1A)
with affine arithmetic (AA) since the latter is able to progid
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much tighter estimates for the aforementioned variati¢n [6
Ray casting with affine arithmetic was developed by de
Cusatis Jr. et al. [4]. When comparing AA against IA, de
Cusatis Jr. et al. reported mixed results for several t@itbo
mathematical surfaces like the Steiner surface or the @oubl
torus. Our work focuses, instead, on implicit surfaces gene
ated from specific classes of procedural noise functiorts tha
find much employment in the field of computer graphics [5].
We have found that a direct implementation of AA, as pro-
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posed by de Cusatis Jr. et al., is less efficient than the t& the maximum rate of change thfatan take inside some
implementation of Mitchell for ray casting implicit surfag region of space. Kalra and Barr successfully rendé@el
generated from fractal sums of procedural noise functiorssrrfaces by advancing rays inside an octree structure [12].
This has motivated our work in obtaining a reduced represside each cell of the octree, a Lipchitz bound used for
entation for AA, which is just as accurate as the original oneand another Lipchitz boun@ is used for the derivative
while being more efficient. It is this reduced AA representf f along the ray direction. Hart also uses Lipchitz bounds
ation for ray casting implicit surfaces based on proceduial his sphere tracing method [9]. Unlike Kalra and Barr, it
noise functions that is the focus of this paper. is not necessary to employ Lipchitz bounds for the derivat-
Section 2 presents previous work in this area. Sectioriv@s of f. The method works by marching along a ray with
gives a general formulation for procedural noise and applisteps that are guaranteed not to cause intersection with the
this formulation to three commonly used noise functionsurface. In both the LG-surface method and in sphere tracing
Understanding how noise functions are procedurally evaitiis necessary to specifypriori Lipchitz bounds related to
ated is essential to understanding why our reduced AA rdpe functionf that one wishes to use. That can be difficult in
resentation works. Section 4 presents affine arithmetic amgeneral case although Kalra and Barr and also Hart present
explains how it is used to solve the ray-surface intersdmeunds for some commonly used functions. If the Lipchitz
tion problem of ray casting. Our reduced AA framework ibounds are not optimal, these methods will converge more
then presented and shown to be a simple modification siowly.
the standard AA framework. Section 5 shows results and Worley and Hart introduced several optimisations in the
presents a comparison between reduced AA, standard 8ghere tracing method for the case of implicit surfaces gen-
and IA. Section 6 presents conclusions, suggests possialated from hypertextures [31]. The improved sphere tgacin
enhancements, and shows other areas where our technige¢éhod takes into account the fact that hypertextured tbjec
can be successfully applied. are often generated from the sums of many procedural func-
tions. Other optimisations include a spatial coherencl-tec
nigue to reduce the number of function evaluations and im-
age coherence and overshooting techniques to increase the
stepping size along the rays.

Many methods have been presented to solve the intersectioPM'tChe” computes ray-surface intersections with inter-

problem between a ray and an implicit surface. We concelf- arithmetic [15]' '”te.r"a' arithmetic (IA) is a frameulor_
trate here on methods that are robust. These methods cafl K¢ replaces ar|th_met|c operators and function evgluaﬂo
ways find the correct intersection point and are limited onqu real numbers with equivalent operators and functiorts tha

2 Previous Work

. . e : re evaluated on intervals [16]. With lA it is possible to ob-
by the floating point precision of the machine. A survey ain interval bounds for the variation éfalong some arbit-

such methods is given by Hart [8]. .
Robust implicit surface intersection methods were infary span along a ray. The method by Mitchell performs a

tially developed for surfaces with a simple and well know[ECUSIVe bina}rg SUb(;jiV]jSioﬂ a:cong the Iendgf[h %f aray, com-
shape. If the functiorf (x) is a polynomial then the impli- puting interval bounds for the function and its derivatie |

cit surface is said to balgebraic and the intersection pointsSlde each ray span. Newton's method is used to find the root

can be obtained with polynomial root finders [7]. Surfaceosnce the interval bounds indicate the function has become

enerated by sweeping a sphere along a curve, ogdfe- fnonotonic inside some ray span. _The m_ethod b_y Mitchell
glised cylindgrs, andpsugrfacgs that aregsubject to non-linedyas later extended to use affine arithmetic (AA), instead of

deformations have also been considered [29, 1]. [4]. Ray casting with AA produces interval bounds that

Implicit surfaces based on the blending of compactlare much tighter than those obtained with IA, therefore in-

supported radial basis functions are popular because iof thégeasmg the efficiency of the Intersection algorithm. Od}e a
.. . . vantage of interval methods over Lipchitz methods is that
ability to model objects with complex topology. Many au-

thors who have worked with this type of surface have al interval bounds are computed automatically and on the fly.

10is not necessary to supply some initial parameter, in the
developed ray intersection algorithms for them. Such ay-, . ! . P '
thors include Blinn with hisblobby model, Nishimura et A8rm of a conservative estimate for the Lipchitz bound, that

al. with metaballs and Wyvill and Trotmann withsoft ob- will ultimately determine the efficiency of the algorithm.

jects[2,19,32]. Sherstiuk has developed a general intersec-

tion method for surfaces generated from sums of compactly

supported basis functions [25]. His method approximat8sProcedural Evaluation of Noise Functions

any basis function with piecewise Hermite polynomials, the

roots of which can then be found with analytical formulas.Procedural noise functions generate random fluctuatiais th
Two general approaches can be followed to find the ipossess a band-limited spectrum. These functions implemen

tersection between a ray and an implicit surface when thwbat is calledorocedural noise because it can be embodied

function f that generates the surface has an arbitrary shape.a procedure in a computer program. Procedural noise is

One approach is based tipchitz bounds and the other is commonly used as a building block to construct complex

based onnterval arithmetic. Lipchitz bounds impose a limit and natural looking textures, terrain elevation data and dy
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namic phenomena such as fire, water or clouds [5]. The kegrlin improved his gradient noise function by using quainti

to the success of procedural noise functions is that they darmite polynomials foh and having(&1, &2, &3) be a ran-

be evaluated independently at any desired point in spacedom vector that can only take values from a discrete set of
The value of a procedural noise functiot some point vectors [22].

x in R3 depends on the position rfrelative to a discrete but

infinite setS= {x; ¢ R®:i =0,1,2,...} of node pointsx

that are distributed throughout space. Beca&lsas an infin- 3.2 Sparse Convolution Functions

ite number of node points, the evaluationngk) is feasible

whenn(x) is made to depend only on a small subSet) Sparse convolution noise functions were first proposed by

of S At each locatiorx, the subse§(x) is the finite set of Lewis [13]. As with Perlin’s noise functions, a regular lat-

node points irSthat surrounck according to some specifiedtice placed at integer positions is also used. Inside edth ce

criterion. in this lattice, K node points are uniformly distributed. This
For our purposes, we can define the value of a procedusiinple scheme attempts to approximate a Poisson-disc dis-

noise functionn at x as a sum of kernel functiong, that tribution of node points. The value of at each locationx

depend on the displacement vectors betweand the node depends on the node points of the cell that contaipius
points inS(x): the node points in the twenty six surrounding cells. The set

S(x), therefore, always contains Rode points. There is
L an equal number of kernels, one for each node point. A ker-
= kZ)‘PK(dmdl’ -5 dN), D el @ depends only on the distanie; || to its corresponding
= node point:
wheredj = x —xj andx;j, with j = 0,1,...,N, belongs to (di) = Eh(||dj]]). 3)
S(x). The characteristics of each particular noise functlo(% i) J
come from the choice of several factors, namely: The scalag is a gaussian random variable and the func-
tion h can take any shape as long as it is compactly suppor-
ted on the interval0, 1]. This last requirement is necessary
to guarantee that only the R7node points in the cell that
containsx and in its immediate neighbours can possibly in-
fluence the value afi(x).

The random fluctuations exhibited by procedural noise Sparse convolution noise functions are more expensive
result from the introduction of stochastic components into evaluate than gradient noise functions. A total oK27
some of the previous factors. In some cases of procedukainels need to be evaluated against only eight for Perlin’s
noise functions, the distribution of node points throughcgp gradient noise function. Sparse convolution functionsy-ho
follows a desired probability density. Random variables aever, have the advantage of providing exact control over the
also often included in the definition of the kernel functionsfrequency spectrum of the resulting noise. It is possible to

show that the spectrum aof for sparse convolution noise
functions is proportional to the spectrum of the functfon
3.1 Perlin Gradient Noise Functions that is chosen for (3) [13].

— The shape of the kernels.

— The numbeL. of kernels used.

— The criterion used to defirgx).

— The distribution of the; in space to forns.

Perlin’s gradient noise function was the first procedurid@o

function to be proposed in the literature [21]. In this nois8.3 Cellular Texture Functions

function, the node pointg; coincide with the vertices of

a regular lattice placed at integer coordinate positi@s: Cellular texture functions, proposed by Worley, rely on a
{(u,v,w) : u,v,w € Z}. For each locatior, the setS(x) is Voronoi decomposition of space based on the location of the
made of the eight node points at the vertices of the lattisenode points [30]. As with sparse convolution functions, an
cell in which x resides. There are eight kernels and ea@pproximation to a Poisson-disc distribution of node point
one depends on a single node point fr&m). A kernel ¢ is generated inside an integer lattice, although the tegcteni
that depends on the displacemépt= (x;,y;j,z;), relative to used to achieve this effect is slightly different from theson

node pointx;, is written as: employed by Lewis. The kernels for cellular texture noise
functions consist of the ordered set of increasing distance

@(dj) = (&axj + &2yj + &3zj) h(xj)h(y;)h(z). (2) between any locatior and the node points. For some loc-
ationx, let D(x) = {||di|| : i =0,1,2...} be the set of dis-

The functionh is a cubic hermite polynomial and thetances from to all node points |rS Let alsop : No — No

vector (¢1, 2, ¢3) is randomly distributed over the surfacg,e 5 permutation of the indices B(x) so that the new set
of a sphere with unit radius. There are several varlat|om —{|ldj||: j = p(i),i=0,1,2...} is ordered by increas-

of Perlin’s gradient noise function, which include Pedin’ |ng dlstances The-th kernel functlon is then taken as the
value noise function and value-gradient noise function, I),Ith element in the ordered SBtx):

these will not be described here [20]. They fit easily inte fo

mulation (1) with kernels that are similar to (2). Recentlyy, = a;||d;||, 4)
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wherea; is some chosen scaling constant. Worley points oR}sh To onto stack;
that only the kernel functiong, to ¢ are useful for texture while stack not empty
synthesis. They with j > 3 resemblep; and do not add Sig-  pop T = [tmin tmax] from the stack;
nificant new details. With the first four kernel functionsyse i ¢, —tmyn < &
eral interesting combinations are possible by choosing the return tyn;
appropriate values of they constants. Kernel functions can et = (trx+tmin)/2;
also be turned off by settirg = 0. let Ty = [tmin,ti] andTy = [ti,tmax];
The technique Worley employs to distribute the nodeif 0 G(T,)
points throughout the integer lattice guarantees thatfene push T, onto stack;
locationx the four nearest node points will always be found if 0 e G(T;)
inside the lattice cell that contains or inside one of its push T onto stack;
neighbours. Similarly to sparse convolution noise furmitio
the setS(x), used to computey to ¢, is then made of all Fig. 1 TheRayIntersect algorithm.
the node points that are contained inside the®x 3 cube
of lattice cells that is centred on the cell containiag
TheRayIntersect algorithm is a simplified version of
the interval algorithm by Mitchell [15]. In Mitchell’s ori-
ginal algorithm, an interval extensi@f of the derivative of
4 Robust Ray Casting of Implicit Surfaces g along the ray was also computed. Whea G(T) and 0¢
G/(T) were both verified, the function was known to have
Ray casting an implicit surface consists of determining tta isolated root inside the interv@land Newton’s method
intersection point between the surface and any ray, paranttuld then be used to provide quadratic convergence. In the
erised as (t) = o+tl with t > 0. Because the implicit sur- case of fractal combinations of procedural noise functions
face is the zeroset of some functiénray casting amounts however,g varies erratically and only for very small inter-

to finding the first root of the non-linear equation: vals do the conditions for monoticity exist that enable us to
isolate a single root. We have found that the us&ofloes
f(r(t))=0. (5) not provide any speedup while ray casting fractal implicit

surfaces and, in fact, slows down the algorithm since two
interval extensions have to be computed instead of one. de
%usatis Jr. et al. reached the same conclusion for the type of
implicit surfaces that they were interested in renderirig [4

Let the parameter along the ray vary inside some int
val T = [tmin, tmax]. FOr simplicity of notation, let us also in-
troduce the auxiliary functiog = f or. We wish to find an
interval estimat&(T) of the corresponding variation git)
ast take; values frorrT_. The functlon(_B is calleld annter- 1 1 otandard Affine Arithmetic
val extension of g. The interval extension function provides
information about the presence of roots of (5) inside so
interval. If 0¢ G(T) then no root can be presentin If,
on the other hand, @ G(T), a root may or may not exist

Mine arithmetic is a technique proposed by de Figueiredo
and Stolfi [6]. This technique can provide accurate estim-
ates for the interval extension functi@{(T) featured in the
JayIntersect algorithm. Affine arithmetic represents an
ﬁlnprovement over the previous interval arithmetic techeiq
[16]. The representation of some quantity with affine arith-
metic (AA) tries to model the uncertainties about that quant
ity so that it is always bounded inside a known interval. The
advantage over the simpler interval arithmetic framewsrk i
that AA tries to keep correlations between quantities, cal-

Ylated along some arbitrarily long chain of computations.

and the implicit surface. The algorithm relies on the subdis weeps correlations between similar quantities through
vision of an initial intervalTy and the information returnedthe use oferror symbols. A quantityf in AA is represen-

by the interval extension functidd. A stack is used to store ted as a central valug plus a sequence of error symbels
the subdivided intervals that are waiting to be tested fer tl%ach with its associated error coefficignt

existence of roots. The algorithm terminates either when a
small enough interval bounding a root has been found PL t, +t;e; +toe + - +then. (6)
when the stack becomes empty. The latter scenario occurs

in situations where a ray does not intersect the surface. The The error symbols lie in the intervat 1, +1] but are oth-
order with which the two subintervals are pushed onto tleewise unknown and the coefficiertit&xpress the contribu-
stack, in the case where both may contain a root, is not arltibn of each symbol to the AA quantity. Error symbols can
rary. By pushingf; first and therl}, the nearest intersectionbe shared among several AA quantities and that is how cor-
is guaranteed to be found. relation information can be kept among related quantities.

tains the true variation of. The fact that 0= G(T) does
not necessarily mean thgft) = 0 for somet € T. The best
strategy in this case is to spiit into smaller intervals and
test the interval extension function on each of them.
Figure 1 lists a robust algorithm, calledyIntersect,
that is used to find the first intersection point between ar
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The computation of affine operations on AA quantities do@s< i < m. This is not a problem if the aforementioned error

not result in the creation of any new error symBoRor two  symbols were unique . The accuracy of subsequent com-

AA guantitiesu; vV and a scalaa, the affine operations are: putations is affected, however, if thee were being shared

_ with other AA guantities that are involved in those compu-

au= (GUO)+(GU1)81+"'+(aUn)en, tations.

U+a=(uta)+ue+-- -+ Unen,

0+V= (UptVo)+ (Uuptvi)er+---+ (UpEVn)en. _ _ _
i ) i o 4.2 Reduced Affine Arithmetic

For non-affine operations, like multiplication or square

root, a new error symbol must be introduced to express e problem of having to deal with ever increasing sets of er-
non-linearity of the operator. The result of some non-affing; symhols in standard AA has motivated our development
operator is a new AA quantity = wo +W1€1 + - +Wn€a+  of 5 reduced AA form for ray casting implicit surfaces made
wie, where the extra error symbel has been added 10 thegqom procedural noise functions. As equation (1) shows, pro
representation. For examplewf= OV, the coefficients oW cqqyral noise functions are built from sums of independent
are given by: kernel functions. No correlations exist between the secgien
Wo = UgVo, of computations that are performed for any two kernel func-
tions @ and ¢; during the computation ofi. Correlations
. . (8) during the. evaluation of a procedural noise function have a
we=S Ul S il. very Iocallse_zd nature and_ are isolated inside the sequence
i; i; of computations for each individual kernel. The only global
o ) ) ) . correlation that is expected to exist throughout the comput
The coefficienty in (8), associated with the newly in-tjon of nis related to the uncertainty with the position of the
serted error symbad, is positive and represents the magrgtt along a ray. This happens whars embedded in the
nitude of the error introduced by the linearisatioruéfirito equationg(t) = 0 that must be solved by the ray caster.
an affine form. The same propertyw‘t holds inthe case of A reduced AA representatidikeeps only two error sym-
all the other non-affine operations. _bols from the original AA representation: the symbgl ex-
As a sequence of AA operations progresses, quant'tlﬁ%ssing uncertainty along the ray, and the syneolex-
have an increasingly larger number of error symbols, slowressing uncertainties involved in the computatiohajone.
ing down subsequent AA computations and increasing tfte error symbog; is the only symbol that is shared between
memory requirements. This is because, if the uncertainty agnd other AA guantities. The expression fis:
sociated with some error symbel of an AA quantity is

not shared with any other AA quantities, the latter must dli= to +tye; +toes. (10)
have a null coefficient fog;. When implementing AA, cum- ) ) ) )

bersome book-keeping routines are required to manage the ' N€ Starting point for the computation of the interval ex-
large but sparse sequences of error coefficlefitsis ineffi- eNSIoNG(T), as part of th@ayIntersect algorithm, is the
ciency associated with AA representations has been acknGbversion of the interval’ = [tin, tmax] into the reduced
ledged by Stolfi and de Figueiredo [26]. They recommerftf* form t:

Wi = UpVi +Vou;i, fori=1,...,n,

that a procedure callembndensation be periodically applied tmax + tmin

on an AA quantity when its sequence of error symbolsgrowd— — 5 >

too large. An AA quantityu, with m error symbols, can be tex — tmin (11)
condensed to form another quantityith n < merror sym- 1= 2

bols, according to: t=0.

vi=u, fori=0,.,n—1, Reduced AA operations that have a non-affine nature are

Vi = g uil. 9) always followed by a condensation step to remove the extra
&, error symboles that would have been introduced otherwise.
Reduced AA can, therefore, be seen as a modification of af-
fine arithmetic that employs an aggressive form of condens-
flon. The condensation of a three error symbol AA farm *
to a two error symbol AA fornv is a simplified version of
1 Assuming that rounding errors are ignored. Otherwise, affiper- (9):

ations, just like their non-affine counterparts, requimitisertion of a
new error symbol that accounts for the rounding error of heration. Yo = Uo;
2 A simpler alternative would be to store in full all the coeifficts Vi = Uy, (12)
of an AA quantity. This would be wasteful of memory, considgr .
that many of those coefficients are zero. It would also be efalsof Vo = |ug| + [ug].
CPU cycles. As example (8) shows, the computation of AA dpara . . . .
involves a loop over all the, error symbols. If the sequence of coeffi- [N practice, all non-affine operations in reduced AA are

cients is sparse, many of the loop iterations become unsages modified so that the condensation step (12) is automatically

Condensation brings some large AA quantitydéwn
to a more manageable size but it also destroys the corr
tion information that was kept in the error symbejswith
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built into them. For example, the multiplication= (v, that
in standard AA was given by (8), now becomes:

Wo = UoVo,
W1 = UgV1 + VoUy, (13) 1
W2=|UoV2+V0U2|+(|U1\+\Uz\)~(\V1|+|V2D. |

The last stage in the computation of an interval extension tmin i
for ray casting is the conversion of the reduced AA form ! 10 t
~ - . . max max
§ = g(t) into the intervalG(T) = [gmin, 9max), Which allows
the test 0= G(T) to be performed trivially:

Omin = 9o — 91| — 92/,
Omax = Jo+ |91\ + \92\, (14) Fig. 2 The information conveyed by reduced affine arithmetic fer th

behaviour of the functiog inside an interval = [trin, tmax]-
Oe G(T) < Omin < 0< Omax-

An analysis of the localised nature of the correlations gq, example, if; > |} we have mifl;,1;) = (Ii +1;)/2—

during AA computations, as part of the evaluation of a prgy, _ 1;)/2 = 1;. This exact cancellation effect can only be
ceqiural noi_se functi_on, requires _that t_he kernels for each Lchieved if all correlations betwedn= ||d;|| andl; = |d;]|
dividual noise function be examined in turn. In the case gfe maintained. However, the distance computations with re
Perlin's gradient noise function, the kernel (2) has thrée Agyced AA involve the condensation of four error symbols, as
multiplications, each of which would introduce a new efye have seen in the case of Lewis’s sparse convolution noise
ror symbol in a standard AA representation. However, onggnction, and an exact cancellation cannot be obtained. For
these three multiplications are performed, the evaluaifonipis reason, the application of reduced AA to cellular tex-
¢(d;) is complete and the new error symbols can be safg|ye functions incurs a loss of accuracy. In Section 5, the
condensed. Atthe same time, the AA evaluation of the culifss of accuracy of reduced AA will be compared against its

hermite polynomiah is performed through a direct procesgycreased performance relative to standard AA for cellular
of Chebyshev affine approximation rather than applying alixture functions.

the usual algebraic operations [26,11]. This means that no

internal correlations have to be considered during the-eval

uation ofh because the reduced AA result is computed in o

one single step. In the end, it is possible to say that the ev&3 Interval Optimisation

uation of @(d;) with reduced AA does not lose any correl- ] o ) ) )

ation information and has the same accuracy as a standbliig idea of optimising the size of the interval bounding the

AA evaluation. first root of (5) was initially presented by de Cusatis Jr.leta
In the case of Lewis's sparse convolution noise fun¢4]- We presentit here again in the framework of reduced af-
tion, the kernel (3) depends only on the distafjdg| to fine arithmetic. When implementing tfieyIntersect al-
some node point;. This distance computation features foug®rithm with affine arithmetic, it is possible to reduce the
non-affine operations, namely three squares and one sqi#8 Of the intervall' being tested at the start of each itera-
root operation. The distandfj||, however, is involved in tion, and prior to its subdivision, by taking advantage & th
the computation o, alone and does not influence the othe®tra information provided by reduced AA.
@ kernels (withi # j) that are required for the evaluation ~Figure 2 shows an example of the information conveyed
of n. The condensation of the four new error symbols froYy @ reduced AA representation of the functgrevaluated
the evaluation of|d;|| does not, therefore, lead to any los§Side some interval = [tmin, tmax| along the ray, for a situ-
of accuracy. The evaluation of the functibris performed ation whereg increases smoothly. The purpose of the ray

directly by Chebyshev approximation and, again, we c&asting algorithm is to find the point where the graprgof
say that a reduced AA computation @f is as accurate asCrosses the horizontal axis. The reduced AA representation

a standard AA computation. g(f), wheret encodesT in reduced AA form according to

In the case of Worley’s cellular texture function, the kef11). is geometrically equivalent to a parallelogram thrat e
nel is evaluated by iteratively applying a binary minimurfloses the graph affor the intervalT. The bounding inter-
operator mifil;,1;) on all the pairs of distanceg = ||d| V&l can be optimised by reducing it 16 = [trn, they] prior
from X to the node points that belong to the §x). The to subdivision. It is clear from _the drgwmg that .S|gn|f|c.ant
minimum operator is evaluated with affine arithmetic agonvergence towards the root is achieved with just a single

cording to the expression: evaluation c_)fg_(f) in reduced AA form.
The optimised interval © is obtained from the reduced
i+l i — 1] AA representation§ = ty +t;& for the interval andy(f) =

min(li,1j) = — 5 (15)  go+ gier + goe for the functiong in the following way:
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Table 1 Statistics for Perlin’s gradient noise function.

{0, = max(to B @tl |9 tl,tmin> , Avg. Evals. p/ray Time
O1 A 82.04 10M06.2s
(16) Standard AA 384 4214335
o . do g2 Reduced AA 384 an50.2s
trax = MiN{ to — atl + a t1,tmax | - Reduced AA + Int. Opt. 182 4m02.9s

A de_rivf"‘tio_n of these equ_ati_ons is gi\_/en in Appendix ATabIe 2 Statistics for Lewis’s sparse convolution noise function.
The optimisation step (16) is inserted into the ray casting

algorithm between the third and fourth lines of code (refer Avg. Evals. p/ray Time
to Figure 1), i.e. after an _interva'l_ i_s retrieved from the top A 5195 5645
of the stack but before it is subdivided Standard AA 2676 38m26.55
Reduced AA 2676 12m22.0s
Reduced AA + Int. Opt. 184 am52.5s
5 Results

Table 3 Statistics for Worley’s cellular texture function.
A hypertextured implicit surface generated by the follogvin

function was used to test our reduced affine arithmetic ray Avg. Evals. pray Time
casting method: IA 50.30 3322.2s
Standard AA 3716 3h21ml7.1s
S sk ki2 Reduced AA 487 33101.0s
f(x) =||x||-1+0.6 %2 n(2°7°x). 17) Reduced AA + Int. Opt. 280 15m39.25
K=

The term||x|| — 1 is responsible for giving an overall .
spherical shape to the surface. The remaining summation"8golution image on a dual AthlonTX5Hz processor. The
the right of (17) employs a procedural noise functivand 2verage number of fupctlon evaluations per ray tells how of-
represents the hypertexture, being responsible for the gl @n interval extensicB(T) had to be computed as part of

eration of all the surface detail. This summation produced RayIntersect algorithm. This statistic is a measure of
fractal surface with a dimension of2 according to Saufe the accuracy of each pa}rtlcular interval estimation teqinei .
[24]. A more accurate technigue causes the ray casting algorithm

Figure 3 shows, from left to right, a rendering of th&® converge to the intersection point with fewer iterations

implicit surface whem is Perlin’s improved gradient noise@nd fewer interval extension computations.
function, Lewis’s sparse convolution function with = 2 As expected, the IA intersection algorithm needs a large

(refer to Section 3.2) and Worley’s cellular texture fupati NUMber of function evaluations due to the excessive con-
with ap = 1 anday = a, = ag = 0 (refer to Section 3.3). We Servativeness of IA estimates. Interval arithmetic, havev

have implemented a reduced affine arithmetic model of c&Rmpensates for this lack of accuracy by being quite fast,
lular texture functions that can use linear combinations Wich makes it competitive with some of the more advanced
the g andg, kernels only. We have found that tipe and algorithms. Straightforward replacement of the IA opera-
kernels are too complex to implement when using AA. ThEONS with AA equivalents leads to a more inefficient al-
is due to the difficulty in determining the third and fourttOrithm, due to the need to compute sequences of error sym-
smallest distances in the s&x) when all the|d; | have an POl coefficients that grow progressively larger. Neverts|
arbitrary degree of uncertainty. For this reason, our eurretandard AA is able to reduce the average number of func-

implementation of Worley’s cellular texture functions rhugion evaluations, which shows that AA does have the poten-
enforce the restriction, = az = 0. tial to optimise ray-surface intersection algorithms rifyoit

Tables 1, 2 and 3 show some statistics that enable a cdigl be implemented in a more efficient manner.
parison between all the interval estimation techniques for 1Nn€ better performance of IA over standard AA for the
the procedural noise functions under consideration. We h&¥@luation of procedural noise functions was already askno
compared the performance of interval arithmetic (IA), stan'€dged implicitly by Heidrich et al. [11]. In their work, IA

ard AA, reduced AA and reduced AA with interval optimWas used for computing the interval estimates of a Perlin
isation. The rendering time was obtained for a 80600 noise function. These interval estimates were then coedert

into AA form for use in the rest of the application. The au-
3 Wheng; — 0, the enclosing parallelogram in Figure 2 tends tathors do not state a reason for preferring IA over AA when
ward an axis aligned rectangle. In the limit, no optimisai®possible computing a Perlin noise function but it is symptomatic that

ar‘]‘dgeboeri?r:gileigtrigi rgufsr;?:tealsiz?gf; (\j/\}ith dimensiangould  SUCh @ decision was taken in a paper whose purpose was to
result if the summation had an infinite number of terms, With Z. propose AA as a bette.r altem.atlve.to IA.
As it stands, the function (17) produces a fractal surfadg over a Efficiency with AA is obtained in the reduced AA rep-

limited range of scales. resentation, where a maximum of two error symbols per
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Fig. 3 An implicit surface representing a sphere that has beenrteyiered with three layers of (from left to right) Perlirggadient noise
function, Lewis’s sparse convolution noise function andrMgs cellular texture function.

quantity are used. As we had predicted in Section 4.2, tions that are widely used in computer graphics. Such pro-
accuracy is lost by the use of reduced AA for the gradieoedural noise functions are based on the summation of sev-
noise function and the sparse convolution function. Theredral statistically independent terms. By maintaining dhly
aloss of accuracy in the case of the cellular texture fungtiacorrelation related to the uncertainty in the position & th
which is compensated by its increased computation speedaat along the ray, reduced affine arithmetic can achieve the
that, overall, reduced AA performs much better than stansime results as standard affine arithmetic while being more
ard AA for all three procedural noise functions. The final imefficient.
provement comes from optimising the size of the intervals, As predicted in Section 4.2 and subsequently confirmed
as explained in Section 4.3. Reduced AA combined with ifn Section 5, the application of reduced AA to cellular tex-
terval optimisation gives the lowest rendering statisticall  ture functions incurs a loss of accuracy. This is ultimately
interval estimation techniques. due to the destruction of important correlation informatio
Figure 4 shows a procedurally defined planet. The imptirough the condensation of error symbols. The loss of ac-
cit surface uses a combination of the procedural noise funtiracy, however, is compensated by the greatly increased ef
tions studied in this paper. The faceted aspect of the terréiciency that comes from dealing with only two error sym-
in particular, is a consequence of the Voronoi regions eckabols for each AA quantity, with a rendering time that drops
by the cellular texture function. In this example, no attémfrom 3 hours and 21 minutes with standard AA to only 33
was made to avoid the occurrence of disconnected piecesmiiutes with reduced AA. It is possible, however, that for
terrain that arise naturally from the implicit represeimat some other procedural noise functions, with kernels that we
giving the planet a somewhat surrealistic look. This imageve not tested, the loss of accuracy may be more significant.
took roughly 16 hours to render with reduced AA and inn such a case, standard AA can be used for the calculation
terval optimisation. Given the results in Tables 1 to 3, nef the kernelgp(d;,da,...,dn) and a switch to reduced AA
attempt was made to render this image with any of the oth&in be done for the remainder of the calculations in (1).
interval estimation techniques. This is an example of a com- Standard and reduced AA quantities can easily be inter-
plex surface, with detail that is visible over a wide range @hanged. Any reduced AA quantity is also a valid standard
distances, that would have been impracticable to rendér wiA quantity that happens to have only two error symbols.
standard AA and whose rendering becomes barely feasitpige second error symbej has to be given a new and unique
with reduced AA. index number, after conversion to standard AA, to express
the fact that it is not shared with any other standard AA
guantities. A standard AA quantity can be transformed to a
6 Conclusions and Future Developments reduced AA quantity through condensation. For ray casting
purposes, it is required that both AA representations agree
Ray casting implicit fractal surfaces with affine arithneetithat the common error symb@ is used to express un-
becomes efficient only with the introduction of a reduceckrtainty relative to the position of the root along the ray.
representation for uncertain quantities. The represientatThis is so that the interval optimisation procedure of Sec-
of an uncertain quantity with reduced affine arithmetic us¢isn 4.3 can be properly implemented. In a situation like tha
a maximum of two error symbols. It has been shown that Figure 4, where several procedural noise functions are
without this reduced representation affine arithmetic wouused, the majority of the noise functions would be entirely
not be able to compete against a simpler interval arithmetiomputed with reduced AA while only the more problem-
representation. These results were obtained while ray cagtc ones would use standard AA internally to compute their
ing implicit surfaces generated from procedural noise funkernel functions.




Ray Casting Implicit Fractal Surfaces 9

Fig. 4 A procedural planet represented as an implicit surface witadius equal to the radius of the Earth and seen from aodstiof 100
metres. The implicit surface uses a mixture of all three gdocal noise functions that are studied in this paper.

Interpolating implicit surfaces have gained much poptot lead to a robust rendering algorithm as it is not possible
ularity in recent years because of their ability to interpoto guarantee that all correct ray-surface intersectiofidei
ate any set of constraint points [27,17]. Interpolating infeund. Problematic areas will be those where the valug of
plicit surfaces are now the method of choice to generatelanges more rapidly than predicted by the Lipchitz bound
continuous and smooth surface approximation from a settbt Morse et al. use. By ray casting interpolating implicit
scattered data points. From a structural point of view, isurfaces with reduced affine arithmetic, one has an auto-
terpolating implicit surfaces are entirely similar to sp@r matic, robust, efficient, and verifiable method of computing
convolution noise functions, with equation (1) being usedll ray intersections without the burden of having to estana
to sum the contribution of several independent radial basie Lipchitz bound as a pre-computation step.
functions (RBFs). Each RB&(d;) depends only on the dis-
tance]|d;|| to constraint poink;. An RBF is written agp(d;) = o — _
ah(||di||), whereh is some continuous and differentiableA Derivation of the Interval Optimisation Equation
function. The difference between this RBF and (3) is onI\Xl . R

hen computingy = g(f), we have thag = go + 0161 + o€ andf =

in the meaning of the scaling constaqtor &, respectively. ﬁ% g tser, where fhe error symbok ande; are unknown but vary in

Thea; are pre-computed so as to cause the surface to in&Eintervall—1, + 1. Replacing the expression foin the expression
polate through the required constraint points whei®as for g, by way of thee; error symbol, we have:
the outcome of a random variable.

Given the structural similarity between sparse convolg-:
tion noise functions and interpolating implicit surfacesda Equation (A.1) is the equation for a line in tigef plane with a
from sums of RBFs we can say that our reduced affine aritiepe ofgi/t1. By letting e vary in [~1,+1] and keepingmin < f <
metic method can also be used successfully to render ﬂ%‘f’e Sweep the ??rrlallelogrﬁmlw that is Sho"‘gl in Fag?re 2)-(;\"22“"0“

. . . . ana lower edges o IS parallelogram are obtained from n
Iatter_ W'th faY ant'ng' Current methods for fe”_de“”gmteez = +1. The intersections of these two edges with the horizoral a
polating implicit surfaces resort to sphere tracing, wheregive the new and optimised limits for the interval. Settidgl) equal
Lipchitz bound must be supplied by the user before rendér-zero, withe, = +1, and rearranging, we have:
ing takes place [9]. The Lipchitz bound for a continuous ar%th _ %, %, A2)
differentiable functiorf in three dimensions, suchastheone ° g ' g = '
gener_ated through (1) for sums of RBFs, is the maximum  independently of the signs of andg (t: is always positive be-
magnitude||Cf|| of the gradient vector. For an arbitrary setause of (11)), the left and right solutions to (A.2) along tierizontal
of constraint pointsg, this maximum gradient magnitudeaxis are, respectively:

%(f —to) + o+ gz€». (A1)

can only be found through a costly global optimisation pro- do O
; : i, =to— =t — | =ty
cedure. Morse et al. avoid this procedure by evalugting| ™" o N
ata large set of random points and using the maximum value %. | (A-3)

thus obtained as their Lipchitz bound [17]. Clearly, thigglo tmax=to— ottt
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We only use the results from (A.3) if they lead to a tighteeiwtl
than the originaltmin, tmax], hence the min and max functions in (16).
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