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Abstract: In this paper, the new concept of Nonlinear Output Frequency Response
Functions (NOFRFs) is extended to the harmonic input case, an input-independent
relationship is found between the NOFRFs and the Generalized Frequency Response
Functions (GFRFs). This relationship can greatly simplify the application of the NOFRFs.
Then, beginning with the demonstration that a bilinear oscillator can be approximated
using a polynomial type nonlinear oscillator, the NOFRFs are used to analyze the energy
transfer phenomenon of bilinear oscillators in the frequency domain. The analysis
provides insight into how new frequency generation can occur using bilinear oscillators
and how the sub-resonances occur for the bilinear oscillators, and reveals that it is the
resonant frequencies of the NOFRFs that dominate the occurrence of this well-known
nonlinear behaviour. The results are of significance for the design and fault diagnosis of

mechanical systems and structures which can be described by a bilinear oscillator model.

1 Introduction

Linear systems, which have been widely studied by practitioners in many different fields,
have provided a basis for the development of the majority of control system synthesis,
mechanical system analysis and design, and signal processing methods. However, there
are certain types of qualitative behaviour encountered in engineering, which cannot be
produced by linear models [1], for example, the generation of harmonics and inter-
modulation behaviour. In cases where these effects are dominant or significant nonlinear
behaviours exist, nonlinear models are required to describe the system, and nonlinear

system analysis methods have to be applied to investigate the system dynamics.

The Volterra series approach [2] is a powerful tool for the analysis of nonlinear systems,
which extends the familiar concept of the convolution integral for linear systems to a

series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra



kernels are known as the kernel transforms, Higher-order Frequency Response Functions
(HFRFs) [3], or Generalised Frequency Response Functions (GFRFs), and these provide
a convenient tool for analyzing nonlinear systems in the frequency domain. If a
differential equation or discrete-time model is available for a system, the GFRFs can be
determined using the algorithm in [4]~[6]. The GFRFs can be regarded as the extension
of the classical frequency response function (FRF) of linear systems to the nonlinear case.
However, the GFRFs are much more complicated than the FRF. GFRFs are
multidimensional functions [7][8], which can be difficult to measure, display and
interpret in practice. Recently, the novel concept of Nonlinear Output Frequency
Response Functions (NOFRFs) was proposed by the authors [9]. The concept can be
considered to be an alternative extension of the FRF to the nonlinear case. NOFRFs are
one dimensional functions of frequency, which allow the analysis of nonlinear systems to
be implemented in a manner similar to the analysis of linear systems and which provides

great insight into the mechanisms which dominate lots of nonlinear behaviours.

There are abundant dynamical systems with nonlinear components in engineering, which
can be modeled as a bilinear oscillator [10]-[28]. To investigate the motion of an
articulated mooring tower, Thompson et al. [10] modelled the system as a bilinear
oscillator that has different stiffness for positive and negative deflections due to the
slackening of mooring lines. A comparison between the model responses and
experimental results showed a good agreement. Based on the same model, Gerber and
Engelbrecht [11] studied the response of an articulated mooring tower driven by irregular
seas, and Huang, Krousgrill and Rajaj [12] studied the dynamic response of an offshore
structure subjected to a nonzero mean, oscillatory fluid flow where the particular interest
was the interaction between the bilinear stiffness characteristic and the asymmetric
hydrodynamic drag force. When investigating the behaviour of an articulated offshore
platform, Choi and Lou [13] modelled the structure as a SDOF upright pendulum with
bilinear springs at the top. The springs have different stiffness for positive and negative
displacement (bilinear oscillator). Wilson and Gallis [14] modelled a common multi-bay,
multi-story scaffold with loose tube-in-tube connecting joints as a plane structure in sway
and evaluated the essential dynamic characteristics when subjected to lateral base
excitations. Their investigations were based on a two-degree of freedom model with a
lumped mass where the loose restraining joint between adjacent stories was treated as a
bilinear stiffness. Butcher [15] investigated the effects of a clearance or interference in
mechanical systems on the normal mode frequencies of a n-DOF system with bilinear

stiffness without damping. The bilinear model has also been widely used to model cracks



occurring in mechanical structures or rotors where the size of crack is often expressed as
the stiffness ratio. Zastrau [16] demonstrated the bilinear behaviour by using the finite
element method to determine the dynamic response of a simply supported beam. Friswell
and Penny [17] studied the non-linear behaviour of a beam with a closing crack and then
analyzed the forced response to a harmonic excitation at a frequency near the first natural
frequency of the beam using a numerical integration method. The results highlighted the
presence of superharmonic components in the response spectrum, a common property for
non-linear systems. Later, the same authors have investigated the effect of the excitation
for the breathing crack where the beam stiffness is bilinear [18]. Sundermeyer and
Weaver [19] exploited the weakly non-linear character of a cracked vibrating beam. Their
studies supported the possibility that the bilinear behaviour of a fatigue crack can be
exploited for the purposes of non-destructive evaluation. Based on a bilinear crack model,
Chati et al [20] used perturbation methods to obtain the non-linear normal modes of
vibration and the associated period of the motion, and the results justified the definition
of the bilinear frequency as the effective natural frequency. Rivola and White [21]
employed the bilinear oscillator model to simulate the nonlinear behaviour of a beam
with a closing crack and used the bispectrum to analyze the system response. They found
that the normalized bispectrum shows high sensitivity to the bilinear nature of the crack.
In cracked rotor studies [22][23], the cracked element can often be modelled as a weight-
loaded hinge, and if the hinge is weight dominant, then it can further be represented as a
spring element with a bilinear stiffness. Bovsunovskii [24] has obtained the general
patterns of appearance of higher harmonics of the Fourier expansion of time dependence
of vibration of a cracked body model by using the bilinear restoring force model, and,
further, the author [25] has found that the level of nonlinear distortions is one of the most
damage sensitive indicators. Chondros et al [26] have studied the dependency of the
eigenfrequency changes due to a breathing edge-crack on the bilinear character of a beam.
In order to detect the presence and the location of structural damage Cacciola et al [27]
have inspected the vibrational response of a beam with an edge non-propagating crack by
means of stochastic analysis where the bilinear stiffness restoring force has been used.
Also based on the bilinear stiffness restoring force model, Musil [28] has investigate the
possibility of localizing and quantifying a crack in a vibrating structure using the
measured vibration amplitudes of the first and second harmonic in some locations of the

structure.

It can be seen that the bilinear oscillator is of great importance in the modeling of the

nonlinear phenomena occurring in mechanical structures and machines. Accurate



knowledge of this oscillator is helpful in the design, control and fault detection of these
systems. A number of analytical and numerical studies on bilinear oscillators have
appeared in the literature. Natsiavas [29] applied an analytical procedure to determine the
exact, single-crossing, periodic response of a similar class of harmonically excited
piecewise linear oscillators whose damping and restoring force are bilinear functions of
the system velocity and displacement. Chu and Shen [30] employed two square wave
functions to model the stiffness change in bilinear oscillators, and proposed a new closed-
form solution for bilinear oscillators under low-frequency excitation. Bayly [31] derived
an analytical relationship between the strength of a weak stiffness discontinuity and the
magnitudes of superharmonic peaks in the output Fourier spectrum of a bilinear oscillator.
Since bilinear oscillators are nonlinear, they exhibit much of the complicated phenomena
associated with nonlinear systems. All the above mentioned research studies on bilinear
oscillators have shown that considerable harmonic components can be generated in the
spectrum of the response when a bilinear oscillator is subjected to a sinusoidal force
excitation. The generation of higher harmonic components implies that some energy of
the input signal is transferred from the input frequency modes to modes at other
frequency locations. The conventional Frequency Response Function (FRF) can not
explain why and how the energy shift occurs in bilinear oscillators as the definition of the
classical frequency response is based on linear systems in which the possible output

frequencies at steady state are exactly the same as the frequencies of the input.

This paper is dedicated to extend the concept of NOFRFs for the general input case to the
harmonic input case. An input-independent relationship is found between the NOFRFs
and the GFRFs. This can greatly simplify the procedure of using the NOFRFs. Then the
NOFRFs will be used to analyze the bilinear oscillator. The results not only provides new
insight into how nonlinear phenomena such as new frequency generations occur with
bilinear oscillators, but also reveals that it is the resonances of the NOFRFs that dominate
the occurrence of the well-known nonlinear behaviour. Simulation studies justify the
conclusions, and demonstrate the significance of the NOFRF based analysis. The results
achieved are of significance for the design and fault diagnosis of mechanical systems and

structures which can be described by a bilinear oscillator model.
2 Nonlinear Output Frequency Response Functions (NOFRFs)

2.1 NOFRFs under General Inputs

NOFRFs were recently proposed and used to investigate the behaviour of structures with

polynomial-type non-linearities [9]. The definition of NOFRFs is based on the Volterra



series. The Volterra series extends the familiar concept of the convolution integral for

linear systems to a series of multi-dimensional convolution integrals.

For a linear system, with input u(¢) and output y(¢), the input and output relationship in

the time domain can be described by a convolution integral, as

¥ = [ h@u(-r)dr (1)
In the frequency domain, the linear system input output relationship is given by
Y(jo)=H(jo)U(jo) 2)

when the system is subject to an input where the Fourier Transform exists. In equation (2),
Y(jw) and U(jw) are the system input and output spectrum which are the Fourier
Transforms of the system time domain input u(¢) and output y(¢) respectively, and the
H(jw) is the Fourier Transform of the impulse response function /(¢) in equation (1). It
can be seen that the possible frequency components of Y(jw) are the same as the

frequencies of U(jw).

Consider the class of nonlinear systems which are stable at zero equilibrium and which

can be described in the neighbourhood of the equilibrium by the Volterra series
N 0 . n
y(t) = z ,[_w “ee Lo h(T,,..,7, )H u(t —7,)dr, 3)
n=1 i=1

where & (7,,...,7,) is the nth order Volterra kernel, and N denotes the maximum order of
the system nonlinearity. Lang and Billings [3] have derived an expression for the output

frequency response of this class of nonlinear systems to a general input. The result is

Y(jo) :ZN:Yn(ja)) for Vo

4)
1//n . L
(272_);%1 J. Hn (]0)1,...,]0)” )I;[U(Ja)i)do-n{u

O+t 0, =0

Y,(jo)=

This expression reveals how nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In (4), Y, (j®) represents the nth order

output frequency response of the system, and

H,(j@ymjo,) = [ ] By (7),z,)e 0 dr, d, (5)

is the definition of the Generalised Frequency Response Function (GFRF), which is the
multi-dimensional Fourier Transform of 4,(z,,...,7,), and

[ HGon..jo)[]U(e)Ms,,
i=1

O+t @, =0



denotes the integration of H,(jo,,..., jo, )H U(jw,) over the n-dimensional hyper-plane,
i=1
with the constraint of @, +---+®, =@ . Equation (4) is a natural extension of the well-

known linear relationship (2) to the nonlinear case.

For linear systems, equation (2) shows that the possible output frequencies are the same as
the frequencies in the input. For nonlinear systems described by equation (3), however,

the relationship between the input and output frequencies is generally given by
N
fy = U / Y, (6)
n=1

where f, denotes the non-negative frequency range of the system output, and f
represents the non-negative frequency range produced by the nth-order system
nonlinearity. This is much more complicated than that in the linear system case. For the

cases where system (3) is subjected to an input with a spectrum given by

V(o) = {U( jo) when |o|e(a,b) 7

0 otherwise

where b>a>0. Lang and Billings [3] derived an explicit expression for the output

frequency range f, of the systems. The result obtained is

fY = fYN UfYNf(zp*fl)
i1
U[k whe n nb —{ = J<1
£l (@+b) | (a+b)
Y, i

Ulk when nb__|_na >1
par (a+b) |(a+b)

l.*{ na J“
(a+b)

where u means to take the integer part

(8)

I, =(na—k(a+b),nb—k(a+b)) fork=0,...i" —1,
1. =(0,nb—i"(a+))

In (8) p* could be taken as 12,---[N/2], the specific value of which depends on the
system nonlinearities. If the system GFRFs H, , ,()=0, for i=1,--,¢—-1, and
Hy 5,1()#0, then p =q . This is the first analytical description for the output
frequencies of nonlinear systems, which extends the well-known relationship between the

input and output frequencies of linear systems to nonlinear cases.



Based on the above results for output frequency responses of nonlinear systems, a new
concept known as Nonlinear Output Frequency Response Functions (NOFRF) was

recently introduced by Lang and Billings [9]. The concept was defined as

| HGo..je)]]UGeMs,,
Gn (]CO) — O+t 0, =0 . i=1 (9)
| TlvGexs,,

O+ to, =0 =1

under the condition U, (jw) #0. Actually, U, (jw) is the Fourier Transform of " (¢)
n 1 _
U,(jo)= U(jw)do,, =——| u"(t)e’"dt (10)
a)|+,..:|:r(u,,=w1i:[ 27[ J._OO

Notice that G, (j®) is valid over the frequency range f, as defined in (8).

By introducing the NOFRFs G, (jw), n=1,---N, Equation (4) can be written as

1@@=Zn@m=2@0@mum (11)

n=1
which is similar to the description of the output frequency response of linear systems. For
a linear system, the relationship between Y (j®) and U(jw) can be illustrated as in
Figure 1. Similarly, the nonlinear system input and output relationship of Equation (11)

can be illustrated as in Figure 2.

U(jw) Y(jow)
= Hjo)=G\(o) [

t
“O CFFT

Figure 1. The output frequency response of a linear system

WO e U0 o Ya(jo)
() U'z(/‘w)

— | FFT > G(jo)

“O e L0 G )

Figure 2. The output frequency response of a nonlinear system

The NOFRFs reflect a combined contribution of the system and the input to the
frequency domain output behaviour. It can be seen from Equation (9) that G, (j®)
depends not only on H, (n=1,...,N) but also on the input U(j®). For any structure, the
dynamical properties are determined by the GFRFs H, (n= 1,...,N). However, from
Equation (5) it can be seen that the GFRF is multidimensional [7][8], which makes it
difficult to measure, display and interpret the GFRFs in practice. Feijoo, Worden and



Stanway [32]-[34] demonstrated that the Volterra series can be described by a series of
associated linear equations (ALEs) whose corresponding associated frequency response
functions (AFRFs) are easier to analyze and interpret than the GFRFs. Here, according to
Equation (9), the NOFRF G,(jw) is a weighted sum of H, (j®,,...,j®,) over
o, +---+ o, = o with the weights depending on the test input. Therefore G, (j®) can be
used as alternative representation of the structural dynamical properties described by H , .
The most important property of the NOFRF G, (jw) is that it is one dimensional, and
thus allows the analysis of nonlinear systems to be implemented in a very convenient
manner very similar to the analysis of linear systems. Moreover, there is an effective
algorithm [9] available which allows the estimation of the NOFRFs to be implemented
directly using system input output data. The algorithm generally requires experimental or
simulation results for the system under investigation under N different input signal

excitations, which have the same waveforms but different intensities.

2.2 NOFRFs under Harmonic Input

Harmonic inputs are pure sinusoidal signals which have been widely used for dynamic
testing of many engineering structures. Therefore, the extension of the NOFRF concept to

the harmonic input case is of considerable engineering significance.
When system (3) is subject to a harmonic input
u(t) = Acos(w,t+ ) (12)

Lang and Billings [3] showed that equation (4) can be expressed as

V(o) =3 TGa)=| & S H (o, jo Ao, ) AGe, )| (13)
2

n=1 n=1 O+ Oy =0
where

| A O if oelko, k=*1}

14
0 otherwise (14)

A(jw) ={

Define the frequency components of nth order output of the system as Q , according to

Equation (13), the frequency components in the system output can be expressed as

Q:UQn (15)

n=1

and Q, is determined by the set of frequencies

{a)=a)k1 +oto, |0 =J_ra)F,i=1,~--,n} (16)



From Equation (16), it is known that if all @y 5o, 0, Are taken as — @, , then w =—nw, .
If k of them are taken as @, then @ = (—n+2k)w, . The maximal & is n. Therefore the

possible frequency components of Y,(jw) are
Q,={(-n+2k)w, ,k=0,1,-,n} (17)

Moreover, it is easy to deduce that

N
Q=JQ, ={ko,,k=-N,-,-1,0,,--,N} (18)

n=1
Equation (18) explains why some superharmonic components will be generated when a
nonlinear system is subjected to a harmonic excitation. In the following, only those

components with positive frequencies will be considered.

The NOFRFs defined in Equation (9) can be extended to the case of harmonic inputs as

1 . . ) )
Y H,(jo, - jo VAo, ) A(jo,)

Wy + Oy =0

1

G (jw)= n=1,.,N (19)

ZA(ja)kl )A(]a)k)

211
Oy + O =0

under the condition that

4,0 =~ Y A(ja, ) A(jo, ) #0 (20)

L e

Obviously, G/ (jw) is only valid over Q, defined by Equation (17). Consequently, the
output spectrum Y (jw) of nonlinear systems under a harmonic input can be expressed as

Y(jw)=Y,(jo) =ZGf(jw) 4,(jo) e2y)

When k of the n frequencies of @, ,---,@, are taken as @, and the others are as — @, ,

substituting Equation (14) into Equation (20) yields,

. 1o, nl Jn200p
A, n+20000) = A e (22)
Thus G/ (jw) becomes
k n—k
1 . . . . n n! J(~n+2k)p
?Hn(.]a)f‘au':]a)Fv_.]wFa"'y_]wF)|A‘ me
G, (j(-n+2k)w,) = , —
L|A|n Lej(—nﬂk)ﬁ
2" (n—k)k!
k n—k
:Hn(ja)Fa'"7ja)Fa_ja)Fa"'a_ja)F) (23)



where H,(jw,,..., jo,) is a symmetric function. Therefore, in this case, G/ (jw) over
the nth order output frequency range €2, = {(—n+2k)a)F,k:0,1,--~,n} is equal to the
GFRF H, (jo,...,jo,) evaluated at o ==0,=0,, 0, = =0,=-0,
k=0,--,n . It can be seen that the NOFRFs under the harmonic input is input-
independent, this can greatly simplify the analysis.

2.3 NOFRFs of polynomial nonlinear systems

Polynomial nonlinear systems have been widely used to model a wide class of nonlinear
phenomena in practices such as the saturation phenomenon in the vibration absorber [35],
the nonlinear vibrations in metal cutting [36], and the well-known Duffing oscillators [37]
and van der Pol oscillators [38]. In the following section, it will show that a bilinear
oscillator can be well approximated with a fourth-order polynomial nonlinear system of

the below form
mi + cx + ¢ kx + e,k + ek’ + k= f(2) (24)

where ¢, = 0 according to the approximation results in Table 1. By setting

c c,k c c c t
¢= w, = -, 52:_2’ 532_3:0, 54:_4, fo(t)=&
\' m ¢ ¢

2\ mck ’ m

Equation (24) can be expressed in a standard form
¥ +2¢w, X+ @) x + £,0,x" +&,0,x" = f,() (25)

The first order frequency response function can easily be determined from the linear part

of Equation (25) as
1

(jo)’ +20,(jo)+ o]

G'(jo)y=H,(jo) = (26)

The GFRF up to 4™ order can be calculated recursively using the algorithm by Billings
and Peyton Jones [5][6] to produce the results below.

H2(ja)1>ja)2):_gza)L2H1(ja)l)Hl(ja)z)Hl(jwl +ja)z) (27)
H}(]a)1a]w2a]a)3):_50)1%82[Hl(]a)1)H2(]wzs]a)3)+H1(]a)z)H2(]a)1=]w3)
+H,(jo,)H,(jo,, jo,)|xH,(jo, + jo, + jo,) (28)

H4(ja)1,jwzaja)3,j0)4)=—602H1(j601 +jo,+ jo, +ja)4)><[82H42(ja)1,ja)2,ja)3,ja)4)

+54H44(ja)1’ja)z»jw3»ja)4)] (29)
where

H42(]a)1,]a)2,]a)3,]a)4) :E[Hl(]a)l)Hs(]wza]wso]C%)

10



+H,(jo,)H,(jo,, joy, jo,)+ H (jo)H,(jo, jo,, jo,)
+H GO (o jor jo))+ L H o, jo) H. o, jo,)
+Hy(jo, jo ) Hy(jo,, jo,)+ Hy(jo, jo,)H,(jo,, jo,)] (30)
Hy(jo,jo,, jo, je,) =H (jo)H (jo,)H (jo,)H (jo,) (31)

From Equations (26)~(31), it can be seen that H,(jo,jo,,jo,,jo,)
H,(jo,, jo,,jo,) and H,(jo,, jo,) are symmetric functions. Therefore, when the
system in (32) is subjected to a harmonic loading, the NOFRFs of the system can be
described as

2

Gy (j2w)=H,(jo, jo)=-¢&,0,H (jo)H,(j20) (32)
Gl (jo) = H,(~jo. jo. jo) = o]} |2 H,(j200) + 2)H2 (o) | H, (o) P (33)
G3H (]30)) = H3 (]C(), ja), Ja)) = 2(‘)2‘9221_113 (.]a))Hl (jza))Hl (]30)) (34)
Gl (2w)=H,(-jo,jo, jo, jo)=-0, H,(j20)e,H,,(j20) + £,H,,(j20)] (35)
Gf (]40)) = H4 (]a)a jo, jo, ]w) = _a)LzHl (j4a))[52H42 (]450) + 54H44 (]40))] (36)

where
H,(j20)=H,(jo,jo,jo, jo) = wfgzz {wLZ[H1 (]2(0)1_[1(]30))+H1(]w)H1(]2a))]

. : . 1 . .
+2H,(jo)}H} (jo)| H,(jo) +§€§ |H,(jo)|* [wf | H,(j20) |’ +2] (37)
H,,(j20)=H,(-jo,jo,jo,jo)=H(jo)| H (jo)| (38)
H,(j4o) = Hy(jo, jo, jo, jo) = o/ H (jo)H (j20)4H,(j30)+ H,(j20)]  (39)
H,(j4o)=H,(jo,jo, jo, jo)= H; (jo) (40)
3 Bilinear Oscillator Analysis Using NOFRFs

3.1 Bilinear Oscillator Model

1 A
J—"l #
§ (1-a)k 1”—' ;
m 2
ak

T2



Figure 3. bilinear oscillator model

The bilinear oscillator is a simple and effective model that can interpret many nonlinear p
henomena in mechanical structures and machines. Figure 3 shows a SDOF bilinear oscill

ator whose corresponding motion can be expressed as

{mﬁé+c§c+akx=f(t) x>0, @1
mx+cx+kx=f(t) x<0,

where m and c are the object mass and damping coefficient respectively; x(t) is the
displacement; k is the stiffness; o is known as the stiffness ratio (0 < a < 1). f(¥) is the
external force exciting the model. Obviously, if the stiffness ratio a is equal to one, then
the model is linear. When excited by a sinusoidal force, the response will be a sinusoidal
function of the same frequency. Otherwise, if a is smaller than one, the response is
expected to contain several harmonics of the excitation frequency. Define S(x) as the
restoring force of a bilinear oscillator as follows

kx .x<0,

Obviously S(x) is a piecewise linear continuous function of displacement x illustrated in

Figure 4.

In mathematics, the Weierstrass Approximation Theorem [39] guarantees that any
continuous function on a closed and bounded interval can be uniformly approximated on

that interval by a polynomial to any degree of accuracy. This theorem is expressed as
Iffx) is a continuous real-valued function on [@,b | and if any € > 0 is given, then there
exists a polynomial P(x) on [@,b | such that |f(x) - P(x)| <& forall xe [a,b].

S(X) .

Figure 4. The restoring force of a bilinear oscillator
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| - -
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Order = 4 Order =5 Order = 6
. .
X X X

Figure 5. Approximation of S(x) (o = 0.8) with polynomials

Since the restoring force S(x) is a continuous function of displacement x, it can be well
approximated by a polynomial. Figure 5 gives the results of using polynomials with
different orders to approximate S(x) where the stiffness ratio « is taken as 0.8. It can be
seen that a fourth order polynomial can fit S(x) very well. If using a polynomial P(x) to
replace for S(x) and ignoring the tiny approximation error, the SDOF model Equation (41)
can be rewritten as

mx +cx+ P(x) = f(?) (43)
where

P(x)= icikxi (44)

where N is the order of the approximating polynomial, and kc, , i =1,---,N are the
polynomial coefficients.

Table 1 The polynomial approximation result for a bilinear oscillator

C

o e c, Cy c,
1.00 1.0000 0.0000 0.0000 0.0000
0.95 0.9750 -0.0409 0.0000 0.0204
0.90 0.9500 -0.0818 0.0000 0.0407
0.85 0.9250 -0.1228 0.0000 0.0611
0.80 0.9000 -0.1637 0.0000 0.0814
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The model described by Equation (44) is the extensively studied polynomial-type
nonlinear system where the term c kx represents the linear part and the other high order
terms represent the nonlinear part. For the bilinear oscillator model, the polynomial
coefficients are determined by the stiffness ratio a. Table 1 shows the results of using a
fourth order polynomial to approximate the bilinear oscillator with different stiffness
ratios. It is known from Table 1 that all coefficients, apart from ¢, , will increase with a
decrease of a. This means that the nonlinear strength of the bilinear oscillator will
increase with the decrease of a. It is worth to noting that except for c,, the values of ¢, ...
and ¢y also depend on the range of x which the polynomial approximation is defined. In

the case shown in Table 1, this range of x is [-1, 1].

For the free undamped vibration of bilinear oscillators, its effective natural frequency can

be substituted with a bilinear frequency @, [20][30], as

w, = 20,0, (0, + ©,) (45)
where
a)0=\/m and @, =~ ak/m (46)
Therefore

0 zﬂﬁzﬂw @
o) \m (4a)

For the polynomial-type nonlinear system (43), the natural frequency of the linear part

can be defined as
w, =Jekim = e, o, (48)

Table 2 shows a comparison between @, and @, under different stiffness ratios. It can
be seen that the @, is a good approximation of @w,. To a certain extent, this further

justifies using a polynomial-type nonlinear model to describe a bilinear oscillator.

Table 2. Comparison between @, and w,

a a)L(xa)O) a)B(xa)O) |w, —o, |/ o,
1.00 1.0000 1.0000 0.0000%
0.95 0.9874 0.9872 0.0203%
0.90 0.9747 0.9737 0.1027%
0.85 0.9618 0.9594 0.2501%
0.80 0.9487 0.9443 0.4660%

For polynomial-type nonlinear systems, a powerful analysis tool called the Nonlinear
Output Frequency Response Function (NOFRF) has been used to study system
behaviours [9]. In the following part, the NOFRF concept will be used to study the
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frequency domain energy transfer properties of bilinear oscillators under harmonic

loading.

3.2 General Analysis of the Frequency Domain Energy Transfer of Bilinear
Oscillators

It is well known that nonlinear systems subject to a harmonic input can generate higher
order harmonic output components, and consequently transfer signal energy from the
input frequency to higher order harmonics in the output. The introduction of the NOFRF
concept can clearly explain and even predict how and when this phenomenon happens.
Equations (25) and (29) indicate that if N = 4, then the 2" 3 and 4™ order harmonics
could appear in the system output frequency response, and the output spectrum can

analytically be described as

Y(ja)F) = GIH (]C‘)F )Al (ja)F)+G3H (]wF )A3 (JO)F) (49)
Y(jza)F) = GzH (jza)F )Az (jza)F) + Gf (jsz )A4 (jza)F) (50)
Y(j3w,) =Gy (j3wp)A4,(j30,) (51)
Y(j4a)F) = Gf (j4a)F)A4 (j4a)F) (52)

Equations (50)~(52) clearly show how the higher order harmonics are generated. This is a
combined effect of the system characteristics reflected by the NOFRF G” (jw) and the
spectrum of the harmonic input raised to power n given by A, for n=2,3,4. In addition,
by taking into account the specific expressions for G (j2w), G (j3w), G (j2w) and
G/ (j4w) given by Equations (32) and (34)~(36), situation where a strong harmonic
component can appear in the output of a bilinear oscillator can be easily predicted.
Because H,(jw) of system (26) has only one resonance at the frequency o, , H,(jkw)
will have one resonance at the frequency @, /k. Therefore the resonances of H,(j2w),
H,(j3w) and H,(j4w) occur at w, /2, w,/3 and @, /4 respectively. Equation (32)
shows that GJ' (j2w) contains terms of H,(jw) and H,(j2w). Consequently, this may
produce two resonance outputs at @, and @, /2. Similarly, from Equation (33)~(40),
G) (j3w) may produce three resonances at ,, @, /2 and ®, /3; G, (j2®) has three
possible resonances at @, , , /2 and @, /3; and G, (j4w) has four possible resonances
at w,, 0, /2, »,/3 and o, /4.

It is known from equations (50)~(52) that when the driving frequency @, coincides with
one of these resonant frequencies of the NOFRFs, a significant amplitude in the output
maybe produced corresponding to the higher order harmonic components. Consequently,
considerable input signal energy may be transferred from the driving frequency to the

higher order harmonic components in the output. For example, under the case when
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w=0, =w,/2, that is, the resonant frequency w, /2 of G (j3®) is reached. It is
known from (51) that a considerable amplitude can be expected at the output frequency
3w, =3w, /2, because the system could transfer input energy from the driving frequency
®,/2 to frequency 3w,/2 in the output. These observations lead to a novel
interpretation regarding when significant energy transfer phenomena may take place with
a bilinear oscillator subjected to a harmonic input. The interpretation is based on the
concept of resonant frequencies of NOFRFs, and concludes that significant energy
transfer phenomena may occur with a bilinear oscillator when the driving frequency of

the harmonic input happens to be one of the resonances of the NOFRFs.

This conclusion is likely to be significant in many aspects including both system design
and fault diagnosis. Simulation studies will be conducted in the following section to

demonstrate and justify this analysis.

3.3 Simulation Studies

The objective of the simulation studies is to demonstrate the effect of the resonances of
the NOFRFs on the energy transfer phenomena of a bilinear oscillator when subjected to
harmonic inputs. The analysis is important for system design. In addition, the effect of
the stiffness ratio a, which defines the oscillator nonlinearity, will also be investigated to
show how the NOFRFs change with the stiffness ratio. These results will form the basis
of the use of a new system fault diagnosis method based on the NOFRFs.

Consider the bilinear oscillator equation (41) with parameters
m=1kg, k= 3.55x10*N s/m, ¢ =23.5619 N/m.

and the stiffness ratio changing between 1.0 and 0.8. The external force f{¢) considered
was a sinusoidal type force with unit amplitude and frequency @, within the range
0<w, <1.2w,. The simulation studies were conducted by integrating equation (41)
using a fourth-order Runge—Kutta method to obtain the forced response of the system.
The analysis in the previous sections indicates that when the system nonlinearity up to
fourth order is taken into account, the spectrum of the forced system response can be
described by equations (50)~(52).

From these relationships, it is known that the NOFRFs G (3w, )and G, (j4w,)can be
determined using the algorithm in [9] with only one level of input excitation. Two levels
input of excitations are required to determine the NOFRFs G/ (jw,), G (jo,) ,
G (j2w,) and G, (j2w, ). Therefore, for each stiffness ratio « and at each frequency

o, of the applied input, two forced responses were obtained with the magnitude of the
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sinusoidal input taken as 1N and 2N respectively, and, from the obtained responses,
GlH(ja)F)a G3H(J‘O)F)a Gf(jza)F), Gf(jZa)F), G3H(J‘3C‘)F)and Gf(j“'a)F) were then

determined using the algorithm in [9].

Figures 6~11 show the amplitudes of these NOFRFs at five different stiffness ratios of
0.8, 0.85, 0.9, 0.95 and 1.0 and over the range of frequencies of 0 <@, /@, <1.2. From
these figures, the resonances of the NOFRFs can be determined, and the results are given
in Table 3~8. According to the analysis in Section 4.1, the resonances of G, (j2w,),
G (j2w,), GI'(j3w,)and G (j4w,) given in Table 5~8 imply that

(1) A significant second order harmonic could be observed when the driving frequency

@, 1s about %(00 , the dominant resonance of G, (j2w,) and G] (j2w,).

(2) A significant third order harmonic may appear when the driving frequency w,. is
about %(00 , the dominant resonance of G;' (j3w, ).

(3) A significant fourth order harmonic may appear when the driving frequency @, is

1 .
about Za)0 , the dominant resonance of G, (j4w, ).

In order to justify these conclusions from the general NOFRF based analysis, the output
spectra of the bilinear oscillator subjected to harmonic inputs at the frequencies of
o, =1/6w,, o, =1/3w, and v, =1/20,, respectively, were determined, the results are
shown in Figure 12. It can be seen from Figure 12(a) that at w,. =1/6a®,, all higher order
harmonics, including the second harmonic, are very weak, especially the third order
harmonic which can hardly be seen. This is simply because in this case @, =1/6w, is
not a resonant frequency of any of the NOFRF involved in the expression for the system
output spectrum. From Figure 12(b) where w, =1/3®,, the dominant resonance of
G!'(j3w,), it is known that the third order harmonic becomes manifest. This can be
explained by equation (51) which indicates that a significant third order harmonic could
be observed in the system output response. From Figure 12(c) where @, =1/2®,, the
dominant resonances of Gi' (j2w,) and G (j2w,), it can be observed that although the
third order harmonic is visible, its amplitude is smaller than that in Figure 12(b). This is
because, as shown in Figure 10, although @, =1/2w, is a resonant frequency of
G!'(j3w,), it is not the dominant resonant frequency. However, Figure 12(c) shows that,
the second order harmonic is significant. This result is completely consistent with the
analysis one can achieve from equation (50) which shows the effects of the 2" harmonic
can be extremely important when @, happens to be the dominant resonances of
G, (j2w,) and G’ (j20,).
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In mechanical engineering studies [40], the appearance of superharmonic components in
the output spectrum is considered to be a significant nonlinear effect. From the
perspective of the energy transfer, it is the linear FRF which transfers the input energy to
the fundamental harmonic component in the output spectrum, and it is the NOFRFs
which transfer the input energy to the superharmonic components. Therefore, to a certain
extent, one can think that if the superharmonic components contain more energy in the
output spectrum, then the nonlinear effect of the bilinear oscillator is stronger. Figure 13
shows the percentage of the whole energy that the superharmonic components contain at
different frequencies for different stiffness ratios. It can be seen that around the frequency
of 1/2 @, , the superharmonic components have the biggest percentage of the total energy.
This implies that, when a bilinear oscillator works around half the natural frequency,
more energy will be transferred to the superharmonic frequency locations, and the
bilinear oscillator will thus render the strongest nonlinear phenomenon. This result again
confirms the analysis result that can be obtained from equation (50) about the effects of
the resonances of G) (j2w,) and G, (j2w,) on the system frequency domain energy
transfer phenomenon. In addition, two weak peaks appear in Figure 13 around the
frequencies of w, =1/3w, and @, =1/4w,, which is especially obvious in the case of
stiffness ratio o = 0.8. This is due to the effect of the dominant resonance of G (3w, )
and G (j4w,) as indicated by equations (51) and (52).

In engineering practice and laboratory research activities [23][41][42], people have
observed that, when the excitation frequency passes through the half eigenfrequency of a
cracked object, the vibration becomes more severe. This phenomenon is known as
secondary resonance. As a cracked element can often be modelled as a spring with a
bilinear stiffness, it is known now that the secondary resonance is actually produced by
the dominant resonances of two NOFRFs GJ (j2w,) and G| (j2w,). Therefore the
NOFRF based analysis in the present study provides an alternative and more general
interpretation for the well-known phenomenon of the secondary resonance in cracked
objects. Furthermore, it can be expected that there would exist 3“1, and 4th, etc. resonances.
However, compared with G}’ (j2w,) and G, (j2w,), the amplitudes of the dominant
resonances of Gi' (j3w,) and G (j4w,) are relatively small, moreover, the amplitudes
of A(jw), i=1,...,4 decrease with the order number i, therefore the effects from the 3" and

4th, etc. resonances are often not so manifest.

All the above analysis results verify the general analysis given in Section 4.1, and reveal
the significant effect of the resonances of NOFRFs on the energy transfer phenomena of

bilinear oscillators. These NOFRFs’ resonance based analysis for the energy transfer
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phenomenon of bilinear oscillators can be directly used in system design. Given the
driving frequencies of possible harmonic loadings with a bilinear oscillator, if the
objective for the oscillator design is to reduce the energy of higher order harmonic
components, then the analysis implies that the natural frequency of the linear part of the
oscillator @, =./c,k/m =\/Z o, = @, has to be designed such that no frequencies of
possible harmonic loadings may happen to be resonances of associated NOFRFs, which,

for the specific cases above, are @,, 1/2®,, 1/3w, and 1/ 4w, .

In addition to the resonances of the NOFRFs, from Figures 6~11, the relationship
between the stiffness ratio and the NOFRFs can also be observed; the dependence of the
NOFRFs on the stiffness ratio is more clearly manifest by the magnitudes of NOFRFs at
the resonant frequencies. Because many cracked rotors and beams can be modelled as a
bilinear oscillator and the stiffness ratio in the oscillator model represents the size of
cracks, the NOFRFs of the rotors and beams at resonances are a significant indicator.
Therefore, there is considerable potential to use the NOFRFs evaluated at their
resonances to conduct fault diagnosis and estimation for these mechanical systems and

structures.

4 Conclusion

In this paper, the new concept of Nonlinear Output Frequency Response Functions
(NOFREFs) is extended to the harmonic input case. It is found that the NOFRFs under
harmonic inputs are input-independent. Base on the NOFRFs under harmonic inputs, this
paper presents an analysis of the energy transfer phenomenon of bilinear oscillators in the
frequency domain using the NOFRF concept recently developed by the authors. It is
verified that a bilinear oscillator can be approximated by a fourth-order polynomial-type
nonlinear model, which can easily be analyzed using the Volterra series theory of
nonlinear systems. The NOFRF concept is then used to analyze the forced response of a
bilinear oscillator subjected to a sinusoidal excitation. The results of the analysis reveal
that when the frequency @, of the input force is close to the resonances of the associated
NOFRFs, such as 1/2w,, 1/3w, and 1/4w,, etc, considerable input energy will be
transferred to the superharmonic locations of 2w, , 3w, and 4w, , etc. This is an
important conclusion regarding when the phenomenon of new frequency generation may
occur with bilinear oscillators, and is of practical significance for the system design. In
addition, it is demonstrated that the magnitudes of the NOFRFs at the resonances are a

significant indicator of the value of the stiffness ratio in the bilinear oscillator model.
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Table 3 Resonance of G/ (jw,)

First Resonance

Stiffness
Ratio Frequency Amplitude
(Xmy)
0.80 0.94667 2.6748e-4
0.85 0.95333 2.5509¢-4
0.90 0.96667 2.4450e-4
0.95 0.98667 2.3423e-4
1.00 1.00000 2.2545¢e-4

Table 4 Resonance of G.' (jw,)

First Resonance

Stiffness
Ratio Frequency Amplitude
(%)

0.80 0.9400 4.3827¢-19
0.85 0.9533 4.1928¢-19
0.90 0.9667 1.5892¢-19
0.95 0.9867 1.7522¢-19
1.00 1.0000 0.0000e-19
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Table 5 Resonances of GJ' (j2w, )

First Resonance

Second Resonance

Stiffness
Ratio Frequency Amplitude Frequency Amplitude
(*wo) (*mo)
0.80 0.9467 1.0290e-5 0.4733 3.8824e-5
0.85 0.9533 7.1957e-6 0.4800 2.7317e-5
0.90 0.9667 4.4698e-6 0.4867 1.7116e-5
0.95 0.9867 2.0882e-6 0.4933 8.0414e-6
1.00 NaN NaN NaN NaN
Table 6 Resonances of G, (j2w, )
Stiffaess First Resonance Second Resonance
Ratio Frequency Amplitude Frequency Amplitude
(*o) (*mo)
0.80 0.9467 1.4701e-6 0.4733 5.5466e-6
0.85 0.9533 1.0280e-6 0.4800 3.9027e-6
0.90 0.9667 6.3856e-7 0.4867 2.4453e-6
0.95 0.9867 2.9832e-7 0.4933 1.1488e-6
1.00 NaN NaN NaN NaN

Table 7 Resonances of G;' (j3w;)

Stiffaess First Resonance Second Resonance Third Resonance

Ratio Frequency Amplitude Frequency Amplitude Frequency Amplitude
(Xy) () ()

0.80 0.9467 7.0983e-7 0.4733 3.2564e-6 0.3133 5.3510e-6
0.85 0.9533 3.5522e-7 0.4800 1.6534e-6 0.3200 2.7400e-6
0.90 0.9667 1.6106e-7 0.4667 6.7182e-7 0.3267 1.1055e-6
0.95 0.9867 3.8108e-8 0.4933 1.5098e-7 0.3333 2.4882e-7
1.00 NaN NaN NaN NaN NaN NaN
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Percentage (%)

Table 8 Resonances of G, (j4w,)

) First Resonance Second Resonance
Stiffness
Ratio Frequency Amplitude Frequency Amplitude
(%) (Xao)
0.80 0.9467 1.4182¢-6 0.2333 1.9339e-5
0.85 0.9533 1.0412e-6 0.2400 1.4268e-5
0.90 0.9667 6.6331e-7 0.2400 8.9509¢e-6
0.95 0.9867 3.1042¢-7 0.2467 4.2988e-6
1.00 NaN NaN NaN NaN
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Figure 13 The percentage of the whole energy that the superharmonic components

contain at different frequencies for different stiffness ratios
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