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Adaptive Interference Suppression for DS-CDMA

Systems Based on Interpolated FIR Filters With

Adaptive Interpolators in Multipath Channels
Rodrigo C. de Lamare and Raimundo Sampaio-Neto

Abstract—In this paper, we propose an adaptive linear-receiver
structure based on interpolated finite-impulse response (FIR) fil-
ters with adaptive interpolators for direct-sequence code-division
multiple-access (DS-CDMA) systems in multipath channels. The
interpolated minimum mean-squared error (MMSE) and the in-
terpolated constrained minimum-variance (CMV) solutions are
described for a novel scheme, where the interpolator is rendered
time-varying in order to mitigate multiple-access interference and
multiple-path propagation effects. Based upon the interpolated
MMSE and CMV solutions, we present computationally efficient
stochastic gradient and exponentially weighted recursive least
squares type algorithms for both receiver and interpolator filters
in the supervised and blind modes of operation. A convergence
analysis of the algorithms and a discussion of the convergence
properties of the method are carried out for both modes of op-
eration. Simulation experiments for a downlink scenario show
that the proposed structures achieve a superior bit-error-rate
convergence and steady-state performance to previously reported
reduced-rank receivers at lower complexity.

Index Terms—Adaptive algorithms, direct-sequence code-
division multiple access (DS-CDMA), multiuser detection,
reduced-rank receivers.

I. INTRODUCTION

A
DAPTIVE linear receivers [1], [3], [4], [19] are a highly

effective structure for combating interference in direct-

sequence code-division multiple-access (DS-CDMA) systems

since they usually show good performance and have simple

adaptive implementation. The linear minimum mean-squared

error (MMSE) receiver [3], [4] implemented with an adap-

tive filter is one of the most prominent design criteria for

DS-CDMA systems. Such a receiver only requires the timing

of the desired user and a training sequence in order to suppress

interference. Conversely, when a receiver loses track of the
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desired user and a training sequence is not available, a blind

linear minimum-variance (MV) receiver [5], [6] that trades off

the need for a training sequence in favor of the knowledge of the

desired user’s spreading code can be used to retrieve the desired

signal.

The works in [1]–[6] were restricted to systems with short

codes, where the spreading sequences are periodic. How-

ever, adaptive techniques are also applicable to systems with

long codes, provided some modifications are carried out. The

designer can resort to chip equalization [7] followed by a

despreader for downlink scenarios. For an uplink solution,

channel-estimation algorithms for aperiodic sequences [8], [9]

are required, and the sample average approach for estimating

the covariance matrix R = E[r(i)rH(i)] of the observed data

r(i) has to be replaced by R̂ = PPH + σ2I, which is con-

structed with a matrix P containing the effective signature

sequence of users and the variance σ2 of the receiver noise

[10]. In addition, with some recent advances in random-matrix

theory [11], it is also possible to deploy techniques originally

developed for systems with short codes in implementations

with long codes. Furthermore, the adaptive-receiver structures

reported so far [1]–[10] can be easily extended to asynchronous

systems in uplink connections. In the presence of large relative

delays among the users, the observation window of each user

should be expanded in order to consider an increased number

of samples derived from the offsets among users. Alternatively,

for small relative delays among users, the designer can utilize

chip oversampling to compensate for the random-timing off-

sets. These remedies imply in augmented filter lengths and,

consequently, increased computational complexity.

In this context, a problem arises when the processing gain

used in the system and the number of parameters for estimation

is large. In these scenarios, the receiver has to cope with

difficulties such as significant computational burden, increased

amount of training and poor convergence, and tracking per-

formance. In general, when an adaptive filter with a large

number of taps is used to suppress interference, then it implies

slow response to changing interference and channel condi-

tions. Reduced-rank interference suppression for DS-CDMA

[12]–[18] was originally motivated by situations where the

number of elements in the receiver is large and where it is

desirable to work with fewer parameters for complexity and

convergence reasons. Early works in reduced-rank interference

suppression for DS-CDMA systems [12]–[14] were based on

0018-9545/$25.00 © 2007 IEEE
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principal components (PC) of the covariance matrix R of the

observation data. This requires a computationally expensive

eigendecomposition to extract the signal subspace, which leads

to poor performance in systems with moderate to heavy loads.

An attempt to reduce the complexity of PC approaches was

reported in [15] with the partial-despreading (PD) method,

where the authors report a simple technique that allows the

selection of the performance between the matched filter and the

full-rank MMSE receiver. A promising reduced-rank technique

for interference suppression, denoted as multistage Wiener

filter (MWF), was developed by Goldstein et al. in [17] and

was later extended to stochastic gradient (SG) and recursive

adaptive versions by Honig and Goldstein in [18]. A problem

with the MWF approach is that, although it is less complex

than the full-rank solution, it still presents a considerable

computational burden and numerical problems for implemen-

tation. In this paper, we present an alternative reduced-rank

interference-suppression scheme based on interpolated finite-

impulse response (IFIR) filters with adaptive interpolators that

gathers simplicity, great flexibility, low complexity, and high

performance.

The IFIR filter is a single-rate structure that is mathemat-

ically related to signal decimation followed by filtering with

a reduced number of elements [20], [21]. The basic idea is to

exploit the coefficient redundancy in order to remove a number

of impulse-response samples, which are recreated using an

interpolation scheme. The savings are obtained by interpolating

the impulse response and by decimating the interpolated signal.

This technique exhibits desirable properties, such as guaranteed

stability, absence of limit cycles, and low computational com-

plexity. Thus, adaptive IFIR (AIFIR) filters [22], [23] represent

an interesting alternative for substituting classical adaptive FIR

filters. In some applications, they show better convergence

rate and can reduce the computational burden for filtering and

coefficient updating, due to the reduced number of adaptive

elements. These structures have been extensively applied in

the context of digital filtering, although their use for parameter

estimation in communications remains unexplored.

Interference suppression with IFIR filters and time-varying

interpolators with batch methods, which require matrix inver-

sions, were reported in [24]. In this paper, we investigate the

suppression of multiple-access interference (MAI) and inter-

symbol interference (ISI) with AIFIR filters (that do not need

matrix inversions) for both supervised and blind modes of

operation in synchronous DS-CDMA systems with short codes.

A novel AIFIR scheme, where the interpolator is rendered

adaptive, is discussed and designed with both MMSE and MV

design criteria. The new scheme, introduced in [25] and [26],

yields a performance superior to conventional AIFIR schemes

[22], [23] (where the interpolator is fixed) and a faster conver-

gence performance than full-rank and other existing reduced-

rank receivers. Computationally efficient SG and recursive least

squares (RLS)-type adaptive algorithms are developed for the

new structure based upon the MMSE and MV performance

criteria with appropriate constraints to mitigate MAI and ISI

and jointly estimate the channel. The motivation for the novel

structure is to exploit the redundancy found in DS-CDMA sig-

nals that operate in multipath, by removing a number of samples

of the received signal and retrieving them through interpolation.

The gains in convergence performance over full-rank solutions

are obtained through the reduction of the number of parameters

for estimation, leading to a faster acquisition of the required

statistics of the method and a smaller misadjustment noise

provided by the smaller filter [1], [19]. Furthermore, the use

of an adaptive interpolator can provide a time-varying and

rapid means of compensation for the decimation process and

the discarded samples. The novel scheme has the potential

and flexibility to consistently yield faster convergence than the

full-rank approach, since the designer can choose the number

of adaptive elements during the transient process and, upon

convergence increase, the number of elements up to the full-

rank. Unlike PC techniques, our scheme is very simple because

it does not require eigendecomposition, and its performance

is not severely degraded when the system load is increased.

In contrast to PD, the AIFIR structure jointly optimizes two

filters, namely, the interpolator and the reduced-rank, resulting

in reduced-rank filters with fewer taps and faster convergence

than PD since the interpolator helps with the compensation

of the discarded samples. In comparison with the MWF, the

proposed scheme is simpler, more flexible, and more suitable

for implementation, because the MWF has numerical problems

in fixed-point implementations.

A convergence analysis of the algorithms and a discussion

of the global convergence properties of the method, which are

not treated in [24]–[26], are undertaken for both modes of

operation. Specifically, we study the convergence properties of

the proposed joint adaptive interpolator and receiver scheme

and conclude that it leads to an optimization problem with

multiple global minima and no local minima. In this regard and

based on the analyzed convergence properties of the method,

we show that the prediction of the excess MSE of both blind and

supervised adaptive algorithms is rendered possible through the

study of the MSE trajectory of only one of the jointly opti-

mized parameter vectors, i.e., the interpolator or the reduced-

rank filters. Then, using common assumptions of the adaptive

filtering literature, such as the independence theory, we analyze

the trajectory of the mean tap vector of the joint optimization

of the interpolator and the receiver and MSE trajectory. We

also provide some mathematical conditions, which explain why

the new scheme with SG- and RLS-type algorithms is able

to converge faster than the full-rank scheme. Although the

novel structure and algorithms are examined in a synchronous

downlink scenario with periodic signature sequences in this

paper, it should be remarked that they can be extended to

long codes and asynchronous systems, provided that the de-

signer adopts the modifications explained in the works reported

in [7]–[11].

This paper is organized as follows. Section II describes

the DS-CDMA system model. The linear-interpolated-receiver

principle and design criteria, namely, the MMSE and con-

strained MV (CMV), are described in Section III. Section IV

is dedicated to the derivation of adaptive algorithms, and

Section V is devoted to the global convergence properties of

the method and the convergence analysis of the algorithms.

Section VI presents and discusses the simulation results, and

Section VII gives the concluding remarks.
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Fig. 1. Proposed adaptive reduced-rank receiver structure.

II. DS-CDMA SYSTEM MODEL

Let us consider the downlink of a synchronous DS-CDMA

system with K users, N chips per symbol, and Lp propagation

paths. The signal broadcasted by the base station intended for

user k has a baseband representation given by

xk(t) = Ak

∞∑

i=−∞
bk(i)sk(t− iT ) (1)

where bk(i) ∈ {±1} denotes the ith symbol for user k, the real-

valued spreading waveform, and the amplitude associated with

user k are sk(t) and Ak, respectively. The spreading wave-

forms are expressed by sk(t) =
∑N

i=1 ak(i)φ(t− iTc), where

ak(i) ∈ {±1/
√
N}, φ(t) is the chip waveform, Tc is the chip

duration, and N = T/Tc is the processing gain. Assuming that

the receiver is synchronized with the main path, the coherently

demodulated composite received signal is

r(t) =

K∑

k=1

Lp−1
∑

l=0

hl(t)xk(t− τl) + n(t) (2)

where hl(t) and τl are, respectively, the channel coefficient

and the delay associated with the lth path. Assuming that

τk,l = lTc, the channel is constant during each symbol interval,

and the spreading codes are repeated from symbol to symbol,

the received signal r(t) after filtering by a chip-pulse matched

filter and sampled at chip rate yields the M = N + Lp − 1
dimensional received vector

r(i) = H(i)
K∑

k=1

AkSkbk(i) + n(i) (3)

where n(i) = [n1(i) · · ·nM i)]T is the complex Gaussian noise

vector with E[n(i)nH(i)] = σ2I, where (·)T and (·)H denotes

transpose and Hermitian transpose, respectively, and E[.] is

the expected value; the kth user symbol vector is bk(i) =
[bk(i+ Ls − 1) · · · bk(i) · · · bk(i− Ls + 1)]T, where Ls is the

ISI span, and the ((2Ls − 1)×N)× (2Ls − 1) matrix Sk with

nonoverlapping shifted versions of the signature of user k is

Sk =








sk 0 · · · 0

0 sk
. . . 0

...
...

. . .
...

0 · · · · · · sk








(4)

where the signature sequence for the kth user is sk =
[ak(1) · · · ak(N)]T, and the M × ((2Ls − 1)×N) channel

matrix H(i) is

H(i)=








h0(i) · · · hLp−1(i) · · · 0 0
0 h0(i) · · · hLp−1(i) · · · 0
...

. . .
. . .

. . .
. . .

...

0 0 · · · h0(i) · · · hLp−1(i)








(5)

where hl(i) = hl(iTc) for l = 0, . . . , Lp − 1. The MAI arises

from the nonorthogonality between the received signals,

whereas the ISI span Ls depends on the length of the channel

response, which is related to the length of the chip sequence.

For Lp = 1, Ls = 1 (no ISI), for 1 < Lp � N , Ls = 2, for

N < Lp � 2N , Ls = 3, and so on.

III. LINEAR INTERPOLATED CDMA RECEIVERS

The underlying principles of the proposed CDMA-receiver

structure are detailed here. Fig. 1 shows the structure of an

IFIR receiver, where an interpolator and a reduced-rank re-

ceiver that are time-varying are employed. The M × 1 received

vector r(i) = [r
(i)
0 · · · r(i)

M−1]
T is filtered by the interpolator

filter vk(i) = [v
(i)
k,0 · · · v

(i)
k,NI−1]

T, yielding the interpolated re-

ceived vector rk(i). The vector rk(i) is then projected onto an

M/L× 1 vector r̄k(i). This procedure corresponds to remov-

ing L− 1 samples of rk(i) of each set of L consecutive ones.

Then, the inner product of r̄k(i) with the M/L-dimensional

vector of filter coefficients wk(i) = [w
(i)
k,0 · · ·w

(i)
k,M/L−1]

T is

computed to yield the output xk(i).
The projected interpolated observation vector r̄k(i) =

Drk(i) is obtained with the aid of the M/L×M projection

matrixD, which is mathematically equivalent to signal decima-

tion on the M × 1 vector rk(i). An interpolated receiver with

decimation factor L can be designed by choosing D as

D =















1 0 0
...

...
...

0 · · · 0
︸ ︷︷ ︸

(m−1)L zeros

0 0 · · ·
...

...
...

1 0 · · ·

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · 0
︸ ︷︷ ︸

(M/L−1)L zeros

...

1

...
...

...

0 . . . 0
︸ ︷︷ ︸

(L−1) zeros















(6)
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where m(m = 1, 2, . . . ,M/L) denotes the mth row. The strat-

egy that allows us to devise solutions for both interpolator and

receiver is to express the estimated symbol xk(i) = wH
k (i)r̄k(i)

as a function of wk(i) and vk(i) [we will drop the subscript k
and symbol index (i) for ease of presentation]

xk(i) =w∗
0v

H
k ṙ0 + w∗

1v
H
k ṙ1 + · · ·+ w∗

M/L−1v
H
k ṙM/L−1

=vH
k (i)

[

ṙ
(i)
0 | · · · |ṙ(i)M/L−1

]

w∗
k(i)

=vH
k (i)ℜ(i)w∗

k(i) (7)

where uk(i) = ℜ(i)w∗
k(i) is an NI × 1 vector, the M/L co-

efficients of wk(i) and the NI elements of vk(i) are assumed

to be complex, the asterisk denotes complex conjugation, and

ṙs(i) is a length NI segment of the received vector r(i) begin-

ning at rs×L(i), and

ℜ(i) =









r
(i)
0 r

(i)
L · · · r

(i)
(M/L−1)L

r
(i)
1 r

(i)
L+1 · · · r

(i)
(M/L−1)L+1

...
...

. . .
...

r
(i)
NI−1 r

(i)
L+NI−1 · · · r

(i)
(M/L−1)L+NI−1









. (8)

The interpolated linear-receiver design is equivalent in deter-

mining an FIR filter wk(i) with M/L coefficients that provide

an estimate of the desired symbol

b̂k(i) = sgn
(
Re

[
wH

k (i)r̄k(i)
])

(9)

where Re(·) selects the real part, sgn(·) is the signum function,

and the receiver parameter vector wk is optimized according to

a selected design criterion.

A. MMSE Reduced-Rank Interpolated Receiver Design

The MMSE solutions for wk(i) and vk(i) can be computed

if we consider the optimization problem whose cost function is

JMSE (wk(i),vk(i)) = E
[
|bk(i)− vH

k (i)ℜ(i)w∗
k(i)|2

]

(10)

where bk(i) is the desired symbol for user k at time index

(i). By fixing the interpolator vk(i) and minimizing (10) with

respect to wk(i), the interpolated Wiener filter/receiver weight

vector is

wk(i) = α(vk) = R̄−1
k (i)p̄k(i) (11)

where R̄k(i) = E[r̄k(i)r̄
H
k (i)], p̄k(i) = E[b∗k(i)r̄k(i)], and

r̄k(i) = ℜ
T(i)v∗

k(i), and by fixing wk(i) and minimizing (10)

with respect to vk(i), the interpolator weight vector is

vk(i) = β(wk) = R−1
uk
(i)puk

(i) (12)

where Ruk
(i) = E[uk(i)u

H
k (i)], puk

(i) = E[b∗k(i)uk(i)], and

uk(i) = ℜ(i)w∗
k(i). The associated MSE expressions are

J(vk) =JMSE (α(vk),vk)

=σ2
b − p̄H

k (i)R
−1
k (i)p̄k(i) (13)

JMSE (wk,β(wk)) =σ2
b − pH

uk
(i)R−1

uk
(i)puk

(i) (14)

where σ2
b = E[|b(i)|2]. Note that points of global

minimum of (10) can be obtained by vk,opt =
argminvk

J(vk) and wk,opt = α(vk,opt) or wk,opt =
argminwk

JMSE(wk,β(wk)) and vk,opt = β(wk,opt). At

the minimum point, (13) equals (14), and the MMSE for the

proposed structure is achieved. We remark that (11) and (12)

are not closed-form solutions for wk(i) and vk(i), since (11)

is a function of vk(i), and (12) depends on wk(i), and thus,

it is necessary to iterate (11) and (12) with an initial guess to

obtain a solution, as in [24]. An iterative MMSE solution can

be sought via adaptive algorithms.

B. CMV Reduced-Rank Interpolated Receiver Design

The interpolated CMV receiver parameter vector wk and the

interpolator parameter vector vk are obtained by minimizing

JMV(wk,vk) =E
[

|xk(i)|2
]

= E
[∣
∣vH

k (i)ℜ(i)w∗
k(i)

∣
∣
2
]

=wH
k (i)R̄kwk(i) = vH

k (i)Ruk
vk(i) (15)

subject to the proposed constraints CH
k D

Hwk(i) = g(i) and

‖vk(i)‖ = 1, where the M × Lp constraint matrix Ck con-

tains one-chip shifted versions of the signature sequence of

user k; g(i) is an Lp-dimensional parameter vector to be

determined. The vector of constraints g(i) can be chosen

among various criteria, although, in this paper, we adopt

g(i) as the channel parameter vector (g = [h0 · · ·hLp−1]
T)

because it provides better performance than other choices,

as reported in [6]. The proposed constraint ‖vk(i)‖ = 1 en-

sures adequate design values for the interpolator filter vk,

whereas CH
k D

Hwk(i) = g(i) avoids the suppression of the

desired signal. By fixing vk, taking the gradient of the La-

grangian function J l
MV(wk,vk) = E[[|vH

k (i)ℜ(i)w∗
k(i)|2] +

Re[(CH
k D

Hwk(i)− g(i))Hλ], where λ is a vector of Lagrange

multipliers, with respect to wk and setting it to 0, we get

E
[
r̄k(i)r̄

H
k (i)

]
wk(i) +DCkλ =0

=⇒ wk(i) = − R̄−1
k (i)DCkλ.

Using the constraint CH
k D

Hwk(i) = g(i) and substitut-

ing wk(i) = −R̄−1
k (i)DCkλ, we arrive at λ =

−(CH
k D

HR̄−1
k (i)DCk)

−1gk(i). The resulting expression

for the receiver is

wk(i) =αo(vk)

= R̄k(i)
−1DCk

(
CH

k D
HR̄k(i)

−1DCk

)−1
g(i) (16)

and the associate minimum output variance is

Jo(vk) = JMV (αo(vk),vk) = wH
k (i)R̄k(i)wk(i)

=gH(i)
(
CH

k D
HR̄k(i)

−1DCk

)−1
g(i). (17)

By fixing wk, the solution that minimizes (15) is

vk(i) = βo(wk) = argmin
v

vHRuk
(i)v (18)
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subject to ‖vk(i)‖ = 1. Therefore, the solution for the interpo-

lator is the normalized eigenvector of Ruk
corresponding to its

minimum eigenvalue, via singular-value decomposition (SVD).

As occurring with the MMSE approach, we iterate (16) and (18)

with an initial guess to obtain a CMV solution [24]. Note also

that (16) assumes the knowledge of the channel parameters.

However, in applications where multipath is present, these

parameters are not known, and thus, channel estimation is

required. To blindly estimate the channel, we use the method

of [6], [27]

ĝ(i) = argmin
g

gHCH
k R

−m(i)Ckg (19)

subject to ‖ĝ‖ = 1, where R(i) = E[r(i)rH(i)], and m is

a finite power and whose solution is the eigenvector corre-

sponding to the minimum eigenvalue of the Lp × Lp matrix

CT
kR(i)−mCk through SVD. Note that, in this paper, we

restrict the values of m to 1, although the performance of the

channel estimator and, consequently, of the receiver can be

improved by increasing m. In the next section, we propose

iterative solutions via adaptive algorithms.

IV. ADAPTIVE ALGORITHMS

We describe SG and RLS algorithms [31, Ch. 9 and 13] that

adjust the parameters of the receiver and the interpolator based

on the MMSE criterion and the constrained minimization of the

MV cost function [25], [26]. The novel structure, as shown in

Fig. 1 and denoted as INT, for the receivers gathers fast con-

vergence, low complexity, and additional flexibility, since the

designer can adjust the decimation factor L and the length of the

interpolator NI , depending on the needs of the application and

the hostility of the environment. Based upon the MMSE and

CMV design criteria, the proposed receiver structure has the

following modes of operation: training mode, where it employs

a known training sequence; decision directed mode, which uses

past decisions in order to estimate the receiver parameters; and

blind mode, which is based on the CMV criterion and trades off

the training sequence against the knowledge of the signature

sequence. The complexity, in terms of arithmetic operations

of the algorithms associated with the INT and the existing

techniques, is included as a function of the number of adaptive

elements for comparison purposes.

A. Least Mean Squares (LMS) Algorithm

Given the projected interpolated observation vector r̄k(i)
and the desired symbol bk(i), we consider the following cost

function:

JMSE = |bk(i)− vH
k (i)ℜ(i)w∗

k(i)|2. (20)

Taking the gradient terms of (20) with respect to wk(i)
and vk(i) and using the gradient descent rules [31, Ch. 9,

pp. 367–371], wk(i+ 1) = wk(i)− µ∇JMSE

w∗ and vk(i+ 1) =
vk(i)− η∇JMSE

v∗
yields

vk(i+ 1) =vk(i) + ηe∗k(i)uk(i) (21)

wk(i+ 1) =wk(i) + µe∗k(i)r̄k(i) (22)

where ek(i) = bk(i)−wk(i)
Hr̄k(i) is the error for user k,

uk = ℜ(i)wk(i), and µ and η are the step sizes of the algorithm

for wk(i) and vk(i). The LMS algorithm for the proposed

structure described in this section has a computational com-

plexity O(M/L+NI). In fact, the proposed structure trades

off one LMS algorithm with complexity O(M) against two

LMS algorithms with complexity O(M/L) and O(NI), op-

erating in parallel. It is worth noting that, to stabilize and to

facilitate tuning of parameters, it is useful to employ normalized

step sizes and, consequently, normalized least mean squares

(NLMS)-type recursions when operating in a changing envi-

ronment, and thus, we have µ(i) = η0/r̄
H
k (i)r̄k(i) and η(i) =

µ0/u
H
k (i)uk(i) as the step sizes of the algorithm for wk(i) and

vk(i), where µ0 and η0 are the convergence factors.

B. RLS Algorithm

Consider the time average estimate of the matrix R̄k, as

required in (11), given by ˆ̄Rk(i) =
∑i

l=1 α
i−lr̄k(l)r̄

H
k (l),

where α (0 < α � 1) is the forgetting factor that can be

alternatively expressed by ˆ̄Rk(i) = α ˆ̄Rk(i− 1) + r̄k(i)r̄
H
k (i).

To avoid the inversion of ˆ̄Rk(i) required in (11), we use the

matrix-inversion lemma and define Pk(i) =
ˆ̄R
−1

k (i) and the

gain vector Gk(i) as

Gk(i) =
α−1Pk(i− 1)r̄k(i)

1 + α−1r̄Hk (i)Pk(i− 1)r̄k(i)
(23)

and thus, we can rewrite Pk(i) as

Pk(i) = α−1Pk(i− 1)− α−1Gk(i)r̄
H
k (i)Pk(i− 1). (24)

By rearranging (23), we have Gk(i) = α−1Pk(i− 1)r̄k(i)−
α−1 Gk(i)r̄

H
k (i)Pk(i− 1)r̄k(i) = Pk(i)r̄k(i). By employing

the least squares (LS) solution [a time average of (11)] and the

recursion p̂k(i) = αp̂k(i− 1) + r̄k(i)b
∗
k(i), we obtain

wk(i) =
ˆ̄R
−1

k (i)p̂k(i) =αPk(i)p̂k(i− 1)+Pk(i)r̄k(i)b
∗
k(i).
(25)

Substituting (24) into (25) yields

wk(i) = wk(i− 1) +Gk(i)ξ
∗
k(i) (26)

where the a priori estimation error is described by

ξk(i) = bk(i)−wH
k (i− 1)r̄k(i). Similar recursions for the

interpolator are devised by using (12). The estimate R̂uk
can be

obtained through R̂uk
(i) =

∑i
l=1 α

i−luk(l)u
H
k (l) and can be

alternatively written as R̂uk
(i) = αR̂uk

(i− 1) + uk(i)u
H
k (i).

To avoid the inversion of R̂uk
, we use the matrix-inversion

lemma, and, again, for convenience of computation, we define

Puk
(i) = R̂−1

uk
(i) and the Kalman gain vector Guk

(i) as

Guk
(i) =

α−1Puk
(i− 1)uk(i)

1 + α−1uH
k (i)Puk

(i− 1)uk(i)
(27)
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and thus, we can rewrite (27) as

Puk
(i) = α−1Puk

(i− 1)− α−1Guk
(i)uH

k (i)Puk
(i− 1).

(28)

By proceeding in a similar approach to the one taken to obtain

(26), we arrive at

vk(i) = vk(i− 1) +Guk
(i)ξ∗k(i). (29)

The RLS algorithm for the proposed structure trades off

a computational complexity of O(M2) against two RLS

algorithms operating in parallel, with complexity O((M/L)2)
and O(N2

I ), respectively. Because NI is small (NI ≪ M , as

will be shown later), the computational advantage of the RLS

combined with the INT structure is rather significant.

C. CMV-SG Algorithm

Consider the unconstrained Lagrangian MV cost function

JMV =
(
vH

k (i)uk(i)u
H
k (i)vk(i)

)
+ λH

(
CH

k D
Hwk(i)− g(i)

)

+
(
wH

k (i)DCk − gH(i)
)
λ (30)

where λ is a vector of Lagrange multipliers. An SG solution

can be devised by taking the gradient terms of (30) with respect

to wk(i) and vk(i), as described by wk(i+ 1) = wk(i)−
µw(i)∇Jwk(i) and vk(i+ 1) = vk(i)− η(i)∇Jvk(i), which

adaptively minimizes JMV with respect to wk(i) and vk(i).
Substituting the gradient terms, the equations become

wk(i+ 1) =wk(i)− µw(i) (x
∗
k(i)r̄k(i) +DCkλ(i)) (31)

vk(i+ 1) =vk(i)− η(i)x∗
k(i)uk(i) (32)

where xk(i) = wH
k (i)r̄k(i) = vH

k (i)uk(i). We use (32) and

can make vk(i+ 1) ← vk(i+ 1)/‖vk(i+ 1)‖ to update the

interpolator vk. It is worth noting that, in our studies, the

normalization on SG algorithms does not lead to different

results from the ones obtained with a nonnormalized interpo-

lator recursion. In this regard, analyzing the convergence of

(32) without normalization is mathematically simpler and gives

us the necessary insight into its convergence. By combining

the constraint CkD
Hwk(i) = g(i) and (32), we obtain the

Lagrange multiplier

λ(i) = (CH
k D

HDCk)
−1

×
(
CHDwk(i)− µwC

HDx∗
k(i)r̄k(i)− g(i)

)
. (33)

By substituting (33) into (31), we arrive at the update rules for

the estimation of the parameters of the receiver wk

wk(i+ 1)=Πk (wk(i)− µw(i)x
∗
k(i)r̄k(i))

+DCk

(
CH

k D
HDCk

)−1
g(i) (34)

whereΠk = I−DCk(C
H
k D

HDCk)
−1CH

k D
H is a matrix that

projects wk onto another hyperplane to ensure the constraints.

Normalized versions of these algorithms can be devised by

substituting (32) and (34) into the MV cost function, differenti-

ating the cost function with respect to µw(i) and µv(i), setting

them to zero, and solving the new equations. Hence, the CMV-

SG algorithm proposed here for the INT receiver structure

adopts the normalized step sizes µw(i) = µ0/r̄
H
k (i)Πkr̄k(i)

and η(i) = η0/u
H
k uk(i), where µ0 and η0 are the convergence

factors for wk and vk, respectively.

The channel estimate ĝ(i) is obtained through the power

method and the SG technique described in [27]. The method

is an SG adaptive version of the blind channel-estimation

algorithm described in (19) and introduced in [28] that

requires only O(L2
p) arithmetic operations to estimate the

channel against O(L3
p) of its SVD version. In terms of

computational complexity, for the rejection of MAI and ISI,

the proposed blind interpolated receiver trades off one blind

algorithm with complexity O(M) against two blind algo-

rithms with complexity O(M/L) and O(NI) operating in

parallel.

D. CMV-RLS Algorithm

Based upon the expressions for the receiver wk and interpo-

lator vk in (16) and (18) of the interpolated CMV receiver, we

develop a computationally efficient RLS algorithm for the INT

structure that estimates the parameters of wk and vk.

The iterative power method [29, pp. 405–408], [30,

pp. 314–333] is used in numerical analysis to compute the

eigenvector corresponding to the largest singular value of a

matrix. In order to obtain an estimate of vk and avoid the SVD

on the estimate of the matrix Ruk
(i), we resort to a variation of

the iterative power method to obtain the eigenvector of Ruk
(i),

which corresponds to the minimum eigenvalue.

Specifically, we apply the power method to the difference

betweenRuk
(i) and the identity matrix I rather than applying it

to the inverse ofRuk
(i). This approach, which is known as shift

iterations [30, p. 319], leads to computational savings on one or-

der of magnitude, since direct SVD requires O(N3
I ), while our

approach needs O(N2
I ). The simulations carried out reveal that

this method exhibits no performance loss. Hence, we estimate

Ruk
(i) via the recursion R̂uk

(i) =
∑i

n=0 α
i−nuk(n)u

H
k (n)

and then obtain the interpolator v̂k with a one-step iteration

given by

v̂k(i) =
(

I− νk(i)R̂uk
(i)

)

v̂k(i− 1) (35)

where νk(i) = 1/tr[R̂uk
(i)]. After that, we make v̂k(i) ←

v̂k(i)/‖v̂k(i)‖ normalize the interpolator. This procedure is

based on the following result.

Lemma 1: Let R be a positive semidefinite Hermitian sym-

metric matrix and qmin be the eigenvector associated with the

smallest eigenvalue. If qmin is unique and of unit norm, then,

with ν = 1/tr[R], the sequence of vectors v(i) = v̂(i)/‖v̂(i)‖
with v̂(i) = (I− ν(i)R)v̂(i− 1) converges to qmin, provided

that v̂(0) is not orthogonal to qmin. A proof is given in the

Appendix.
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To recursively estimate the matrix R̄k(i) and avoid its in-

version, we use the matrix-inversion lemma and Kalman RLS

recursions [31]

G(i) =
α−1 ˆ̄R

−1

k (i− 1)r̄k(i)

1 + α−1r̄Hk (i)
ˆ̄R
−1

k (i− 1)r̄k(i)
(36)

ˆ̄R
−1

k (i) =α−1 ˆ̄R
−1

k (i− 1)− α−1G(i)r̄Hk (i)
ˆ̄R
−1

k (i− 1) (37)

where 0 < α � 1 is the forgetting factor. The algorithm can

be initialized with R̄−1
k (0) = δI and R−1

uk
(0) = δI, where δ is

a large positive number. For the computation of the reduced-

rank receiver parameter vector wk, we use the matrix-inversion

lemma [31] to estimate (CH
k D

HR̄−1
k (i)DCk)

−1, as given by

Γ−1
k (i)=

1

1− α

×
[

Γ−1
k (i− 1)− Γ−1

k (i− 1)γk(i)γ
H
k (i)Γ

−1
k (i− 1)

1−α
α + γH

k (i)Γ
−1
k (i)γk(i)

]

(38)

where Γk(i) is an estimate of (CH
k D

H ˆ̄R
−1

k (i)DCk), and

γk(i) = CH
k D

Hrk(i), and then, we construct the reduced-rank

receiver as

wk(i) =
ˆ̄Rk(i)

−1DCkΓ
−1
k (i)ĝ(i). (39)

The channel estimate ĝ(i) is obtained through the power

method and the RLS technique described in [28]. Following

this approach, the SVD on the Lp × Lp matrix CH
k R

−1(i)Ck,

as stated in (19) and which requires O(L3
p), is avoided and

replaced by a single matrix–vector multiplication, resulting in

the reduction of the corresponding computational complexity

on one order of magnitude and no performance loss. In terms

of computational complexity, the CMV-RLS algorithm with

the interpolated receiver trades off one blind algorithm with

complexity O(M2) against two with complexity O(M2/L2)
and O(N2

I ) operating in parallel. Since NI is small as compared

to M , it turns out that the new algorithms offer a significant

computational advantage over conventional RLS algorithms.

E. Computational Complexity

In this section, we illustrate the computational complexity

of the proposed INT structure and algorithms. In Table I,

we consider supervised algorithms, whereas the complexity

of blind algorithms is depicted in Table II. Specifically, we

compare the full-rank, the proposed INT structure, the PD, the

PC, and the MWF structures with SG and RLS algorithms.

In general, the INT structure introduces the term M/L,

which can reduce the complexity by choosing the decima-

tion factor L � 2. This is relevant for algorithms which have

quadratic computational cost with M , i.e., the blind and trained

RLS and the blind SG, because the decimation factor L in

the denominator favors the proposed scheme which requires

complexity O((M/L)2). This complexity advantage is not

verified with linear complexity recursions. For instance, with

NLMS algorithms, the proposed INT has a complexity that is

TABLE I
COMPUTATIONAL COMPLEXITY OF

SUPERVISED ADAPTATION ALGORITHMS

TABLE II
COMPUTATIONAL COMPLEXITY OF BLIND ADAPTATION ALGORITHMS

slightly superior to the full-rank. Among the other methods,

the PD is slightly more complex than the INT. A drawback of

PC methods is that they require an SVD with associated cost

O(M3) in order to compute the desired subspace. Although

the subspace of interest can be retrieved via computationally

efficient tracking algorithms [13], [14], these algorithms are

still complex (O(M)2) and lead to performance degradation as

compared to the actual SVD. The MWF technique has a com-

plexity O(DM̄2), where the variable dimension of the vectors

M̄ = M − d varies according to the orthogonal decomposition,

and the rank d = 1, . . . , D.

In order to illustrate the complexity trend in a compre-

hensive way, we depict in Fig. 2 curves which describe the

computational complexity in terms of the arithmetic operations

(additions and multiplications) as a function of the number

of parameters M for recursive algorithms. For these curves,

we consider Lp = 6 and assume that D is equal to M/2
for the eigendecomposition approaches. We also include the
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Fig. 2. Complexity in terms of arithmetic operations versus number of
received samples (M) for (a) supervised and (b) blind recursive adaptation
algorithms.

computational cost of the algorithm of Song and Roy [14],

which is capable of significantly reducing the cost required by

SVD. In comparison with the existing reduced-rank techniques,

the proposed INT scheme is significantly less complex than the

PC and the MWF and is slightly less complex than the PD.

This is because the analyzed algorithms have quadratic cost

(PC with SVD has cubic cost), whereas the INT has complexity

O((M/L)2), as shown in Tables I and II.

V. GLOBAL CONVERGENCE PROPERTIES OF THE METHOD

AND CONVERGENCE ANALYSIS OF ALGORITHMS

In this section, we discuss the global convergence of the

method and its properties, the trajectory of the mean tap vectors,

of the excess MSE, and the convergence speed. Specifically, we

study the convergence properties of the proposed joint adaptive

interpolator and receiver scheme and conclude that it leads

to an optimization problem with multiple global minima and

no local minima. In this regard and based on the analyzed

convergence properties of the method, it suffices to examine the

MSE trajectory of only one of the jointly optimized parameter

vectors (wk or vk) in order to predict the excess MSE of both

blind and supervised adaptive algorithms. We also provide a

discussion of the speed of convergence of the INT, as compared

to the full-rank.

A. Global Convergence of the Method and Its Properties

1) Interpolated MMSE Design: Let us first consider

the trained receiver case and recall the associated MSE

expressions in (13) and (14), namely, JMSE(vk,α(vk)) =
J(vk) = σ2

bk
− p̄H

k (i)R̄
−1
k (i)p̄k(i) and JMSE(β(wk),wk) =

σ2
bk

− p̄H
uk
(i)R̄−1

uk
(i)puk

(i), where σ2
bk

= E[|bk(i)|2]. Note

that points of global minimum of JMSE(wk(i),vk(i)) =
E[|bk(i)− vH

k (i)ℜ(i)w∗
k(i)|2] can be obtained by vopt =

argminvk
J(vk) and wopt = α(vopt) or wopt =

argminwk
JMSE(β(wk),wk) and vopt = β(wopt). At a

minimum point, JMSE(vk,α(vk)) equals JMSE(β(wk),wk),
and the MMSE for the proposed structure is achieved. We

further note that, since J(vk) = J(tvk), for every t �= 0, then

if v⋆
k is a point of global minimum of J(vk), then tv⋆

k is

also a point of global minimum. Therefore, points of global

minimum (optimum interpolator filters) can be obtained by

v⋆
k = argmin‖vk‖=1 J(vk). Since the existence of at least

one point of global minimum of J(vk) for ‖vk‖ = 1 is

guaranteed by the theorem of Weierstrass [32, Ch. 2, Sec. II-A,

App. B], then the existence of (infinite) points of global

minimum is also guaranteed for the cost function in (10).

In the context of global convergence, a sufficient but not

necessary condition is the convexity, which is verified if

its Hessian matrix is positive semidefinite, i.e., aHHa � 0,

for any vector a. First, let us consider the minimization

of JMSE(wk(i),vk(i)) = E[|bk(i)− vH
k (i)ℜ(i)w∗

k(i)|2] with

fixed interpolators. Such optimization leads to the following

Hessian H = (∂/∂wH
k )((JMSE(.))/∂wk) = E[rk(i)r

H
k (i)] =

Rk(i), which is positive semidefinite and ensures the convexity

of the cost function for the case of fixed interpolators. Let us

now consider the joint optimization of the interpolator vk and

receiver wk through an equivalent cost function to (10)

J̃MSE(z) = E
[∣
∣b− zH

k Bzk

∣
∣
2
]

(40)

where B =

[
0 0

ℜ 0

]

is an (NI +N/L)× (NI +N/L)

matrix, and the Hessian (H) with respect to zk = [wT
k v

T
k ]

T is

H = (∂/∂zH
k )(∂(J̃MSE(.))/∂zk) = E[(zH

k Bzk − bk)B
H] +

E[(zH
k B

Hzk − b∗k)B] + E[Bzkz
H
k B

H] + E[BHzkz
H
k B]. By

examining H, we note that the third and fourth terms yield

positive semidefinite matrices (aHE[Bzkz
H
k B

H]a � 0 and

aHE[BHzkz
H
k B]a � 0, zk �= 0), whereas the first and second

terms are indefinite matrices. Thus, the cost function cannot be

classified as convex. However, for a gradient search algorithm,

a desirable property of the cost function is that it shows no

points of local minimum, i.e., every point of minimum is

a point of global minimum (convexity is a sufficient, but

not necessary, condition for this property to hold), and it is

conjectured that the problem in (40) has this property.

To support this claim, we carried out the following studies.

1) Let us consider the scalar case of the function in

(40), which is defined as f(w, v) = (b− w r v)2 = b2 −
2bw r v + (wℜ v)2, where r is a constant. By choosing

v (the “scalar” interpolator) fixed, it is evident that the

resulting function f(w, v) = (b− w c)2, where c is a

constant is a convex one, whereas for a time-varying

interpolator, the curves shown in Fig. 3(a) and (b) indicate

that the function is no longer convex but that it also does

not exhibit local minima.

2) By taking into account that, for small interpolator filter

length NI (NI � 3), vk can be expressed in spherical

coordinates, and a surface can be constructed. Specifi-

cally, we expressed the parameter vector vk as follows:

vk = r[cos(θ) cos(φ) cos(θ) sin(φ) sin(θ)]T, where

r is the radius, θ and φ were varied from −π/2 to

π/2 and −π to π, respectively, and (13) was plotted for

various scenarios and conditions (SNR, different chan-

nels, etc). The plot of the error-performance surface of
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Fig. 3. (a) Error performance surface of the function f(v, w) = (1 − w ∗ r ∗ v)2. (b) Contour plots showing that the function does not exhibit local minima
and has multiple global minima. (c) Error performance surface of interpolated MMSE receivers at Eb/N0 = 15 dB for L = 3. (d) Variance performance surface
of JMV(v) for CMV receivers at Eb/N0 = 15 dB for L = 2 and channel with paths given by 0, −6, and −10 dB, spaced by Tc.

J(vk), which is depicted in Fig. 3(c), reveals that J(vk)
has a global minimum value (as it should) but does not

exhibit local minima, which implies that (40) has no local

minima either. It should be noted that if the cost function

in (40) had a point of local minimum, then J(vk) in (13)

should also exhibit a point of local minimum, even though

the reciprocal is not necessarily true: A point of local

minimum of J(vk) may correspond to a saddle point

of JMSE(vk,wk) if it exists. Note also that the latitude

X longitude plot in Fig. 3(c) depicts its two symmetric

global minima in the unit sphere.

3) An important feature that advocates the nonexistence

of local minima is that the algorithm always converge

to the same minimum value, for a given experiment,

independently of any interpolator initialization (except

for v(0) = [0 · · · 0]T that eliminates the signal) for a wide

range of SNR values and channels.

2) Interpolated CMV Design: For the blind case, let

us first consider the minimization of JMV(wk(i),vk(i)) =
E[|vH

k (i)ℜ(i)w∗
k(i)|2] with fixed interpolators subject to

CH
k D

Hwk(i) = g(i) and ‖vk(i)‖ = 1. It should be noted that

global convergence of the CMV method has been established

in [6], and in this paper, we treat a similar problem when fixed

interpolators are used. Such optimization leads to the following

Hessian H = (∂/∂wH
k )((JMV(.))/∂wk) = E[rk(i)r

H
k (i)] =

Rk(i), which is positive semidefinite and ensures the convexity

of the cost function for the case of fixed interpolators.

Consider the joint optimization of the interpolator vk and

receiver wk via an equivalent cost function to (10)

J̃MV(z) = E
[
|zH

k Bzk|2
]

(41)

subject to CH
k D

Hwk(i) = g(i), where B =

[
0 0

ℜ 0

]

is an

(NI +N/L)× (NI +N/L) matrix, and the Hessian (H), with

respect to zk=[wT
k v

T
k ]

T, is H = (∂/∂zH
k )(∂(J̃MSE(.))/

∂zk) = E[zH
k BzkB

H] + E[zH
k B

HzkB] + E[Bzkz
H
k B

H] +
E[BHzkz

H
k B]. By examining H, we note that, as it occurs

for the MMSE case, the third and fourth terms yield

positive semidefinite matrices (aHE[Bzkz
H
k B

H]a � 0 and

aHE[BHzkz
H
k B]a � 0, zk �= 0), whereas the first and

second terms are indefinite matrices. Hence, the cost function

cannot be classified as convex, although we conjecture that

it does not exhibit local minima. Thus, we proceed similarly

to the MMSE case to study the surfaces provided by the
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problem in (41). Then, we carried out the following studies.

1) We have also plotted the variance performance surface

of Jo(vk) in (17), depicted in Fig. 3(d). This surface

reveals that Jo(vk) has a global minimum (as it should)

but does not exhibit local minima, which implies that (41)

subject to CH
k D

Hwk(i) = g(i) has no local minima either.

2) Another important feature that suggests the nonexistence

of local minima for the blind algorithms is that they always

converge to the same minimum value, for a given experiment,

independently of any interpolator initialization (except for

v(0) = [0 · · · 0]T that eliminates the signal) for a wide range of

parameters.

B. Trajectory of the Mean Tap Vectors

This part is devoted to the analysis of the trajectory of the

mean tap vectors of the proposed structure when operating in

blind and supervised modes. In our analysis, we employ the so-

called independence theory [1], [31, Ch. 9, pp. 390–404] that

consists of four points.

1) The received vectors r(1), . . . , r(i) and their interpolated

counterparts r̄k(1), . . . , r̄k(i) constitute a sequence of

statistically independent vectors.

2) At time i, r(i) and r̄k(i) are statistically independent of

bk(1), . . . , bk(i− 1).
3) At time i, bk(i) depends on r(i) and rk(i) but is indepen-

dent of previous bk(n), for n = 1, . . . , i− 1.

4) The vectors r(i) and r̄k(i) and the sample bk are mutually

Gaussian-distributed random variables (r. v.).

In the present context, it is worth noting that the indepen-

dence assumption holds for synchronous DS-CDMA systems

[1], which is the present case, but not for asynchronous models,

even though it provides substantial insight.

1) Trained Algorithm: To proceed, let us drop the user k
index for ease of presentation and define the tap error vectors

ew(i) and ev(i) at time index i

ew(i) = w(i)−wopt, ev(i) = v(i)− vopt (42)

where wopt and vopt are the optimum tap vectors that achieve

the MMSE for the proposed structure. Substituting the expres-

sions in (42) into (21) and (22), we get

ew(i+ 1) =
[
I− µr̄(i)r̄H(i)

]
ew(i) + µr̄(i)e∗(i) (43)

ev(i+ 1) =
[
I− ηu(i)uH(i)

]
ev(i) + ηu(i)e∗(i). (44)

By taking expectations on both sides, we have

E [ew(i+ 1)] =
[
I− µR̄(i)

]
E [ew(i)] + µE [r̄(i)e∗(i)]

(45)

E [ev(i+ 1)] = [I− ηRu(i)]E [ev(i)] + ηE [u(i)e∗(i)] .

(46)

At this point, it should be noted that the two error vectors have

to be considered together because of the joint optimization of

the interpolator filter and the reduced-rank filter. Rewriting the

terms E[r̄(i)e∗(i)] and E[u(i)e∗(i)] and using (42) and the

independence theory [31, Ch. 9, pp. 390–404], we obtain

E [r̄(i)e∗(i)] = p̄(i)− E
[
r̄(i)vT(i)ℜH(i)

]
E [ew(i)]

− E
[
r̄(i)wT

optℜ
∗]E [ev(i)]

− E
[
r̄(i)wT

optℜ
∗vopt

]
(47)

E [u(i)e∗(i)] = p̄u(i)− E
[
u(i)wT(i)ℜ∗(i)

]
E [ev(i)]

− E
[
u(i)vT

optℜ
H
]
E [ew(i)]

− E
[
u(i)wT

optℜ
∗vopt

]
. (48)

By combining (45)–(48), the trajectory of the error vectors is

given by

[
E [ew(i+ 1)]
E [ev(i+ 1)]

]

= A

[
E [ew(i)]
E [ev(i)]

]

+B (49)

where we have the expression shown at the bottom of the next

page, and

B =

[
µp̄(i)− µE

[
r̄(i)wT

optℜ
∗vopt

]

ηp̄u(i)− ηE
[
u(i)wT

optℜ
∗vopt

]

]

.

Equation (49) implies that the stability of the algorithms in the

proposed structure depends on the matrix A. For stability, the

convergence factors should be chosen so that the eigenvalues of

AHA are less than one.

2) Blind Algorithm: The mean vector analysis of the blind

algorithm is slightly different from [6], because our approach

uses a decoupled SG channel-estimation technique [28] that

yields better channel estimates. Hence, we consider the joint

estimation of wk and vk, while g is a decoupled estimation

process. To proceed, let us drop the user k index for ease of

presentation and substitute the expressions of (42) into (32) and

(34) that gives

ew(i+ 1)=
[
I− µr̄(i)r̄H(i)

]
ew(i)+DC(CHDHDC)−1g(i)

− µΠr̄(i)vT
optℜ

∗(i)wopt

− µΠr̄(i)wT
optℜ

H(i)ev(i) (50)

ev(i+ 1)=
[
I− ηu(i)uH(i)

]
ev(i)− ηu(i)vT

optℜ
∗(i)ew(i)

− ηu(i)wT
optℜ

∗(i)vopt (51)

where Π = I−DC(CHDHDC)−1CHDH, and we used

the fact that the scalars have alternative expressions, as

(eT
w(i)ℜ

H(i)vopt)
T = (eT

w(i)ℜ
H(i)vopt) = vT

optℜ
∗(i)ew(i)

and (eT
v (i)ℜ

∗(i)wopt)
T =(eT

v (i)ℜ
∗(i)wopt)=wT

optℜ
H(i)×

ev(i). By taking expectations on both sides and eliminating the
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term µΠr̄(i)voptℜ
∗(i)wopt, we get

E [ew(i+ 1)] =
[
I− µR̄(i)

]
E [ew(i)]

+DC(CHDHDC)−1E [g(i)]

− µΠE
[
r̄(i)wT

optℜ
H(i)

]
E [ev(i)] (52)

E [ev(i+ 1)] = [I− ηRu(i)]E [ev(i)]

− ηE
[
u(i)vT

optℜ
∗(i)

]
E [ew(i)]

− ηE
[
u(i)wT

optℜ
∗(i)

]
vopt. (53)

By combining (52) and (53), the trajectory of the error vectors

for the MV case is given by

[
E [ew(i+ 1)]
E [ev(i+ 1)]

]

= AMV

[
E [ew(i)]
E [ev(i)]

]

+BMV (54)

where

AMV=

[ [
I− µR̄(i)

]
−µΠE

[
r̄(i)wT

optℜ
H(i)

]

−ηE
[
u(i)vT

optℜ
∗(i)

]
[I− ηRu(i)]

]

and

BMV =

[
DC(CHDHDC)−1E [g(i)]
−ηE

[
u(i)wT

optℜ
∗(i)

]
vopt

]

.

Equation (54) suggests that the stability of the algorithms

in the proposed structure depends on the matrix AMV. For

stability, the convergence factors should be chosen so that the

eigenvalues of AH
MVAMV are less than one.

C. Trajectory of Excess MSE

Here, we describe the trajectory of the excess MSE at steady

state of the trained and the blind SG algorithms.

1) Trained Algorithm: The analysis for the LMS algorithm

using the proposed interpolated structure and the computation

of its steady-state excess MSE resembles the one in [31, Ch. 9,

pp. 390–404]. Here, an interpolated structure with joint op-

timization of interpolator vk and reduced-rank receiver wk

is taken into account. Despite the joint optimization, for the

computation of the excess MSE, one has to consider only the

reduced-rank parameter vector wk because the MSE attained

upon convergence by (13) and (14) should be the same. Here,

we will drop the user k index for ease of presentation. Consider

the MSE at time i+ 1 as

ǫ(i+ 1) = E
[∣
∣b(i+ 1)−wH(i+ 1)r̄(i+ 1)

∣
∣
2
]

. (55)

By using w(i+ 1) = wopt + ew(i+ 1), wopt, vopt and the

fact that the expressions in (13) and (14) are equal for the

optimal parameter vectors, the MSE becomes

ǫ(i+ 1) =σ2
b − p̄H(i+ 1)R̄−1(i+ 1)p̄(i+ 1)

− p̄H(i+ 1)ew(i+ 1)− eH
w(i+ 1)p̄(i+ 1)

−wH
optp̄(i+ 1) +wH

optR̄(i+ 1)wopt

+wH
optR̄(i+ 1)ew(i+ 1)

+ eH
w(i+ 1)R̄(i+ 1)wopt

+ E
[
ew(i+ 1)r̄(i+ 1)r̄H(i+ 1)eH

w(i+ 1)
]

=σ2
b − p̄H(i+ 1)R̄−1(i+ 1)p̄(i+ 1)

+ E
[
ew(i+ 1)r̄(i+ 1)r̄H(i+ 1)eH

w(i+ 1)
]

=JMMSE(wopt,vopt) + ξexc(i+ 1) (56)

where p̄(i+ 1) = E[b∗(i+ 1)r̄(i+ 1)], ǫmin = JMMSE(wopt,
vopt) = σ2

b − p̄H(i+ 1)R̄−1(i+ 1)p̄(i+ 1) is the MMSE

achieved by the proposed structure when we have wopt and

vopt, and ξexc(i+ 1) = E[eH
w(i+ 1)r̄(i+ 1)r̄H(i+ 1)ew(i+

1)] is the excess MSE at time i+ 1. To compute the excess

MSE, one must evaluate the term ξexc(i+ 1). By invoking the

independence assumption and the properties of trace [31, Ch. 9,

pp. 390–404], we may reduce it as follows:

E
[
eH

w(i+ 1)r̄(i+ 1)r̄H(i+ 1)ew(i+ 1)
]

= tr
[
R̄(i+ 1)K(i+ 1)

]
. (57)

In the following steps, we assume that i is sufficiently large

such that the matrix R̄(i) = R̄(∞) = R̄. To proceed, let us

define some new quantities that will perform a rotation of

coordinates to facilitate our analysis, as advocated in [31].

Define QHR̄Q = Λ, where Λ is a diagonal matrix consisting

of the eigenvalues of R̄ and Q is the unitary matrix with

the eigenvectors associated with these eigenvalues. Letting

QHKQ = X, we get

ξexc(i+ 1) = tr
[
R̄K(i+ 1)

]
= tr

[
QΛQHQX̄(i+ 1)QH

]

=tr
[
QΛX̄(i+ 1)QH

]
= tr

[
ΛX̄(i+ 1)

]
(58)

where we used the property of trace, and QHQ = I. Because

Λ is a diagonal matrix of dimension M/L, we have

ξexc(i+ 1) =

M/L
∑

n=1

λnxn(i+ 1) (59)

where xn, n = 1, 2, . . . ,M/L are the elements of the diagonal

of X(i). Here, we may use (45) and invoke the independence

A =

[
(I− µR̄)− µE

[
r̄(i)vT(i)ℜH(i)

]
−µE

[
r̄(i)wT

optℜ
∗(i)

]

−ηE
[
u(i)vT

optℜ
H(i)

]
(I− ηR̄u)− ηE

[
u(i)wT(i)ℜ∗(i)

]

]
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theory [31, Ch. 9, pp. 390–404] in order to describe the corre-

lation matrix of the weight error vector

K(i+ 1) =E
[
ew(i+ 1)eH

w(i+ 1)
]

=
(
I− µR̄(i)

)
K(i)

(
I− µR̄(i)

)
+ µ2ǫmin. (60)

Next, using the transformations QHR̄Q = Λ and QHKQ =
X, and similarly to [31, Ch. 9, pp. 390–404], a recursive

equation in terms of X(i) and Λ can be written as

X(i+ 1) = (I− µΛ)X(i)(I− µΛ) + µ2ǫminΛ (61)

Because of the structure of the above equation, one can de-

couple the elements xn(i) from the off-diagonal ones, and

thus, ξexc(i+ 1) depends on xn(i), according to the following

recursion:

xn(i+ 1) = (1− µλn)
2xn(i) + µ2ǫminλn. (62)

At this point, it can be noted that such a recursive relation

converges, provided that all the roots lie inside the unit circle,

i.e., (1− µλn)
2 < 1 for all n, and thus, we have, for stability

0 < µ <
2

λmax
(63)

where λmax is the largest eigenvalue of the matrix R̄. In

practice, tr[R̄] is used as a conservative estimate of λmax.

By taking limi→∞ on both sides of (62), we get xn(∞) =
(µ/(2 + µλn))ǫmin. Then, taking limits on both sides of (59)

and using xn(∞), we obtain the expression for the excess MSE

at steady state

ξexc(∞) =

M/L
∑

n=1

λnxn(∞)

=

M/L
∑

n=1

µλn

2 + µλn
ǫmin =

µ
2 tr[R̄]

1− µ
2 tr[R̄]

ǫmin. (64)

The expression in (64) can be used to predict semianalytically

the excess MSE, where R̄ must be estimated with the aid of

computer simulations, since it is a function of the interpola-

tor v(i). Alternatively, one can conduct the analysis for the

interpolator v(i), which results in the expression ξexc(∞) =
((η/2)tr[Ru]/(1− (η/2)tr[Ru]))ǫmin, where η is the step size

of the interpolator, the matrix Ru = Ru(∞), and Ru(i) =
E[u(i)uH(i)], as defined in connection with (12). A more

complete analytical result, which is expressed as a function of

both step sizes µ and η, and statistics of the noninterpolated

observation vector r(i) requires further investigation in order to

determine tr[R̄(∞)], which depends on η or tr[Ru(∞)], which

depends on µ. Nevertheless, such investigation is beyond the

scope of this paper, and it should be remarked that the results

would not differ from the semianalytical results derived here

[that implicitly take into account the parameters of v(i)].
2) Blind Algorithm: Our algorithm is an MV technique, and

its steady-state excess MSE resembles the approach in [6].

In the current context, however, an interpolated structure with

joint optimization of interpolator vk and reduced-rank receiver

wk is taken into account. In particular, it suffices to consider,

for the computation of the excess MSE, only the reduced-

rank parameter vector wk, because the MSE attained upon

convergence by the recursions, that work in parallel for wk and

vk, should be the same. Here, we will drop the user k index for

ease of presentation. Consider the MSE at time i+ 1 as

ǫ(i+ 1) = E
[∥
∥b(i+ 1)−wH(i+ 1)r̄(i+ 1)

∥
∥

2
]

. (65)

By using w(i+ 1) = wopt + ew(i+ 1) and the independence

assumption, the MSE becomes

ǫ(i+ 1) = ǫmin − E
[
b(i+ 1)r̄H(i+ 1)

]
ew(i+ 1)

− eH
w(i+ 1)E [b∗(i+ 1)r̄(i+ 1)]

+wH
optR̄(i+ 1)ew(i+ 1)

+ eH
w(i+ 1)R̄(i+ 1)wopt + ξexc(i+ 1) (66)

where ǫmin = σb − E[b(i+ 1)r̄H(i+ 1)]wopt −wH
optE[b∗(i+

1)r̄(i+ 1)] +wH
optR̄(i+ 1)wopt is the MSE with the optimal

reduced-rank receiver wopt, and the optimal interpolator vopt

and ξexc(i+ 1) = E[eH
w(i+ 1)R̄(i+ 1)ew(i+ 1)] is the ex-

cess MSE at time i+ 1. Since limi→∞ E[ew(i)] = 0, we have

lim
i→∞

ǫ(i+ 1) = ǫmin + lim
i→∞

ξexc(i+ 1). (67)

Note that the second term in (67) is the steady-state excess MSE

due to adaptation, which is denoted by ξ̄exc and which is related

to w by

ξ̄exc(∞) = lim
i→∞

trE
[
R̄ew(i+ 1)eH

w(i+ 1)
]
. (68)

Let us define Re(i) = E[ew(i)e
H
w(i)] and Re =

limi→∞Re(i), and use the property of trace to obtain

ξ̄exc(∞) = trE[R̄Re] = vecH(R̄)vec(Re). (69)

At this point, it can be noted that to assess ξ̄exc(∞), it is

sufficient to study Re, which depends on the trajectory of the

tap error vector. For simplicity and similarly to [6], we assume

that eg(i) ≈ CHDHew(i), which is valid as the adaptation

approaches steady state. Using the expression of ew(i+ 1) and

taking expectation on both sides of ew(i+ 1)eH
w(i+ 1), the

resulting matrix Re(i+ 1) becomes

Re(i+1)

≈Re(i)−µ
(
Re(i)R̄(i)Π+ΠR̄Re(i)

)

−µE
[
Πew(i)w

H
optr̄(i)r̄

H(i)Π+Πr̄(i)r̄H(i)wopte
H
w(i)Π

]

+ µ2E
[
Πr̄(i)r̄H(i)(woptw

H
opt+Re(i))r̄(i)r̄

H(i)Π
]

(70)

where Π = I−DC(CHDHDC)−1CHDH. Since

limi→∞Re(i+ 1) = Re and limi→∞ E[ew(i) = 0, taking

limits on both sides of (70) yields

ReR̄Π+ΠR̄Re

≈ µE
[
Πr̄(i)r̄H(i)

(
woptw

H
opt +Re(i)

)
r̄(i)r̄H(i)Π

]
. (71)
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Here, an expression for ξ̄exc(∞) can be obtained by using the

properties of the Kronecker product and arranging all elements

of a matrix into a vector columnwise through the vec operation.

Hence, the expression for the steady-state excess MSE becomes

ξ̄exc(∞) = tr[R̄Re] = µvecH(R̄)T−1a (72)

where T=(R̄Π)T⊗I+I⊗(ΠR̄)−µ[ΠT⊗Π]E[(r(i)r(i)H)T⊗
(r(i)r(i)H)], a = [(Π)T ⊗Π] E[(r(i)rH(i))T ⊗ (r(i)rH(i))]
vec(woptw

H
opt), and ⊗ accounts for the Kronecker product. The

expression in (72) can be used to predict, semianalytically, the

excess MSE, where the matrices R̄ and T and the vector a are

computed through simulations.

D. Transient Analysis and Convergence Speed

With regard to convergence speed, adaptive receivers/filters

have a performance which is proportional to the number of

adaptive elements M [1], [19], [31]. Assuming stationary noise

and interference, full-rank schemes with RLS algorithms take

2M iterations to converge, while SG algorithms require at least

an order of magnitude more iterations than RLS techniques

[31]. In addition, it is expected that RLS methods do not show

excess MSE (when α = 1 and operating in a stationary environ-

ment), and its convergence is independent of the eigenvalues of

the input correlation matrix.

With the proposed INT reduced-rank scheme, the conver-

gence can be made faster due to the reduced number of filter

coefficients, and the decimation factor L can be varied in order

to control the speed and ability of the filter to track changing

environments. As given in the Appendix, we mathematically

explain how the INT structure can obtain gains in convergence

speed over full-rank schemes with SG and RLS algorithms,

respectively.

For SG algorithms, the analysis of the transient components

given in the Appendix of the INT scheme reveals that the

speed of convergence depends on the eigenvalue spread of

the reduced-rank covariance matrix. In principle, we cannot

mathematically guarantee that the INT always converges faster

than the full-rank, but several studies that examine the eigen-

value spread of the full-rank and the INT covariance matrix

show that, for the same data, the INT structure is able to

consistently reduce the eigenvalue spread found in the original

data covariance matrix, thus explaining its faster convergence

in all analyzed scenarios.

For RLS techniques, the analysis of the transient components

given in the Appendix guarantees mathematically that the INT

is able to converge faster due to the reduced number of filter

elements, and we show that the INT with the RLS converges

in about 2M/L iterations, as compared to the full-rank, which

requires 2M iterations.

VI. SIMULATIONS

In this section, we investigate the effectiveness of the pro-

posed linear-receiver structure and algorithms via simulations

and verify the validity of the convergence analysis undertaken

for predicting the MSE obtained by the adaptive algorithms. We

have conducted experiments under stationary and nonstationary

scenarios to assess the convergence performance in terms of

signal-to-interference-plus-noise ratio (SINR) of the proposed

structure and algorithms and compared them with other recently

reported techniques, namely, adaptive versions of the MMSE

[19] and CMV [6] full-rank methods, the eigendecomposition

(PC) [12], [13], the PD [15], and the MWF [18] reduced-

rank techniques with rank D. Moreover, the bit-error-rate

(BER) performance of the receivers employing the analyzed

techniques is assessed for different loads, processing gains

(N), channel paths (Lp) and profiles, and fading rates. The

DS-CDMA system employs Gold sequences of length N = 31
and N = 63.

Because we focus on the downlink, users experiment

under the same channel conditions. All channels assume

that Lp = 6 as an upper bound (even though the effec-

tive number of paths will be indicated in the experi-

ments). For fading channels, the channel coefficients hl(i) =

plαl(i)(l = 0, 1, 2), where
∑Lp

l=1 p
2
l = 1, and αl(i) is a com-

plex unit variance Gaussian random sequence obtained by

passing complex white Gaussian noise through a filter

with approximate transfer function c/
√

1− (f/fd)2, where

c is a normalization constant, fd = v/λc is the maximum

Doppler shift, λc is the wavelength of the carrier fre-

quency, and v is the speed of the mobile [33]. This proce-

dure corresponds to the generation of independent sequences

of correlated unit power Rayleigh r. v. (E[|α2
l (i)|] = 1).

The phase ambiguity derived from the blind channel-estimation

method in [28] is eliminated in our simulations by using the

phase of g(0) as a reference to remove the ambiguity, and for

fading channels, we assume ideal phase tracking and express

the results in terms of the normalized Doppler frequency fdT
(cycles per symbol). Alternatively, differential modulation can

be used to account for the phase rotation. For the proposed

interpolated receivers structures, we employ M = (N + Lp −
1)/L adaptive elements for L = 2, 3, 4, and 8, and when M is

not an integer, we will approximate it to the nearest integer. For

the full-rank receiver, we have M = (N + Lp − 1).
In the following experiments, the type of adaptive algorithms

used and their mode of operation, i.e., training mode, decision-

directed mode, and blind mode, are indicated. For the training-

based algorithms, the receiver employs training sequences with

Ntr symbols and then switches to decision-directed mode.

The full-rank receiver is considered with the NLMS and RLS

techniques, the interpolated receivers are denoted INT, the

PC method [12] requires an SVD on the full-rank covariance

matrix, and the subspace dimension is chosen as D = K. For

the PD approach, the columns of the projection matrix are

nonoverlapping segments of sk, as described in [15], whereas,

for the MWF and its SG and recursive adaptive versions (MWF-

SG and MWF-rec) [18], the number of stages D is optimized

for each scenario. The RAKE receiver in supervised mode uses

the NLMS and the RLS techniques and the training sequence

in order to estimate its parameters. With respect to blind algo-

rithms and the full-rank receiver, the SG algorithm corresponds

to the one in [6] with a normalized step size similar to the one

introduced in Section IV-A, and the RLS corresponds to the

one reported in [6]. The proposed interpolated receiver, i.e., the
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INT, uses the CMV-SG and CMV-RLS algorithms particularly

designed for it. The different receiver techniques, algorithms,

processing gain N , the decimation factor L, and other param-

eters are depicted in the legends. The eigendecomposition-

based receiver of Wang and Poor [13] is denoted subspace

W and P and employs an SVD to compute its eigenvectors

and eigenvalues. With regard to blind channel estimation, we

employ the method in [28] for all SG-based receivers, whereas

for the RLS-based receivers, we adopt the study in [28]. The

blind MWF and its adaptive versions (blind MWF-SG and blind

MWF-rec) [18] have their rank D optimized for each situation

and employ the blind channel estimation in [28] to obtain

the effective signature sequence in multipath. For the RAKE

receiver [33], we also employ the SG blind channel estimation

of [28] when compared to other SG-based multiuser receivers,

whereas for the comparison with RLS-based receivers, we use

its RLS version [28].

A. MSE Convergence Performance: Analytical Results

Here, we verify that the results (64) and (72) of the section

on convergence analysis of the mechanisms can provide a

means of estimating the excess MSE. The steady-state MSE

between the desired and the estimated symbol obtained through

simulation is compared with the steady-state MSE computed

via the expressions derived in Section VI. In order to illustrate

the usefulness of our analysis, we have carried out some ex-

periments. The interpolator filters were designed with NI = 3
elements, and the channels have three paths with gains 0, −6,

and −10 dB, respectively, where, in each run, the delay of the

second path (τ2) is given by a discrete uniform r. v. between one

and four chips, and the third path is computed with a discrete

uniform r. v. between one and (5− τ2) chips in a scenario with

perfect power control.

In the first experiment, we have considered the LMS

algorithm in trained mode and tuned the parameters of the

mechanisms, in order to achieve a low steady-state MSE

upon convergence. The parameters of convergence, i.e., µ, are

0.05, 0.06, 0.075, and 0.09 for the full-rank and the INT with

L = 2, 3, and 4, respectively, and η = 0.005 for the interpolator

with all L. The results are shown in Fig. 4(a) and indicate that

the analytical results closely match those obtained through sim-

ulation upon convergence, verifying the validity of our analysis.

In the second experiment, we have considered the blind SG

algorithm and tuned the parameters of the mechanisms, in

order to achieve a low steady-state MSE upon convergence,

similarly to the LMS case. The chosen values for µ are 0.0009,

0.001, 0.0025, and 0.004 for the full-rank and the INT with

L = 2, 3, and 4, respectively, and η = 0.005 for the interpolator

with all L. The curves depicted in Fig. 4(b) reveal that a discrep-

ancy is verified in the beginning of the convergence process,

when the estimated covariance matrix is constructed with few

samples. In addition, this mismatch between the theoretical and

simulated curves is explained by the fact that blind algorithms

are noisier than trained techniques [5]. However, as time goes

by and the data record is augmented, the statistics of the signals

is acquired, and the modeled and simulated MSE curves come

to a greater agreement.

Fig. 4. MSE convergence for analytical and simulated results versus number
of received symbols using (a) trained LMS algorithms and (b) blind SG
algorithms.

Fig. 5. Design of interpolator filters to obtain the best dimensions for NI

with random three-path channel parameters (r. v. between −1 and 1) as given
in Section IV-A, where the scenario has equal power users. (a) Trained RLS-
type algorithms at Eb/N0 = 12 dB. (b) Blind CMV-RLS-type algorithms at
Eb/N0 = 15 dB.

B. SINR Convergence Performance

The SINR at the receiver end is used here to assess the

convergence performance of the analyzed methods. In the fol-

lowing experiments, we will assess the SINR performance of

the analyzed adaptive receiver techniques and their correspond-

ing algorithms, namely, the proposed interpolated receiver,

the PC, the PD, the MWF, and the RAKE. We remark that

the parameters of the algorithms have been tuned in order

to optimize performance, and the receiver parameters have

been carefully chosen to provide a fair comparison among the

analyzed methods.

First, let us consider the issue of how long should be the

interpolator filter. Indeed, the design of the interpolator filter

is a fundamental issue in our approach because it affects its

convergence and BER performance. In order to obtain the

most adequate dimension for the interpolator filter vk, we

conducted experiments with values ranging from NI = 3 to

NI = 6, which correspond to the ones shown in Fig. 5 for the

supervised and blind modes with the RLS, respectively. The
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Fig. 6. SINR performance of the receivers with (a) NLMS, Eb/N0 = 8 dB,
and three interferers with power levels 7 dB above the desired user and
channel parameters p0 = 1, p2 = 0.5, and p4 = 0.3 (spaced by 2Tc).
(b) RLS, Eb/N0 = 12 dB, and three interferers with power levels 10 dB above
the desired user with fading and channel parameters p0 = 1, p2 = 0.7, and
p4 = 0.5 (spaced by 2Tc).

results indicate that SINR performance was not sensitive to

an increase in the number of taps in vk, and the best results

for all algorithms were obtained with NI = 3. For this reason

and to keep the complexity low, we selected NI = 3 for the

remaining experiments. We also remark that the simulation-

aided design of the interpolator dimension was carried out for

systems with different N , K, L, channel profiles, and fading

rates, indicating that NI = 3 is a satisfactory dimension. The

SINR convergence curves show that the proposed structure

with adaptive interpolators is considerably superior to the fixed

interpolator approach and to the full-rank receiver.

Fig. 6 illustrates experiments where the INT is compared to

other reduced-rank techniques in training and decision-directed

modes. In both experiments, a training sequence is provided to

the receivers with 200 symbols, and then, the algorithms switch

to decision-directed mode. The parameters of the receivers

for all methods were optimized, and the results show that

the proposed structure with adaptive interpolators and L = 2
achieves the best performance and is significantly superior to

the INT with a fixed interpolator. The convergence performance

of the INT for various L is superior to the full-rank one and to

the PC and PD methods. The PC method performs well when

K is small, but it is outperformed, both in terms of convergence

speed and final SINR, by the INT with L = 2 and 3. The INT

with L = 3 and L = 4 are also superior to the PD method

with 18 and nine elements, whereas the INT with L = 4 has

a performance comparable with the MWF adaptive versions.

In Fig. 7, the SINR performance of the analyzed receivers is

examined in blind mode. The parameters of the receivers for all

methods were optimized, and the results show that the proposed

structure with adaptive interpolators and L = 2 achieves the

best performance. The convergence performance of the novel

structure for various L is superior to the full-rank one and to

the other methods. Note that subspace approach of Wang and

Poor performs very well for small K, but when K is larger, its

performance degrades considerably. The INT shows very good

Fig. 7. SINR performance of (a) blind SG algorithms with channel parameters
p0 = 1, p2 = 0.5, and p4 = 0.5 (spaced by 2Tc) where two interferers work
at a power level 7 dB above the desired user that operates at Eb/N0 = 15 dB
with (b) fading RLS algorithm with Eb/N0 = 15 dB without fading, the three-
path channel parameters are random, as in Section IV-A, and the received
powers of the interferers are log-normal r. v. with associated standard devi-
ation 3 dB.

Fig. 8. BER performance of trained RLS algorithms versus (a) Eb/N0 and
(b) number of users.

performance in all situations and requires lower computational

costs than the other techniques.

C. BER Performance

In this section, the BER performance of the different receiver

techniques is investigated. In Fig. 8, the BER curves for the

RLS algorithms in trained and decision-directed modes are

shown. The channel parameters are p0 = 1, p1 = 0.7, and p2 =
0.5, where, in each run, the delay of the second path (τ2) is

given by a discrete uniform r. v. between one and four chips, and

the third path is computed with a discrete uniform r. v. between

1 and (5− τ2) chips. In these experiments, the received powers

of the interferers are log-normal r. v. with associated standard

deviation 3 dB. We remark that the proposed methods also

perform well with other channel profiles and fading rates. The

receivers are trained with 200 symbols and are then switched

to decision-directed mode and process 2000 symbols, averaged
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Fig. 9. BER performance of blind RLS algorithms versus (a) Eb/N0 and (b)
number of users.

over 200 experiments with optimized parameters for each sce-

nario. The results show that the INT with L = 2 achieves the

best performance, followed by the full-rank receiver, the INT

with L = 3, the MWF, the PD approach, the INT with L = 4,

the PC, and the RAKE receiver.

In Fig. 9, the BER curves for the RLS-type algorithms in

blind mode, respectively, are shown. The receivers process

2000 symbols, averaged over 200 experiments with optimized

parameters for each scenario. In these simulations, the received

powers of the interferers are log-normal r. v. with associated

standard deviation of 3 dB. The results show that the INT with

L = 2 achieves the best performance, followed by the full-

rank receiver, the INT with L = 3, the MWF, the INT with

L = 4, the subspace receiver of Wang and Poor, and the RAKE

receiver. Note that the receivers can accommodate more users

and cope with larger systems when working with RLS-type

algorithms and that the INT structure with L = 4 outperforms

the RAKE and Wang and Poor’s (for K � 8) receivers, the

INT with L = 2 outperforms the full-rank receiver, and the INT

with L = 3 has a very close performance to the full-rank. The

blind MWF versions are slightly inferior to the INT with L = 3
and suffer from the fact that tridiagonalization does not occur,

deteriorating its performance.

VII. CONCLUSION

We proposed adaptive reduce-rank receivers for DS-CDMA

based on interpolated FIR filters with adaptive interpolators.

The novel receiver structure and algorithms were assessed

in various scenarios, outperforming previously reported tech-

niques with a very attractive tradeoff between performance and

complexity. An analysis of the convergence properties of the

method was undertaken, indicating that the novel cost function

does not exhibit local minima. Furthermore, a convergence

analysis of the algorithms was shown to be valid in predicting

the excess MSE upon convergence for the blind and trained SG

algorithms. In terms of computational complexity, the AIFIR

receivers are simpler than the full-rank receiver, much simpler

than reduced-rank eigendecomposition techniques, and com-

pete favorably with the MWF. The BER performance of the

interpolated receivers is superior to the subspace receiver and

the MWF and is close to the full-rank one, even with L = 4.

Finally, with respect to convergence, the proposed receivers ex-

hibit a faster response and greater flexibility than other analyzed

methods, since the designer can choose the decimation factor,

depending on the need for faster convergence or higher steady-

state performance.

APPENDIX A

PROOF OF LEMMA IN SECTION IV-D

Let R be a positive semidefinite Hermitian symmetric ma-

trix and its eigenvalues be ordered as λmax = λ1 > λ2 �

· · · � λN−1 > λN = λmin � 0 with corresponding eigenvec-

tors qm (m = 1, 2, . . . , N). Consider an initial vector v̂(0) =
∑N

m=1 cmqm, where cm are scalars with c1 = v̂H(0)q1 �= 0.

Using the power iterations, we have

v̂(i) =Rv̂(i− 1) = Riv̂(0)

= c1λ
i
1q1 + c2λ

i
2q2 + · · ·+ cNλi

NqN

= c1λ
i
1(q1 + c2/c1(λ2/λ1)

kq2

+ · · ·+ cN/c1(λN/λ1)
iqN . (73)

If we normalize the above equation, we obtain

v̂(i)

‖v̂(i)‖=
(q1+c2/c1(λ2/λ1)

kq2+· · ·+cN/c1(λN/λ1)
iqN

‖(q1+c2/c1(λ2/λ1)kq2+· · ·+cN/c1(λN/λ1)iqN‖
(74)

and, since 0 � (λm/λ1) < 1, for 2 � m � N , then

limi→∞(λm/λ1)
i = 0 for 2 � m � N . Thus, we conclude that

lim
i→∞

v̂(i)

‖v̂(i)‖ = qmax = q1. (75)

Now, let us make A = I− νR, where ν = 1/tr[R] and whose

eigenvalues are λ′
m = 1− (λm/tr[R]), m = 1, . . . , N . Since

tr[R] =
∑M

m=1 λm � λ1 = λmax, then 0 � λ′
1 � λ′

2 � · · · �

λ′
N−1 < λ′

N . Therefore, from the development in (73)–(75), we

have that the recursion v̂(i) = (I− νR̂)v̂(i− 1), i = 1, 2, . . .
results in

lim
i→∞

v̂(i)

‖v̂(i)‖ = q′
N (76)

where q′
N is the normalized eigenvector of A associated with

λ′
max = λ′

N = 1− (λmin/tr[Ruk
]), i.e., (I− νR̂)q′

N = (1−
νλmin)q

′
N , and hence, q′

N = qmin.

APPENDIX B

CONVERGENCE SPEED OF THE INT SCHEME

WITH SG ALGORITHMS

In this Appendix, we assess the convergence speed of the

proposed INT receiver scheme through the transient compo-

nent analysis of SG algorithms. By using a similar analysis

to the study in [19] and [31, Ch. 9, pp. 390–404; App. J,
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pp. 924–927] (with the solution to differential equations), let

us express the excess MSE in (59) as a function of its transient

and steady-state components

ξexc(i) =

M/L
∑

n=1

λnxn(i) = λHx(i)

=

M/L
∑

n=1

c̄ i
nλHgng

H
n [x(0)− x(∞)] + ξexc(∞)

= ξtrans(i) + ξexc(∞) (77)

where c̄n is the nth eigenvalue of an M/L×M/L matrix T

whose entries are

tnj =

{
(1− µλn)

2 n = j
µ2λnλj n �= j

. (78)

According to the above equation, the speed of convergence of

the proposed INT structure for SG algorithms is given by the

transient component ξtrans(i) =
∑M/L

n=1 c̄ i
nλHgng

H
n [x(0)−

x(∞)], which can be alternatively expressed by

ξtrans(i) =

M/L
∑

n=1

γnc̄
i
n (79)

where γn = λHgng
H
n [x(0)− x(∞)]. Note that the transient

component ξtrans(i) → 0 as i → ∞. By using the existing

expression for the transient component of the full-rank receiver

described by ξfull−rank
trans (i) =

∑M
n=1 γnc

i
n [19], we can establish

conditions for which the transient component of the INT re-

ceiver defined in (79) can vanish faster, i.e., the INT scheme

converges faster. If the INT scheme reduces the eigenvalue

spread of its covariance matrix, we have, for the ith iteration,

the following expression:

M/L
∑

n=1

γnc̄
i
n <

M∑

n=1

γnc
i
n. (80)

The above condition states that the transient component of the

reduced-rank INT scheme has fewer decreasing modes and

vanishes before that of the full-rank structure. To verify (80),

we studied the eigenvalue spread of the covariance matrices

of the INT and the full-rank schemes in an extensive set of

scenarios. In all situations, the experiments indicate an increase

in the convergence speed as well as that the INT can reduce the

eigenvalue spread of the full-rank scheme.

APPENDIX C

CONVERGENCE SPEED OF THE INT SCHEME

WITH RLS ALGORITHMS

Here, we evaluate the convergence speed of the proposed

INT receiver scheme through the MSE analysis of RLS

algorithms. By using a similar analysis to [31, Ch. 13,

pp. 573–579] and replacing the expectation operator with time

averages, let us express weight error vector of the reduced-rank

INT least squares solution

ew(i) = w(i)−wopt =
ˆ̄R
−1
(i)

i∑

l=1

r(l)e∗o(l). (81)

Using the definition for the weight error-correlation matrix

K(i) = E[ew(i)e
H
w(i)] [31], we have

K(i) = E



 ˆ̄R
−1
(i)

i∑

l=1

i∑

j=1

r(l)e∗o(l)eo(j)r
H(j) ˆ̄R

−1
(i)



 .

(82)

Assuming that eo(i) is taken from a zero-mean Gaussian

process with variance σ2, we have E[eo(l)e
∗
o(j)] ={

σ2, l = j
0, l �= j

and

K(i) =σ2E



 ˆ̄R
−1
(i)

i∑

l=1

i∑

j=1

r(l)rH(j) ˆ̄R
−1
(i)





=σ2E

[

ˆ̄R
−1
(i)

]

. (83)

By invoking the independence theory and using the fact that

the estimate of the covariance matrix given by ˆ̄R
−1
(i) is

described by a complex Wishart distribution [31, Sec. 13.6],

the expectation of the time-averaged estimate ˆ̄R
−1
(i) is exactly

E[ ˆ̄R
−1
(i)] =

1

i−M/L− 1
R̄−1, i > M/L+ 1 (84)

where R̄−1 is the theoretical reduced-rank covariance matrix,

and thus

K(i) =
σ2R̄−1

i−M/L− 1
, i > M/L+ 1. (85)

Using the expression that describes the excess MSE in (58),

we get

ξexc(i) = tr
[
R̄K(i)

]
=

σ2M/L

i−M/L− 1
, i > M/L+ 1.

(86)

The above result shows that the learning curve of the RLS

algorithm with the proposed reduced-rank structure converges

in about 2M/L iterations, in contrast to the RLS with the full-

rank scheme that requires about 2M iterations [31]. This means

that the proposed scheme converges L times faster than the

full-rank approach with RLS techniques. Another observation

from (86) is that, as i increases, the excess MSE tends to zero

(for λ = 1), and it is independent from the eigenvalue spread

of ˆ̄R
−1
(i).
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