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PARTIAL ACTIONS OF MONOIDS

CHRISTOPHER HOLLINGS

Abstract. We investigate partial monoid actions, in the sense of Megrelishvili
and Schröder [12]. These are equivalent to a class of premorphisms, which we
call strong premorphisms. We describe two distinct methods for constructing
a monoid action from a partial monoid action: the expansion method provides
a generalisation of a result of Kellendonk and Lawson [10] in the group case,
whilst the approach via globalisation extends results of both [12] and [10].

Introduction

Partial group actions have been studied as a natural generalisation of group
actions, in particular, by Exel [3] and by Kellendonk and Lawson [10]. The
latter authors list a number of applications of partial group actions, for exam-
ple, to model theory, partial symmetries, tilings, R-trees, and to constructing
C∗-algebras, which was Exel’s original motivation. One question addressed by
Kellendonk and Lawson is the following: given a partial action, is it possible to
construct an action? They describe two distinct methods for doing this. The
first of these, the ‘expansion method’, involves enlarging the group in question,
and completes a construction of Exel. The second method, the ‘globalisation’
method, which involves enlarging the set upon which the group acts partially,
appears in a range of other contexts—see [10, p. 89].

By comparison with partial group actions, partial monoid actions have seen
little study. For example, Megrelishvili and Schröder [12] consider so-called con-
fluent partial monoid actions on topological and metric spaces and show that
these can be ‘globalised’ in a manner analogous to that of Kellendonk and Law-
son. Megrelishvili and Schröder then go on to study the connection between their
starting space (with partial action) and their larger space (with action), proving
embedding theorems and describing certain preservation properties.

In the present paper, we will approach partial monoid actions in much the same
way as Kellendonk and Lawson, obtaining analogues of some of their results. A
monoid analogue of their ‘globalisation’ theorem for partial group actions has
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2 CHRISTOPHER HOLLINGS

already been obtained by Megrelishvili and Schröder, but we will extend this
result.

In the ‘expansion’ method for constructing an action from a partial action,
Kellendonk and Lawson take a partial group action and obtain the action of an
inverse monoid. We might therefore expect that when we apply the same con-
struction to a partial monoid action, we obtain the action of some generalisation
of an inverse monoid. This is indeed the case. The generalisation in question
is a weakly left E-ample monoid ; in Section 1, we give a brief overview of such
monoids.

In Section 2, we define partial monoid actions and investigate their connection
with a particular type of function called a premorphism.

Section 3 introduces the Szendrei expansion of a monoid. This is a vital ingre-
dient for the ‘expansion’ method of constructing an action from a partial action,
which we describe in Section 4. Section 5 details the ‘globalisation’ method,
including some results on categories of globalisations.

Finally, Section 6 contains a brief consideration of the injectivity of partial
monoid actions.

1. An overview of weakly left E-ample monoids

A summary of weakly left E-ample monoids can be found in [9]. We give
here only a brief overview. Most of the following details apply equally well to
semigroups, but we will only consider monoids, since it is the actions and partial
actions of these which we will deal with in this paper.

Weakly left E-ample monoids arise very naturally from partial transformation
monoids in the same way that inverse monoids arise from symmetric inverse
monoids. We therefore begin by defining partial transformation monoids.

A partial transformation on a set X is a function A → B, where A,B ⊆ X.
The collection of all partial transformations on X is denoted PT X . We can
compose α, β ∈ PT X (from left to right) according to the rule

dom αβ = [im α ∩ dom β] α−1,

where α−1 denotes the preimage under α, and x(αβ) = (xα)β, for all x ∈
dom αβ. Under this composition, PT X forms a monoid—the partial transfor-
mation monoid on X.

A partial transformation monoid possesses an obvious partial order:

α ≤ β ⇐⇒ α = β|dom α. (1.1)

Note that TX , the full transformation monoid on X, is a submonoid of PT X .
Since the elements of TX are defined on the whole of X, the ordering becomes
trivial.

In order to define a weakly left E-ample monoid, we must consider the idempo-
tents of PT X . The only idempotents in which we will be interested are those of
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the form IZ , for Z ⊆ X, i.e., those idempotents which are identities on their do-
mains. We will refer to such idempotents as partial identities. Let EX ⊆ E(PT X)
be the set of partial identities of PT X .

We now define a unary operation + on PT X by α+ = Idom α, for each α ∈ PT X .
Let S be a submonoid of PT X and let E be the set E = {IZ ∈ EX : Z =
dom α, for some α ∈ S}. If S is closed under +, i.e., if E ⊆ S, then we call S
a weakly left E-ample monoid. Such a submonoid can be regarded as a (2,1,0)-
subalgebra of PT X . Since PT X itself is closed under +, PT X is weakly left
EX-ample [9, Proposition 5.1].

Weakly left E-ample monoids also have a useful abstract characterisation of
which we will make extensive use. Let S be a monoid and suppose that E ⊆ E(S)
is a commutative submonoid of idempotents of S. We define the (equivalence)

relation R̃E on S by the rule that

a R̃E b ⇐⇒ ∀e ∈ E[ea = a ⇔ eb = b],

for a, b ∈ S. Thus, two elements a, b are R̃E-related if, and only if, they have the
same left identities in E.

Definition 1.1. A monoid S with commutative submonoid E ⊆ E(S) of idem-
potents is weakly left E-ample if

(1) every element a is R̃E-related to a (unique) idempotent in E, denoted a+;

(2) R̃E is a left congruence;
(3) for all a ∈ S and all e ∈ E, ae = (ae)+a.

Thus a R̃E b if, and only if, a+ = b+. The idempotent a+ is a left identity for
a. It is also clear that if e ∈ E, then e+ = e.

The following theorem connects Definition 1.1 with the original characterisation
of a weakly left E-ample monoid as a (2,1,0)-subalgebra of a partial transforma-
tion monoid:

Theorem 1.2. [9, Theorem 5.2] Let S be a weakly left E-ample monoid, regarded
as an algebra of type (2,1,0), for some E ⊆ E(S). Then the mapping φ : S →
PT S given by sφ = ρs, where

dom ρs = Ss+ and xρs = xs, ∀x ∈ dom ρs,

is a representation of S as a (2,1,0)-subalgebra of PT S.

Thus weakly left E-ample monoids are precisely the (2,1,0)-subalgebras of the
class of partial transformation monoids.

For any monoid S, if E = E(S), then we denote R̃E by R̃. Note that R̃ ⊆ R̃E,
for any E. If S is weakly left E-ample with E = E(S), then we call S simply
weakly left ample.

Weakly left ample monoids generalise inverse monoids, since every inverse

monoid is weakly left ample with a+ = aa−1 (in an inverse monoid, R̃ coin-
cides with Green’s relation R). Note that every monoid is weakly left {1}-ample,
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with a+ = 1, for all elements a. A unipotent monoid is therefore weakly left
ample. Weakly left E-ample monoids also generalise left E-ample monoids (see
Section 6).

We note a useful identity involving + which follows easily from the fact that

R̃E is a left congruence:

Lemma 1.3. Let S be a weakly left E-ample monoid, for some E ⊆ E(S), and
let s, t ∈ S. Then (st)+ = (st+)+.

In the abstract charcterisation of a weakly left E-ample monoid S, the ordering
of (1.1) becomes the following natural partial order (i.e., a partial order which is
compatible with multiplication and which restricts to the usual partial order on
idempotents):

a ≤ b ⇐⇒ a = eb, (1.2)

for some idempotent e ∈ E. Equivalently,

a ≤ b ⇐⇒ a = a+b.

To see this equivalence, we start with a = eb and use Lemma 1.3 to obtain

a+ = (eb)+ = (eb+)+ = eb+,

so that a = eb = eb+b = a+b, as required. The converse is clear.
We observed earlier that a+ is a left identity for a. We can now say a little

more: a+ is the least left identity for a, with respect to ≤. To see this, suppose
that a = fa, for some f ∈ E. Then, by reasoning identical to that in the previous
paragraph, we have a+ = fa+, or a+ = a+f , since idempotents in E commute.
Hence a+ ≤ f . The next result now follows:

Lemma 1.4. [5, Proposition 1.6] Let S be a weakly left E-ample monoid with
partial order ≤, and let s, t ∈ S. Then (st)+ ≤ s+.

2. Partial monoid actions and premorphisms

Recall the definition of the action of a monoid M on a set X:

Definition 2.1. A monoid M acts on a set X (on the right) if there is a mapping
X × M → X, given by (x, s) 7→ x · s, and such that

(1) x · 1 = x, for all x ∈ X;
(2) (x · s) · t = x · st, for all x ∈ X, for all s, t ∈ M .

The concept of a monoid action generalises to that of a partial monoid action,
in which the action x · s is not necessarily defined for all pairs (x, s) ∈ X × M .
We will write “∃x · s” to mean “the action of s ∈ M on x ∈ X is defined”. We
adopt a definition of partial action which is modelled on that of Kellendonk and
Lawson [10, p. 87]:
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Definition 2.2. A monoid M acts partially on a set X (on the right) if there is
a partial mapping X × M → X, given by (x, s) 7→ x · s, and such that1

(PA1) ∃x · 1 and x · 1 = x, for all x ∈ X;
(PA2′) ∃x · s and ∃(x · s) · t ⇒ ∃x · st and (x · s) · t = x · st.

Whenever we need to emphasise the distinction between the actions of Defini-
tions 2.1 and 2.2, we will refer to the former as a global action.

Note that there is an alternative notion of partial action (as found, for example,
in [13, §3] for inverse semigroups) in which condition (PA2′) is an “if, and only
if” statement. Given this type of ‘partial action’, we can easily build a global
action by first adjoining an extra element, say 0, to X, and then demanding
that all previously undefined actions be equal to 0. Notice that a ‘partial action’
according to this definition is also a partial action in our sense. By adopting the
above definition of partial action, rather than the alternative one, we are getting
something new, since it is no longer so trivial to construct a global action from a
partial action.

Example 2.3. Let 〈a〉1 be the monogenic semigroup on the element a, with
adjoined identity. Then 〈a〉1 acts partially on N, with the action given by n·1 = n
and

n · ai =

{
n + i if n ∈ {1, . . . , i};

undefined otherwise.

In order to obtain the desired generalisations of results from the group case,
we will require a slightly stronger concept of partial monoid action:

Definition 2.4. The partial action of a monoid M on a set X will be called
strong if the following extra condition holds:

(PA3) ∃x · s and ∃x · st ⇒ ∃(x · s) · t, in which case, x · st = (x · s) · t.

Observe that (PA3) is a partial converse for (PA2′). In fact, we can combine
these two axioms into a single new axiom:

(PA2) ∃x · s ⇒ [∃(x · s) · t ⇔ ∃x · st, in which case, x · st = (x · s) · t].

The notion of partial monoid action previously adopted by Megrelishvili and
Schröder [12] is precisely that of Definition 2.4. Whenever we need to emphasise
the distinction between the partial actions of Definitions 2.2 and 2.4, we will refer
to the former as a weak partial action.

Definition 2.4 now begs the question: is it, in fact, the case that every partial
monoid action is strong? The answer to this question is ‘no’, indeed, Example 2.3
is an example of a partial action which is not strong, however, we will defer the
proof until the end of this section.

1We place a ′ on the second condition, since we will very shortly replace (PA2′) by a stronger
condition and we wish to reserve the label “(PA2)” for this.
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Example 2.5. Let H = {e, a3} be a group, with (a3)2 = e (the reasons for
naming the nonidentity element “a3” will be become clear in a later example).
We define a partial action of N0 on H by

∃h · n ⇐⇒ n ≡ 0 (mod 3),

in which case, h · n = han, i.e., e · n = an and a3 · n = a3+n. Using the simple
properties of congruences, it is easy to verify that this is a strong partial action.
Note also that ∃h · (m + n) does not imply that ∃(h · m) · n: we can have
m + n ≡ 0 (mod 3) with neither m ≡ 0 (mod 3) nor n ≡ 0 (mod 3). In order to
make this deduction, we need the extra condition that ∃h · m, so this is not a
partial action in the alternative sense.

Example 2.6. Let M be a monoid and let ρ be a right congruence on M . We
define a strong partial action of M on M/ρ by

∃(xρ) · s ⇐⇒ xs ρ x, in which case, (xρ) · s = (xs)ρ.

(So this is the ‘identity action’ whenever it is defined, since xρ = (xs)ρ.) It is
easy to confirm that this is indeed a strong partial action:

(PA1) Clearly, x ρ x1, for all x ∈ M , so ∃(xρ) · 1, for all x.
(PA2) If ∃(xρ) ·s and ∃ [(xρ) · s] · t, then x ρ xs and xs ρ xst, whence x ρ xst, by

transitivity. Therefore ∃(xρ) ·st. Conversely, suppose that ∃(xρ) ·s and ∃(xρ) ·st,
i.e., x ρ xs and x ρ xst. Then xs ρ xst, as required. Note that, in general, ∃(xρ) ·st
does not imply that ∃ [(xρ) · s] · t; once again, in order to make this deduction,
we need the extra condition that ∃(xρ) · s, so this is not a partial action in
the alternative sense. This can be seen more clearly in the following concrete
example.

Consider the bicyclic monoid B = N0 × N0 with multiplication

(a, b)(c, d) = (a − b + max{b, c}, d − c + max{b, c}).

The relation σ, given by

(a, b) σ (c, d) ⇐⇒ a − b = c − d,

is a (two-sided) congruence: the minimum group congruence on B. Let [a, b]
denote the congruence class of (a, b). Then B acts strongly and partially on B/σ,
with

∃[a, b] · (c, d) ⇐⇒ (a, b)(c, d) σ (a, b)

⇐⇒ (a − b + max{b, c}, d − c + max{b, c}) σ (a, b)

⇐⇒ a − b + max{b, c} − d + c − max{b, c} = a − b

⇐⇒ c = d

⇐⇒ (c, d) is idempotent,

and [a, b] · (c, d) = [a, b]. Note that if (e, e) = (m,n)(p, q) is an idempotent in B
(so that ∃[a, b] · (e, e), for any [a, b] ∈ B/σ), we cannot conclude that (m,n) and



PARTIAL ACTIONS OF MONOIDS 7

(p, q) are idempotent; for example: (3, 3) = (2, 1)(2, 3). So this is not a partial
action in the alternative sense. However, if we know that (m,n) is idempotent,
i.e., that m = n, then we can easily conclude that (p, q) must be also.

Recall now that the (global) action of a monoid M on a set X, as given in Def-
inition 2.1, is equivalent to a monoid morphism ϕ : M → TX with sϕ : x 7→ x · s.
Similarly, the alternative notion of a partial monoid action (with an “if, and only
if” in (PA2′)) is equivalent to a monoid morphism ψ : M → PT X . We now
seek a function to which a partial monoid action (in our sense) is equivalent. To
this end, we generalise a concept first introduced by McAlister and Reilly [11]
and used also by Kellendonk and Lawson [10] in their treatment of partial group
actions: that of a premorphism. According to the original definition [11, Defini-
tion 4.1]2, this is a mapping θ : S → T , where S and T are inverse semigroups,
such that (sθ)−1 = s−1θ and (sθ)(tθ) ≤ (st)θ, where ≤ is the natural partial
order in T . The mapping to which a partial monoid action is equivalent will be
a mapping into a partial transformation monoid, which, as we have observed, is
weakly left EX-ample. We therefore adapt the concept of a premorphism to the
following:

Definition 2.7. Let S and T be monoids, where T is weakly left E-ample, for
some E ⊆ E(T ). Then θ : S → T is a premorphism if

(PM1) 1θ = 1;
(PM2′) (sθ)(tθ) ≤ (st)θ,

where ≤ is the natural partial order in T , as defined by (1.2).

The following result is easy to see:

Proposition 2.8. The (weak) partial action of a monoid M on a set X is equiv-
alent to a premorphism θ : M → PT X .

Just as we introduced a stronger concept of partial monoid action, we now
introduce a stronger concept of premorphism. Observe that if we multiply (PM2′)
on the left by (sθ)+, then we obtain (sθ)(tθ) ≤ (sθ)+(st)θ, since (sθ)+ = Idom sθ

is a left identity for sθ. We augment our definition of premorphism as follows:

Definition 2.9. A premorphism θ : S → T will be called strong if the following
condition holds:

(PM2) (sθ)(tθ) = (sθ)+(st)θ.

Note that (PM2′) follows from (PM2), so we can drop this condition and define
a strong premorphism via the conditions (PM1) and (PM2).

Whenever we wish to emphasise the distinction between the functions of Defi-
nitions 2.7 and 2.9, we will refer to the former as a weak premorphism.

Proposition 2.10. A strong partial action is equivalent to a strong premorphism.

2in which it was called a ∧-prehomomorphism
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Proof. Let θ : M → PT X be a strong premorphism, for some monoid M and
some set X. Then θ is equivalent to a (weak) partial action, by Proposition 2.8.
Suppose now that ∃x · s and ∃x · st. Then x ∈ dom sθ = dom(sθ)+, so x =
x(sθ)+ ∈ dom(st)θ, since ∃x · st. Thus x ∈ dom(sθ)+(st)θ = dom(sθ)(tθ), so
∃(x · s) · t.

Now suppose that a monoid M acts strongly and partially on a set X. By
Proposition 2.8, this is equivalent to a (weak) premorphism θ : M → PT X .
Suppose that x ∈ dom(sθ)+(st)θ. Then x ∈ dom(sθ)+ = dom sθ and x =
x(sθ)+ ∈ dom(st)θ. We have ∃x · s and ∃x · st so we can use (PA2) to deduce
that ∃(x ·s) · t. Thus x ∈ dom(sθ)(tθ) and (sθ)+(st)θ ≤ (sθ)(tθ), as required. ¤

Our replacement of (PM2′) by (PM2) has a precedent in [8, p. 398], in which
(PM2) is a necessary condition for a related function to be an FA-morphism.
Note also that (PM2) holds for Kellendonk and Lawson’s ‘unital (group) premor-
phism’: we simply take the left-right dual of condition (ii) of their Proposition 2.1
and multiply on the left by sθ to obtain (PM2), remembering, of course, that
aa−1 = a+ in an inverse semigroup. This, together with Proposition 2.10, tells
us that every partial group action is strong in our sense.

We return, at last, to the question of whether every partial monoid action is
strong and rephrase it in terms of premorphisms: is every premorphism is strong?
The following counterexample demonstrates that the answer is ‘no’:

Example 2.11. Let M = 〈a〉1, and let X = N. We denote by IN the symmetric
inverse monoid on N. Define θ : M → IN by 1θ = 1 and aiθ = αi, for i ∈ N,
where dom αi = {1, 2, . . . , i} and nαi = n + i, for all n ∈ dom αi. Then αi+j

is the map with domain {1, 2, . . . , i + j}, given by nαi+j = n + i + j. Also,
nαiαj = n + i + j, so nαiαj = nαi+j, for those n ∈ N for which both maps are
defined. We determine the domain of αiαj:

dom αiαj = [{1 + i, . . . , 2i} ∩ {1, . . . , j}] α−1
i

=





{1, . . . , i} if 2i ≤ j

{1, . . . , j − i} if 1 + i ≤ j < 2i

∅ if j < 1 + i

In each case, dom αiαj ( dom αi+j, so (aiθ)(ajθ) ≤ ai+jθ. Note also that
INαi = αi = αiIN, so (1θ)(aiθ) ≤ (1ai)θ and (aiθ)(1θ) ≤ (ai1)θ. Therefore θ
is a premorphism; in fact, it is the premorphism equivalent to the partial action
of Example 2.3.

We now demonstrate that θ is not strong. In IN, β+ is simply the identity on the
domain of β. From this, together with our earlier observation that nαiαj = nαi+j,
it is easy to see that nα+

i αi+j = nαiαj, for those n ∈ N for which both maps are
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defined. We consider the domain of α+
i αi+j:

dom α+
i αi+j = [{1, . . . , i} ∩ {1, . . . , i + j}] (α+

i )−1

= {1, . . . , i}

6= domαiαj, if j < 2i

So in general, we do not have (aiθ)(ajθ) = (aiθ)+(ai+jθ). Then, since θ is an
example of a premorphism which is not strong, Example 2.3 is an example of a
partial monoid action which is not strong.

3. The Szendrei expansion of a monoid

Given the partial action of a monoid M on a set X, our aim is to construct
the global action of some new monoid M ′ on X. We do this in much the same
way as in [10]: by taking an expansion of M .

The concept of an expansion was first introduced by Birget and Rhodes [1].
Formally, an expansion is defined as follows:

Definition 3.1. [1, p. 241] An expansion is a functor F from one category of
semigroups to a larger one such that there exists a natural transformation η from
F to the identity functor, with each arrow3 ηS surjective.

Since an expansion is a functor, we should not only specify its effect on the
objects of a category but also its effect on the arrows. However, the ‘objects’ part
is the only aspect of an expansion which we will need in connection with actions
and partial actions. We will therefore omit all reference to an expansion’s effect
on arrows.

Among the specific expansions introduced by Birget and Rhodes, was the prefix
expansion [1, p. 266]: Pr(M) for a monoid M . This expansion has a somewhat
restrictive definition, but it was observed by Szendrei [14] that if M is a group,
then Pr(M) has a particularly simple form. Szendrei’s observations can be used
to define a new expansion, for any monoid:

Definition 3.2. [6, p. 252] Let M be a monoid, and let Pf
1 (M) denote the

collection of all finite subsets of M which contain 1. The Szendrei expansion of
M is the set

Sz(M) = {(A, a) ∈ Pf
1 (M) × M : a ∈ A},

together with the multiplication given by

(A, a)(B, b) = (A ∪ aB, ab).

Note that in general, for an arbitrary monoid M , Pr(M) and Sz(M) will be
different. In [6, p. 252], it is shown that if M is a monoid, then Sz(M) is also a
monoid, with identity ({1}, 1). We extend this result:

3Since we will be using the word ‘morphism’ to mean a homomorphism, we will use the word
‘arrow’ in the category context.
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Proposition 3.3. If M is a monoid, then Sz(M) is a weakly left E-ample monoid,

where E = {(A, 1) : A ∈ Pf
1 (M)}.

Proof. First of all, E certainly forms a semilattice:

(A, 1)(B, 1) = (A ∪ B, 1) = (B ∪ A, 1) = (B, 1)(A, 1).

We now show that every element (A, a) is R̃E -related to an idempotent, namely
(A, 1). This is certainly a left identity for (A, a):

(A, 1)(A, a) = (A ∪ 1A, 1a) = (A, a).

Now let (E, 1) be any idempotent in E and suppose that (E, 1)(A, a) = (A, a):

(E, 1)(A, a) = (A, a) ⇒ (E ∪ A, a) = (A, a)

⇒ E ⊆ A

⇒ (E ∪ A, 1) = (A, 1)

⇒ (E, 1)(A, 1) = (A, 1).

Thus (A, a)+ = (A, 1).
The left ample identity holds:

[(A, a)(E, 1)]+ (A, a) = (A ∪ aE, 1)(A, a)

= (A ∪ aE, a)

= (A, a)(E, 1).

It only remains to show that R̃E is a left congruence. Suppose that

(A, a) R̃E (B, b) and that (C, c) ∈ Sz(M):

(A, a) R̃E (B, b) ⇒ (A, a)+ = (B, b)+

⇒ A = B

⇒ (C ∪ cA, 1) = (C ∪ cB, 1)

⇒ [(C, c)(A, a)]+ = [(C, c)(B, b)]+

⇒ (C, c)(A, a) R̃E (C, c)(B, b),

hence R̃E is a left congruence. ¤

Corollary 3.4. [7, Corollary 5.8.] If M is a unipotent monoid, then Sz(M) is
weakly left ample.

Proof. A general idempotent in Sz(M) has the form (E, e), where e is idempotent
in M and eE ⊆ E. If M is unipotent, then the only idempotents of Sz(M) are
those of the form (E, 1), i.e., E(Sz(M)) = E . Therefore Sz(M) is weakly left
ample. ¤

We define the mapping ι : M → Sz(M) by sι = ({1, s}, s). This is an injection
but fails to be an embedding as it is not a morphism.
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Proposition 3.5. The Szendrei expansion Sz(M) of a monoid M is generated
by elements of the form sι, using both multiplication and +.

Proof. Take a typical element ({1, s1, . . . , sn}, sn) ∈ Sz(M) and notice that

({1, s1, . . . , sn}, sn) = ({1, s1}, 1)({1, s2}, 1) · · · ({1, sn}, 1)({1, sn}, sn)

= ({1, s1}, s1)
+({1, s2}, s2)

+ · · · ({1, sn}, sn)+({1, sn}, sn)

= (s1ι)
+(s2ι)

+ · · · (snι)
+(snι)

Thus Sz(M) is generated by elements of the form sι. (Note that, strictly speaking,
we don’t need to include the factor of (snι)

+, as this is a left identity for snι.) ¤

4. ‘Expansion’ of partial monoid actions

At the beginning of the previous section, we stated our desire to find a monoid
M ′ such that if a monoid M acts partially on a set X, then M ′ is a larger monoid
which acts globally on that same set. It will perhaps come as no surprise that we
can take M ′ to be Sz(M). The connection between the partial action of M and
the global action of Sz(M) is given by the following theorem, a generalisation of
[10, Theorem 2.4].

Theorem 4.1. Let M and S be monoids, with S weakly left E-ample, for some
E ⊆ E(S). Then for every strong premorphism θ : M → S there is a unique
(2,1,0)-morphism θ : Sz(M) → S such that ιθ = θ, i.e., such that the following
diagram commutes:

M
θ

✲ S

Sz(M)

ι

❄

θ

✲

Conversely, if θ : Sz(M) → S is a (2,1,0)-morphism, for some monoid M , then
θ = ιθ is a strong premorphism.

Proof. Suppose that we have a strong premorphism θ : M → S. Following the
pattern of Kellendonk and Lawson [10], we define θ by

(A, s)θ = (a1θ)
+ · · · (akθ)

+(sθ),

where A = {a1, . . . , ak}. Then ({1}, 1)θ = (1θ)+(1θ) = 1θ = 1. If we put
A = {1, s1, . . . , sn}, then it is easy to see that we can omit the factor of (1θ)+

and write
(A, s)θ = (s1θ)

+ · · · (snθ)
+(sθ).

We suppose, without loss of generality, that s = sn. Note that the order in which
we write elements of A is immaterial, since all the factors (siθ)

+ are idempotent,
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and therefore commute. Similarly, it does not matter if there are any repetitions
in A.

Recall that (A, s)+ = (A, 1). We have (A, s)+θ = (A, 1)θ = (s1θ)
+ · · · (snθ)

+,
and

[
(A, s)θ

]+
=

[
(s1θ)

+ · · · (snθ)
+(sθ)

]+
,

=
[
(s1θ)

+ · · · (snθ)
+(sθ)+

]+
, by Lemma 1.3,

=
[
(s1θ)

+ · · · (snθ)
+
]+

, since s = sn,

= (s1θ)
+ · · · (snθ)

+, since E is a semilattice,

= (A, s)+θ.

So θ preserves +.
It now remains to show that θ preserves the semigroup multiplication. Let

(A, s) = ({1, s1, . . . , sn}, sn),

(B, t) = ({1, t1, . . . , tm}, tm),

so that (A, s)(B, t) = ({1, s1, . . . , sn, st1, . . . , stm}, st) and

[(A, s)(B, t)] θ = (s1θ)
+ · · · (snθ)

+ [(st1)θ]
+ . . . [(stm)θ]+ [(st)θ] . (4.1)

We will now show that

(A, s)θ(B, t)θ = (s1θ)
+ · · · (snθ)

+(sθ)(t1θ)
+ · · · (tmθ)+(tθ)

is equal to (4.1).
We begin by considering the product (sθ)(t1θ)

+ · · · (tmθ)+. Since S is weakly
left E-ample, we have the rule ae = (ae)+a, for all a ∈ S and all e ∈ E. By using
this rule with a = sθ and e = (t1θ)

+, we see that this product can be rewritten
as [(sθ)(t1θ)

+]
+

(sθ)(t2θ)
+ · · · (tmθ)+. We continue in this way with each factor

(sθ)(tiθ)
+ (i = 1, . . . ,m) to obtain

(sθ)(t1θ)
+ · · · (tmθ)+ =

[
(sθ)(t1θ)

+
]+

· · ·
[
(sθ)(tmθ)+

]+
(sθ).

Thus

(A, s)θ(B, t)θ = (s1θ)
+ · · · (snθ)

+
[
(sθ)(t1θ)

+
]+

· · ·
[
(sθ)(tmθ)+

]+
(sθ)(tθ),

= (s1θ)
+ · · · (snθ)

+
[
(sθ)(t1θ)

+
]+

· · ·
[
(sθ)(tmθ)+

]+
(sθ)+ [(st)θ] ,

by (PM2). We now repeatedly commute idempotents to bring the factor of
(sθ)+ = (snθ)

+ next to its earlier occurrence in the product and reduce it to
a single power to obtain:

(A, s)θ(B, t)θ = (s1θ)
+ · · · (snθ)

+
[
(sθ)(t1θ)

+
]+

· · ·
[
(sθ)(tmθ)+

]+
[(st)θ] .
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We now consider the factors [(sθ)(tiθ)
+]

+
, for i = 1, . . . ,m:

[
(sθ)(tiθ)

+
]+

= [(sθ)(tiθ)]
+

=
[
(sθ)+(sti)θ

]+

=
[
(sθ)+ [(sti)θ]

+]+

= (sθ)+ [(sti)θ]
+ .

Thus

(A, s)θ(B, t)θ = (s1θ)
+ · · · (snθ)

+(sθ)+ [(st1)θ]
+ · · · (sθ)+ [(stm)θ]+ [(st)θ] .

Again, we can repeatedly commute idempotents to bring each occurrence of (sθ)+

next to the earliest occurrence and reduce it to a single power:

(A, s)θ(B, t)θ = (s1θ)
+ · · · (snθ)

+ [(st1)θ]
+ · · · [(stm)θ]+ [(st)θ]

= [(A, s)(B, t)] θ.

Therefore, θ is a (2, 1, 0)-morphism.
We now consider

sιθ = ({1, s}, s)θ = (sθ)+(sθ) = sθ.

So ιθ = θ.
Finally, we show that θ is unique. Suppose that there is another (2,1,0)-

morphism ϕ : Sz(M) → S with ιϕ = θ. Then θ and ϕ have the same effect on
each element of the form sι. By Proposition 3.5, these are generators for Sz(M).
Hence θ = ϕ.

We turn now to the converse of the theorem. Suppose that we have a (2,1,0)-
morphism θ : Sz(M) → S. We define θ : M → S by θ = ιθ and claim that θ is a
strong premorphism.

We certainly have 1θ = 1ιθ = ({1}, 1)θ = 1, since θ is a (2,1,0)-morphism.
For (PM2), note that (st)θ = ({1, st}, st)θ and

(sθ)(tθ) = ({1, s}, s)θ({1, t}, t)θ

= [({1, s}, s)({1, t}, t)] θ

= ({1, s, st}, st)θ.

Notice that ({1, s, st}, st) = ({1, s}, 1)({1, st}, st) = ({1, s}, s)+({1, st}, st). So

(sθ)(tθ) =
[
({1, s}, s)+({1, st}, st)

]
θ

= ({1, s}, s)+θ({1, st}, st)θ

=
[
({1, s}, s)θ

]+
({1, st}, st)θ

= (sθ)+ [(st)θ] .

Therefore, θ is a strong premorphism. ¤
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Suppose now that we are given the strong partial action of a monoid M on a set
X, as represented by a strong premorphism θ : M → PT X . By putting S = PT X

in the above theorem, we can construct a (2,1,0)-morphism θ : Sz(M) → PT X ,
i.e., a global action of Sz(M) on X. Conversely, if we are given just such a global
action, we can construct the underlying strong partial action. Note that a partial
action is strong if, and only if, it can be ‘expanded’ in this way.

We will hijack the terminology already applied to monoids and refer to this
procedure for replacing a partial action by a global action as the expansion of
the partial action.

If we take Theorem 4.1 and make M a group and S an inverse monoid, then
Sz(M) is an inverse monoid ([2, (II.6) Proposition] and [14, Proposition 1]), and
we obtain Kellendonk and Lawson’s Theorem 2.4.

5. Globalisation of partial monoid actions

Given the partial action of a monoid M on a set X, we have seen that we can
construct a global action of Sz(M) on X, via a generalisation of Kellendonk and
Lawson’s Theorem 2.4 [10]. We now take a different approach, in which we leave
the monoid M fixed and modify the set which is being acted upon. This was
one of the approaches taken for partial group actions by Kellendonk and Lawson
and was subsequently generalised to partial monoid actions by Megrelishvili and
Schröder [12]. An important difference between the methods of [10] and [12] is
the fact that Kellendonk and Lawson define their ‘globalisation’ in terms of gen-
erators, whilst Megrelishvili and Schröder do not. We will compromise between
these two methods by describing the ‘globalisation’ of a partial monoid action in
terms of generators.

Before we proceed to obtain the results of this section, we will first introduce
(the left-right dual of) some of the machinery employed by previous authors. Let
G be a group with symmetric generating set Z, and let G act partially on a set X,
in the sense of [10]. Kellendonk and Lawson [10, p. 97] defined the relation4 ≈Z on
X ×G by the rule that (x, g) ≈Z (x′, g′) if, and only if, there exist g1, . . . , gn ∈ Z
and x = x1, x2, . . . , xn+1 = x′ ∈ X such that g = g1 · · · gng

′ and

x1 · g1 = x2, x2 · g2 = x3, . . . , xn · gn = xn+1.

In their Lemma 3.1, Kellendonk and Lawson showed that ≈Z is an equivalence
relation on X × G.

We now summarise some definitions made by Megrelishvili and Schröder. Let
M be a monoid which acts strongly and partially on a set X. The relation ∼ is
defined on X × M by

(x, st) ∼ (x · s, t),

4Kellendonk and Lawson denoted this relation by ∼, but we wish to reserve the symbol ∼
for a different use.
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whenever ∃x · s [12, p. 125]. Unlike Kellendonk and Lawson’s ≈Z , this relation is
not an equivalence relation, merely a preorder. Megrelishvili and Schröder denote
by ≃ the equivalence relation generated by ∼ and observe that ≃ ⊆ ρ, where ρ
is defined on X × M by

(x, s) ρ (x′, s′) ⇐⇒ x · s ≡ x′ · s′;

the symbol ≡ denotes “strong equality”, i.e., ∃x ·s if, and only if, ∃x′ ·s′, in which
case they are equal.

With these relations established, we now turn to the question of ‘globalisation’.
Following Kellendonk and Lawson, we make the following definition:

Definition 5.1. Let M be a monoid with generating set N and let θ : M → PT X

be a strong premorphism. A globalisation of θ with respect to N is a pair (ι, ϕ)
consisting of an injection ι : X → Y , for some Y ⊇ X, and a monoid morphism
ϕ : M → TY such that sθ = ι(sϕ)ι−1, for each s ∈ N . The strong partial action
of M on X, as defined by θ, is said to be a restriction of the global action of M
on Y , as defined by ϕ.

As already commented, our construction of such a globalisation will be analo-
gous to those of [10] and [12]. We define the relation ∼N on X × M by:

(x, nm) ∼N (x · n,m) whenever x · n is defined, for n ∈ N.

This relation is not an equivalence relation, nor is it the direct monoid analogue
of Kellendonk and Lawson’s ≈Z ; we have only a single generator where they have
a sequence of generators. Let ≃N be the equivalence relation generated by ∼N ,
i.e.,

≃N =
[
1X×M ∪ ∼N ∪ ∼−1

N

]∞
,

where 1X×M is the identity relation on X ×M and ∞ denotes transitive closure.
We show how ≃N can be related to ≈Z under certain conditions.

Lemma 5.2. Suppose that all elements of N are invertible and that Kellendonk
and Lawson’s ‘inverse axiom’ holds:

(I) ∃z · m ⇒ ∃(z · m) · m−1 and (z · m) · m−1 = z.

Then ≃N =≈Z, for Z = N ∪ N−1, where N−1 = {n−1 : n ∈ N}.

Proof. We show that ∼−1
N =∼N−1 . Suppose first of all that (x, s) ∼N (y, t), for

some (x, s), (y, t) ∈ X × M . There therefore exists an a ∈ N with x · a = y and
s = at. Then, by (I), ∃(x · a) · a−1, i.e., ∃y · a−1 and y · a−1 = x, with t = a−1s.
Hence (y, t) ∼N−1 (x, s), so ∼−1

N ⊆∼N−1 . Similarly, the reverse inclusion. We can
now write:

≃N =
[
1X×M ∪ ∼N ∪ ∼−1

N

]∞
= [1X×M ∪ ∼N ∪ ∼N−1 ]∞

= [1X×M ∪ ∼N∪N−1 ]∞

= 1X×M ∪ [∼N∪N−1 ]∞ ,
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which is precisely ≈Z with Z = N ∪ N−1, since ≈Z contains 1X×M , as ≈Z is an
equivalence relation. ¤

Returning now to the general situation, it is easy to see that our ∼N is contained
in Megrelishvili and Schröder’s ∼, hence ≃N ⊆ ≃ ⊆ ρ. Let us denote the ≃N -
class of (x, s) ∈ X ×M by [x, s]N , and denote the collection of all ≃N -classes by
X(M,N).

Lemma 5.3. The function X(M,N) × M → X(M,N), given by

([x, s]N , t) 7→ [x, st]N := [x, s]N ∗ t,

defines a (global) action ∗ of M on X(M,N).

Before we prove Lemma 5.3, we first make the easy observation that

(x, nm) ∼N (x · n,m) =⇒ (x, nmp) ∼N (x · n,mp), for any p ∈ M.

Proof of Lemma 5.3. We must first prove that this action is well-defined. Suppose
that [x,m]N = [x′,m′]N , or (x,m) ≃N (x′,m′). We therefore have a sequence of
transitions

(x,m) = (x1,m1) → (x2,m2) → · · · → (xk,mk) = (x′,m′),

in which either (xi,mi) ∼N (xi+1,mi+1) or (xi+1,mi+1) ∼N (xi,mi), for each
i ∈ {1, 2, . . . , k − 1}. Let p ∈ M . By the observation preceding the proof, we
have the sequence

(x,mp) = (x1,m1p) → (x2,m2p) → · · · → (xk,mkp) = (x′,m′p),

in which either (xi,mip) ∼N (xi+1,mi+1p) or (xi+1,mi+1p) ∼N (xi,mip), for each
i ∈ {1, 2, . . . , k − 1}. Hence (x,mp) ≃N (x′,m′p). The action is therefore well-
defined.

To complete the proof, we need the following properties: [x,m]N ∗ 1 = [x,m]N
and ([x,m]N ∗ s) ∗ t = [x,m]N ∗ st. These properties follow immediately from the
definition of the action. ¤

Our aim is to find a globalisation of the strong premorphism θ. To that end,
we define a map ιN : X → X(M,N) by xιN = [x, 1]N , and prove the following:

Lemma 5.4. The map ιN is injective.

Proof. For ease of notation, we will drop the subscript from ιN and write simply
ι. Suppose that xι = yι, i.e., [x, 1]N = [y, 1]N , or (x, 1) ≃N (y, 1). Then, since
≃N ⊆ ≃ ⊆ ρ, we have

(x, 1) ≃N (y, 1) ⇒ (x, 1) ρ (y, 1) ⇒ x · 1 ≡ y · 1

But, of course, ∃z · 1 and z · 1 = z, for all z ∈ X, so x = y, as required. ¤

Our next step in finding a globalisation of θ involves the morphism ϕN : M →
TX(M,N)

, where tϕN is the map given by [x, s]N 7→ [x, s]N ∗ t. As with ι = ιN , we
will drop the subscript from ϕN .
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Lemma 5.5. For each s ∈ N , sθ = ι(sϕ)ι−1.

Proof. We begin by showing the inclusion sθ ⊆ ι(sϕ)ι−1 (i.e., sθ is a restriction
of ι(sϕ)ι−1). We do this in the same way as in [10].

Suppose that ∃x · s. Then x ∈ dom sθ and x(sθ) = x · s. Further, x(sθ)ι =
(x · s)ι = [x · s, 1]N . We also have xι(sϕ) = [x, 1]N ∗ s = [x, s]N .

Clearly, (x · s, 1) ∼N (x, s), so (x · s, 1) ≃N (x, s), i.e., [x · s, 1]N = [x, s]N .
Therefore, x(sθ)ι = xι(sϕ), for all x ∈ dom sθ. Hence sθ ⊆ ι(sϕ)ι−1.

To prove the reverse inclusion, first suppose that xι(sϕ) ∈ Xι. Then xι(sϕ) =
[x, s]N = [x′, 1]N , for some x′ ∈ X. There must therefore be a sequence of
transitions (x, s) = (x1, s1) → · · · → (xn, sn) = (x′, 1), in which either (xi, si) ∼N

(xi+1, si+1) or (xi+1, si+1) ∼N (xi, si), for each i ∈ {1, . . . , n − 1}. Then, once
again using the fact that ∼N ⊆ ρ, we have

x1 · s1 ≡ x2 · s2 ≡ · · · ≡ xn · sn.

We know that ∃x′ · 1 = xn · sn, so ∃x1 · s1 = x · s, hence x ∈ dom sθ. We conclude
from this that ι(sϕ)ι−1 = sθ. ¤

The preceding sequence of lemmas can be combined to give the following gen-
eralisation of both [10, Proposition 3.3] and [12, Proposition 2.6]:

Theorem 5.6. Let M , X, θ, X(M,N), ι = ιN and ϕ = ϕN be as previously
defined. Then the pair (ι, ϕ) is a globalisation of θ with respect to N .

We have the following further theorem:

Theorem 5.7. A premorphism θ : M → PT X can be globalised if, and only if,
it is strong.

Proof. First suppose that θ is a strong premorphism. Then θ can be globalised,
by Theorem 5.6.

Conversely, suppose that θ can be globalised. By the observation preceding
Definition 2.9, we have (sθ)(tθ) ≤ (sθ)+(st)θ. To show that θ is strong, it is
sufficient to prove that dom(sθ)+(st)θ ⊆ dom(sθ)(tθ).

Let x ∈ dom(sθ)+(st)θ. Then x ∈ dom(sθ)+ = dom sθ and x ∈ dom(st)θ.
Now consider x(sθ). Since θ can be globalised, we have x(sθ) = xι(sϕ)ι−1. Note
also that x(sθ) ∈ X, since x ∈ dom sθ. We must therefore be able to compose
ι(sϕ) with ι−1 at x, i.e., xι(sϕ) ∈ Xι. Similarly

x ∈ dom(st)θ = dom ι(st)ϕι−1 = dom ι(sϕ)(tϕ)ι−1

and

x(st)θ = xι(sϕ)(tϕ)ι−1 = xι(sϕ)IXι(tϕ)ι−1, since xι(sϕ) ∈ Xι

= xι(sϕ)ι−1ι(tϕ)ι−1

= x(sθ)(tθ)

Hence x(sθ) ∈ dom tθ, and x ∈ dom(sθ)(tθ), giving us the desired inclusion.
Therefore θ is strong. ¤
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The following example of a strong partial action from Section 2 was constructed
by taking a global action and restricting it, in accordance with Theorem 5.6.

Example 5.8. Let G = {e, a, a2, a3, a4, a5} be the cyclic group of order 6. We
define a mapping θ : N0 → G by 1θ = a, so that nθ = an. We have a (global)
action of N0 on G, given by: ai∗n = ai+n. We now take the subgroup H = {e, a3},
with the obvious inclusion mapping ι : H → G. We define a partial action of N0

on H by

∃h · n ⇐⇒ h, h ∗ n ∈ H,

in which case, h · n = h ∗ n = han. We know that ak ∈ H if, and only if,
k ≡ 0 (mod 3). For ak ∗ n to belong to H, we need k + n ≡ 0 (mod 3), hence
n ≡ 0 (mod 3). This is, of course, the partial action of Example 2.5.

Since ≃N ⊆ ≃, for any generating set N , ≃ is the larger relation. Therefore,
XM := (X × M)/ ≃ is a smaller set than X(M,N) = (X × M)/ ≃N . In fact, the
globalisation associated with XM is the smallest globalisation of θ.

We can make this last comment more precise by proving a number of category-
theoretic results, including an analogue of yet another result of [10]. Let θ :
M → PT X be a strong premorphism, where M is a monoid with generating set
N . Following Kellendonk and Lawson, we define a category GN , whose objects
are globalisations (κ, ψ) of θ with respect to N . Let (κ, ψ), (κ′, ψ′) ∈ obGN ,
where κ : X → Y and κ′ : X → Y ′. Then an arrow in GN is a function
α : Y → Y ′ such that

κα = κ′ and y(sψ)α = yα(sψ′),

for y ∈ Y .
Before we prove an analogue of [10, Theorem 3.4], we first note the following

useful result:

Lemma 5.9. Suppose that (κ, ψ) is a globalisation of θ with respect to N . Let
(x, s), (y, t) ∈ X × M and let (x, s) → (y, t) be a transition in which either
(x, s) ∼N (y, t) or (y, t) ∼N (x, s). Then xκ(sψ) = yκ(tψ).

Proof. If (x, s) ∼N (y, t), then there exists an a ∈ N with x · a = y and s = at.
This means that x(aθ) = y. Then, since (κ, ψ) is a globalisation of θ with respect
to N , xκ(aψ)κ−1 = y, or xκ(aψ) = yκ. Thus

xκ(sψ) = xκ(at)ψ = xκ(aψ)(tψ) = yκ(tψ).

Similarly, if (y, t) ∼N (x, s). ¤

Theorem 5.10. The globalisation (ι, ϕ) = (ιN , ϕN) is an initial object of the
category GN .

Proof. Let (κ, ψ) be a globalisation of θ with respect to N , with κ : X → Y . We
define a function α : X(M,N) → Y by [x, s]Nα = xκ(sψ). We will show that α
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is the unique arrow X(M,N) → Y and begin by showing that α is well-defined.
Suppose that [x, s]N = [x′, s′]N . This means that there is a sequence of transitions

(x, s) = (x1, s1) → (x2, s2) → · · · → (xn, sn) = (x′, s′)

where x1, . . . , xn ∈ X, s1, . . . , sn ∈ N and either (xi, si) ∼N (xi+1, si+1) or
(xi+1, si+1) ∼N (xi, si), for i ∈ {1, . . . , n − 1}. Then, by Lemma 5.9,

x1κ(s1ψ) = x2κ(s2ψ) = · · · = xnκ(snψ),

i.e., xκ(sψ) = x′κ(s′ψ), so α is well-defined.
We now show that α is an arrow in GN . From here on, the proof is much

the same as that of [10]. First, recall that xι = [x, 1]N . Then xια = [x, 1]Nα =
xκ(1ψ) = xκ, so ια = κ. Now let t ∈ M . We have

[x, s]N(tϕ)α = [x, st]Nα = xκ(st)ψ = xκ(sψ)(tψ) = [x, s]Nα(tψ).

Therefore α is an arrow in GN .
We finally show that α is unique. Suppose that β is another arrow (ι, ϕ) →

(κ, ψ), so that ιβ = κ and [x, s]N(tϕ)β = [x, s]Nβ(tψ). Notice that for any
[x, s]N ∈ X(M,N), we have [x, s]N = xι(sϕ). Then

[x, s]Nβ = xι(sϕ)β = xιβ(sψ), since β is an arrow

= xκ(sψ), since ιβ = κ

= [x, s]Nα, by definition of α.

Thus α is unique, and hence (ι, ϕ) is an initial object of the category GN . ¤

Unlike Kellendonk and Lawson, we are unable to show that our α is injective,
so (ι, ϕ) is not embedded in every other globalisation.

It is, of course, possible that M could have more than one set of generators.
The following proposition shows how, in certain instances, we can relate the
categories arising from two different generating sets.

Proposition 5.11. Let N and N ′ be generating sets for the monoid M , with
N ⊆ N ′. Then the category GN ′ is a subcategory of the category GN .

Proof. Let (κ, ψ) be an object in GN ′ , i.e., (κ, ψ) is a globalisation of θ with
respect to N ′, in which case, the condition sθ = κ(sψ)κ−1 holds for all s ∈ N ′. It
then clearly holds for all s ∈ N , since N ⊆ N ′. Thus (κ, ψ) is also a globalisation
of θ with respect to N , i.e., (κ, ψ) is an object of GN . It is clear that an arrow
in GN ′ is also an arrow in GN . ¤

Therefore, if GM is the category of globalisations of θ with respect to the whole
monoid M , then GM is a subcategory of GN , for any generating set N ⊆ M .
In particular, the (initial) object (ιM , ϕM) of GM is also an object of each GN ,
though, in general, it will not be initial in GN .

As a preliminary to our final category-theoretic result, we make the following
definition: let G be the union of all the categories GN , where N ranges over all
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generating sets for M . Then G is itself a category. Let I be the collection of
all initial objects of the original categories GN , together with all arrows between
them in G. Then I is a subcategory of G. Note that, in general, the objects in
I will not be initial in G. We have the following result:

Proposition 5.12. The object (ιM , ϕM) is a terminal object in I.

Proof. We have already observed that (ιM , ϕM) is an object in each GN . If
(λN , φN) is an initial object in GN , then there is a unique arrow from (λN , φN)
to (ιM , ϕM), for each N . In other words, for each object in I, there is a unique
arrow from that object to (ιM , ϕM), i.e., (ιM , ϕM) is terminal in I. ¤

6. One-one partial actions

In this final section, we consider the question of when a partial monoid action
is one-one. We first set down the following definitions:

Definition 6.1. Suppose that a monoid M acts (globally) on a set X, with
corresponding morphism ϕ : M → TX . We say that the action is one-one if the
image of ϕ contains only one-one maps.

Definition 6.2. Suppose that a monoid M acts partially on a set X, with corre-
sponding premorphism θ : M → PT X . We say that the partial action is one-one
if the image of θ contains only one-one maps.

It is clear that the partial group actions of Kellendonk and Lawson [10] are
always one-one in the sense of Definition 6.2, since such a partial action is equiv-
alent to a premorphism into IX , the symmetric inverse monoid on X.

Suppose now that a monoid M acts partially on a set X. If we demand that
this partial action be one-one, then it is easy to see that the expanded action
is also one-one: in Theorem 4.1, we put S = IX , so S is inverse and the global
action is one-one. Conversely, if the expanded action is one-one, so that θ is a
(2,1,0)-morphism into IX , then ιθ = θ also maps into IX , hence the underlying
partial action is also one-one. The expansion of a partial group action is always
one-one; this can be seen by applying similar reasoning to [10, Theorem 2.4].

We now consider the effect of globalisation on injectivity. If a globalised monoid
action ϕ : M → OX is one-one, where OX denotes the monoid of one-one maps
on X, then it is clear that any restriction θ : M → PT X must also be one-one:
each sθ is the composition of the one-one maps ι : X → Y , sϕ : Y → Y and
ι−1 : Xι → X, so is itself one-one. Conversely, however, if we start with a one-
one partial action θ : M → IX , it is not clear that globalisation will lead to
a morphism ϕ : M → OX . In the group case, the globalisation is necessarily
one-one, by the very nature of group actions.

One way in which we can make a partial monoid action one-one is to consider
the partial action of a right cancellative monoid. It is natural in this case to
augment Definition 2.4 with the following additional axiom to reflect the monoid
under consideration:



PARTIAL ACTIONS OF MONOIDS 21

(C) if ∃x · s, ∃y · s and x · s = y · s, then x = y.

The addition of this extra condition clearly forces each mapping sθ to be one-
one. Thus, with this extra requirement, the partial action of a right cancellative
monoid is one-one. It is then clear that, with suitable modification of Theo-
rem 4.1, the expansion of the partial action of a right cancellative monoid is
also one-one. This modification requires a special case of a weakly left E-ample
monoid which we now describe.

As commented in Section 1, weakly left E-ample monoids generalise left E-
ample monoids. In particular, weakly left ample monoids generalise the left
ample (formerly, left type-A) monoids of Fountain [4, 5]. To see this, let us
define the (equivalence) relation R∗ on a monoid5 S:

aR∗ b ⇐⇒ ∀x, y ∈ S[xa = ya ⇔ xb = yb]. (6.1)

Equivalently, aR∗ b in S if, and only if, aR b in some oversemigroup T [5,
Lemma 1.1]. Hence R ⊆ R∗. Notice also that if aR∗ b in S, then we can
set y = 1 and x = e in (6.1), for any e ∈ E ⊆ E(S), to obtain

ea = a ⇔ eb = b.

Hence R ⊆ R∗ ⊆ R̃E, for any E ⊆ E(S).
We now define a left ample monoid, via the following:

Definition 6.3. A monoid S with commutative submonoid E ⊆ E(S) of idem-
potents is left E-ample if

(1) every element a is R∗-related to a (unique) idempotent in E, denoted a+;
(2) for all a ∈ S and all e ∈ E, ae = (ae)+a.

If E = E(S), then S is left ample.

Note that R∗ is always a left congruence, so we do not need to demand this

explicitly. By our observation that R∗ ⊆ R̃E, it is easy to see that every left
E-ample monoid is weakly left E-ample, indeed, in a left E-ample monoid, R∗ =

R̃E, so there is no ambiguity in our use of + to denote the idempotent in an

R∗-class. In an inverse monoid, we have R = R∗ = R̃.
We note the following extension of Corollary 3.4:

Proposition 6.4. [6, Proposition 4.4 (dual)] If M is a right cancellative monoid,
then Sz(M) is left ample.

By modifying Theorem 4.1 to make S left ample, we see that the expansion of
the partial action of a right cancellative monoid M on a set X (i.e., the global
action of the left ample monoid Sz(M) on X) is one-one.

As in the case of an arbitrary monoid, however, the globalisation of the partial
action of a right cancellative monoid is not (necessarily) one-one.

5If S were a semigroup but not a monoid, we would need x, y ∈ S1 here.
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