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The performance of a road pricing scheme varies greatly by its actual design and implementation. The design 

of the scheme is also normally constrained by several practicality requirements. One of the practicality 

requirements which is tackled in this paper is the topology of the charging scheme. The cordon shape of the 

pricing scheme is preferred due to its user-friendliness (i.e. the scheme can be understood easily). This has 

been the design concept for several real world cases (e.g. the schemes in London, Singapore, and Norway). 

The paper develops a methodology for defining an optimal location of a multi-concentric charging cordons 

scheme using Genetic Algorithm (GA). The branch-tree structure is developed to represent a valid charging 

cordon scheme which can be coded using two strings of node numbers and number of descend nodes. This 

branch-tree structure for a single cordon is then extended to the case with multi-concentric charging cordons. 

GA is then used to evolve the design of a multi-concentric charging cordons scheme encapsulated in the two-

string chromosome. The algorithm developed, called GA-AS, is then tested with the network of the Edinburgh 

city in UK. The results suggest substantial improvements of the benefit from the optimised charging cordon 

schemes as compared to the judgemental ones which illustrate the potential of this algorithm. 

 
KEYWORDS: Road pricing, charging cordon design, optimal toll problem, genetic algorithm 

 

1. INTRODUCTION 

 

The concept of road pricing emerged from the idea that the cost paid by the road user 

(called marginal private cost or perceived cost) is actually lower than the actual cost he 

or she imposes (called marginal social cost) (Pigou, 1920; Knight, 1924; Walters, 1961; 

Vickrey, 1963). Thus, by imposing an appropriate toll level on travellers, additional 

social welfare improvement can be gained. Based on this simple economic theory, 

several researchers have been attempting to analyse the setting of appropriate toll level 

in the real world situation in which transport system has to be treated as a network. 

However, most of these works mainly focused on the theoretical part of the toll design 

and particular paid attention only on the toll level not the toll location problem.  

May et al. (2002) pointed out several practical design criteria of a road pricing scheme. 

Particularly, some key characteristics of a practical road pricing scheme found are 

related to the topology of charging points. It is widely believed that a charging cordon is 

the most user-friendly charging system due to its simplicity and clarity to the road users. 

This is considered to be a key ingredient for promoting public acceptability of the 

charging scheme. A charging cordon is a set of tolled links surrounding a designated 

area so that all trips entering or passing through that area are tolled. Various current real 

world implementations of the scheme including the ERP scheme in Singapore, 

Norwegian toll rings (in Oslo, Trondheim, and Bergen), and the congestion charging 

scheme in London.  

The common practice in designing a charging cordon scheme documented in various 

real-world cases and desk studies (May, 1975; Holland and Watson, 1978; Transpotech, 

1985) is to apply a judgmental approach or a ‘trial and error process’ to seek 

appropriate toll locations and toll levels. The trial and error process normally starts by 

defining a set of possible charging cordons and their associated common toll levels. 

Then, each option is tested with some traffic modelling software. The benefit and cost of 
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each scheme is then calculated from the modelling output and the best scheme from 

those considered is chosen.  

The sub-optimality of this judgmental design approach is well addressed in May et al. 

(2002) in which the benefits of cordons based on the judgmental and optimal designs are 

compared. They also suggested that the application of a theoretical approach could 

improve the benefit of the judgmental design significantly. One possibility is to directly 

optimise the location of charging cordons using optimisation theory. The motivation of 

this paper is to develop an optimisation method to find optimal locations specifically for 

charging cordons. 

Recently, there have been an increasing number of attempts to develop analytical 

approaches to tackling the optimal toll level and location problems (Mun et al., 2001; 

Hearn and Yildirim, 2002; Hyman and Mayhew, 2002; May et al., 2002; Verhoef, 2002; 

Ho et al., 2005; Lawphongpanich and Hearn, 2004; Shepherd and Sumalee, 2004; Zhang 

and Yang, 2004). Most of the literature concentrates on deriving the solution of optimal 

toll level and location without considering the topological constraint of the charging 

scheme. Only some of the research considered the requirement for a charging cordon. 

Mun et al. (2001), Hyman and Meyhew (2002), and recently Ho et al. (2005) developed 

approaches to define the optimal location of a charging cordon with a non-network based 

modelling framework (using either a continuum traffic model or strategic model). 

However, the omission of network representation in the model may cause a sub-

optimal design of the cordon location. There are two particular reasons; firstly 

congestion is a local issue which happens mostly on links rather than in wide areas; 

secondly the analysis of charging scheme without a network representation may 

underestimate the impact of re-routing (Milne, 1997). Thus, it is considered more 

appropriate to tackle the cordon design problem under the framework of network 

modelling. 

Zhang and Yang (2004) developed an approach based on ‘genetic algorithms’ (GA) to 

find an optimal closed charging cordon with an optimal uniform toll under a detailed 

network representation. The method proposed later on in this paper was independently 

developed based on a similar principle, with GA being utilised as the main optimisation 

mechanism.  

The difference between the method in this paper and the one in Zhang and Yang (2004) 

is largely in the chromosome design (which is the proxy for a charging cordon in GA). 

Their chromosome represents the status of nodes, identifying whether they are tolled or 

un-tolled. From a set of tolled and un-tolled nodes, the links starting from one of the un-

tolled nodes and ending at one of the tolled nodes are defined as tolled links. They also 

proposed a method to verify whether a set of tolled links forms a charging cordon. 

However, this chromosome design does not ensure that after the crossover or mutation 

operators are applied the new chromosome will represent a charging cordon. On the 

other hand, the method in this paper ensures that the new chromosomes conserve the 

closed charging cordon formation after the GA operators are applied. In addition, the 

chromosome structure proposed in this paper can be extended easily to the case with 

multi-concentric charging cordon scheme. This paper extends the formulation proposed 

in Sumalee (2004) by including the general case of the multi-concentric charging cordon 

scheme. A multi-concentric cordon is a scheme with a number of charging cordons all of 

which share the same centre and all the cordons do not overlap each other. Further 

explanation is given later in Section 5.1. 

The GA based method proposed in this paper is termed GA-AS. The paper is 

structured into five further sections. The next section presents an innovative approach to 
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defining a set of charging cordons. The third section introduces the concept of GA and 

explains the detail of GA-AS. Section four then presents an extension of the method to 

the design of a multi-concentric charging cordon scheme. Section five investigates the 

influence of different GA parameters by testing GA-AS with the Edinburgh network. 

The last section summarises the paper.  

 

2. OPTIMAL CHARGING CORDON DESIGN PROBLEM 

 

The problem discussed in this paper is to find the optimal location of tolled links 

forming a charging cordon or multiple charging cordons, with their optimal toll levels, 

designed to maximise or minimise a selected objective function (e.g. social welfare 

improvement, total travel time, accessibility, or local environmental improvement). 

 

2.1 Notation 

 

I the set of OD-pairs, denoted i = 1, …, I 

Ti the continuous number of users (or OD-flow) for OD pair i, with Ti ≥ 0 

Di(Ti) the continuous differentiable inverse demand function for trips for OD-pair i, 

with Di ≤ 0 

J the set of directed links in the network 

vj the continuous number of users (or link flow) on link j, with Vj ≥ 0 

cj(vj) the strictly monotone differentiable average cost function excluding tolls for the 

use of link j, with cj ≥ 0 

εj A dummy that takes on the value of 1 if a toll can be charged on link j, and a 

value of 0 otherwise 

sj the cost of implementation and operation of a tolled link 

τj the level of the toll on link j if εj = 1 

i,j,P   index for OD pairs, links, and paths respectively 

 

2.2 Mathematical program of optimal charging cordon scheme design 

 

In this paper, the problem is limited the case of single user class, single mode, and with 

elastic demand. The rational road users’ response is assumed to follow Wardrop’s user 

equilibrium, UE (Wardrop, 1952). In analysing the optimal toll design problem, this UE 

condition has to be imposed as one of the constraints in the optimization problem. The 

second important constraint is that the selected toll links must form a charging cordon. 

Let Θ  be the set of all possible multi-concentric charging cordon schemes. A feasible 

combination of tolled links for the optimisation problem must be one of the members of 

this set, ε∈Θ . With these two constraints, the general problem of optimal charging 

cordon design can be formulated as: 

 ( )max , ,ψ τ εF  (1a) 

subject to 

 ( )( )sol UE→ τF , (1b) 

 U≤ τ ≤ ε0 , (1c) 

 { }0,1ε∈ , (1d) 

 ε∈Θ . (1e) 
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where F is a vector of path flows and ( )( )sol UE→ τF  means that the flows must be the 

user’s equilibrium flow given the toll vector. The constraint 0 j jU≤ τ ≤ ε  is included to 

ensure that a toll is not imposed on a link which is not selected as a tolled link ( )0jε = . 

With 0jε = , 0 0j≤ τ ≤ and hence jτ  must be equal to zero. The implementation of U 

is to allow the toll of a tolled link ( )1jε = to be any value between 0 j U≤ τ ≤ . U can be 

an arbitrary “large” number or a specified upper bound of possible toll level. 

This problem aims to find a combination of toll points (also find the number of toll 

point) forming a multi-concentric charging cordon scheme and its uniform toll level of 

each cordon so that it maximize the objective function of ψ which can be either social 

welfare benefit or revenue. The traditional economic objective of optimal road pricing 

design is to maximise the ‘net benefit’ which is the social welfare benefits minus the 

costs of the road pricing system (i.e. implementation and operation costs). For the social 

welfare benefits, a social surplus measure will be used (‘Marshallian measure’). There 

are two components in measuring the social surplus, consumer surplus and consumer 

cost. The gross total benefit can be mathematically formulated as: 

 ( ) ( )
0

iT

i j j j j j

i j j

D x dx c v v sψ = − − ε∑ ∑ ∑∫  (2) 

The first and second terms are the consumer surplus and consumer cost respectively. 

The net of these two values is the social welfare (or social surplus). The third term is the 

cost of the road pricing scheme. In the optimisation problem discussed in this paper, the 

objective function of the program is to maximise the net benefit compared to the benefit 

in the do-nothing scenario (no toll). This objective can be seen as the objective to 

increase the efficiency of the transport system.  

This problem can be categorised as a Mathematical Program with Equilibrium 

Constraints (MPEC). There are various problematic characteristics of MPEC, e.g. non-

convex feasible regions, non-convex objective functions, and non-smooth objective 

functions. Solving the MPEC problem is a very complicated task, let alone the 

combinatorial nature of the problem stated earlier. In addition, it is infeasible to handle 

the constraint on the topology of tolled links (due to its complexity) with the traditional 

optimisation algorithms.   

To author’s knowledge, there does not exist any derivative-based optimisation 

algorithm that is capable of solving this problem. In this paper, the idea to tackle this 

problem is to utilise the flexibility of GA in dealing with the constraint of a multi-

concentric charging cordon scheme and the UE condition. GA is first used to produce a 

set of charging cordons. The users’ responses, following users’ equilibrium, to the 

cordon toll are then evaluated by running an appropriate traffic assignment model. The 

fitness of each closed cordon will be evaluated from the users’ responses. GA will then 

iteratively evolve the set of charging cordon solutions until reaching the predefined 

stopping criteria (e.g. maximum number of generations within GA).  

In this paper, a discrete uniform toll is assumed to be a design specification. In finding 

an optimal uniform toll for each cordon, each charging cordon will be evaluated in terms 

of its net total benefit with the different predefined toll levels. The toll level producing 

the highest net total benefit will be accepted as the optimal uniform toll for that cordon. 

In the next section, the concept of the branch-tree framework developed to represent a 

charging cordon is described; this is the core of this method. 



45 

 

3. BRANCH-TREE FRAMEWORK FOR REPRESENTING A CHARGING CORDON 

 

3.1 Definition of a charging cordon 

 

Definition 1: Charging cordon. A charging cordon is a set of tolled links surrounding 

a designated area so that all private car users travelling to the destination inside the area 

or through the area will be charged. A definition of a closed cordon in the context of 

graph theory is that all paths from all zones outside the cordon passing through the nodes 

inside the cordon must be tolled at least once on a link related to those paths.  

Zhang and Yang (2004) defines a charging cordon based on the concept of a cutset in 

graph theory. It is worthwhile to reiterate the concept proposed in their paper in order to 

distinguish the differences between the methods developed in this paper and their 

method.  

Definition 2: Cutset. For a directed graph G = (N, A), a cutset of G is a subgraph 

consisting of a minimal collection of links whose removal reduces the rank of G by one.  

Definition 3: Component. A component of a graph is a connected subgraph containing 

the maximal number of edges. If a graph is not strongly connected, it must contain a 

number of components. Otherwise, a graph has only a single component.  

Assumption 1: In this paper, only a complete directed graph is considered which 

means there is only one component of the network. In other words, there is at least a path 

connecting each pair of nodes in the network. 

Definition 4: Incident matrix. An incident matrix (B) with the dimension of N A×  is a 

representation of a graph (G) where the elements of the matrix ( ,n ab ) are defined as 

follows: 

 ,

1 if node  is the origin node of link 
1 if node  is the destination node of link 

0 otherwise
n a

n j
b n j

⎧⎪= −⎨
⎪⎩

 (3) 

Lemma 1: For a graph with N nodes and β components, the rank of the graph (γ) is 

defined as the number Nγ = −β  = the number of linearly independent rows or columns 

of the incident matrix (B) of G. 

Theorem 1 [Zhang and Yang, 2004]: Given a graph representing a road network and a 

cutset, tolled links forming a charging cordon are those whose original node is in the 

component outside the cutset and destination node is in the component inside the cutset. 

Proof. From Assumption 1, the graph considered is complete, so it only has one 

component. A set of links forming a cutset reduces the rank of the matrix by one and 

only one (due to Definition 2) which means it will increase the number of components of 

the graph by one and only one. This is true because the number of nodes in the graph 

before and after applying the cutset is constant and from Lemma 1 Nγ = −β . Thus, the 

links forming a cutset will split the network (graph) into two components. By putting the 

tolls on all links heading toward the component inside the cutset all paths entering this 

area are charged which satisfies the definition of a closed charging cordon in Definition 

1. □ 

Remarks: A cutset may not form a desired (practical) charging cordon, i.e. a cutset 

may not separate the desired charging area from the rest of the network (see the 

requirement in Definition 1). An additional condition must be made regarding the set of 

nodes that must be inside one of the components defined by a cutset (indicating a desired 

charging area), referred to as charged nodes. From Figure 1, suppose that the desired 

charging area is the black node in the centre of the figure and there is no constraint on 



46 

 

the set of charged nodes. From this condition, cutset 1 satisfies the standard condition for 

a cutset but it does not form a desired charging cordon surrounding the desired charging 

area.  

 
 

cutset 2

cutset 1

cutset 3

 
FIGURE 1: Example of drawback of cutset definition 

 

However, although the condition on the charged nodes is imposed (i.e. the central node 

is defined as the charged node), cutset 1 and cutset 2 shown in Figure 1 still satisfy the 

condition for a cutset and charged node. The remedy for this problem is to include an 

additional constraint on the other set of nodes (referred to as boundary nodes).  

Boundary nodes and charged nodes must be in different components of the graph. From 

Figure 1, if an additional constraint on boundary nodes is imposed, neither cutset 1 nor 

cutset 2 satisfies this condition since some of the boundary nodes and charged nodes are 

in the same components of the graph. Cutset 3, on the contrary, satisfies this condition 

and this cutset forms a charging cordon according to Definition 1.  

The method proposed in Zhang and Yang (2004), thus, could experience this drawback. 

In addition, the GA chromosome design in their method may not form a new charging 

cordon after the GA operators are applied to the chromosomes. The branch-tree 

approach proposed next overcomes these two drawbacks. The branch-tree concept does 

naturally conform to the requirement in Definition 1. The next section explains the 

concept of a branch-tree approach for defining a charging cordon.  

 

3.2 Nomenclature of the branch-tree concept  

 

Let G = (N, A) be a directed graph representing an urban traffic network where N and 

A are a set of nodes and links respectively in the graph. A link is defined by two nodes, i 

and j where ; ,i j i j N≠ ∈ .  

Definition 5: Set of all preceding nodes. If the direction of a link is from i to j, i is 

termed ‘the preceding node’ of j. The number of preceding nodes for each node j can be 

more than one. The set { }is the preceding node of j i i jΞ =  is defined to be the set of 

‘all-preceding nodes’ of node j where jΞ  is the size of the set (the total number of 

preceding nodes of node j). 

Definition 6: Node degree. The degree of a node is the number of children or 

preceding nodes of that node in the branch-tree. 

Definition 7: Leaf node. A node with degree of zero is called a ‘leaf node’. 
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Definition 8: Branch-tree and Branching process. { }( , )r n dβ = is a branch-tree, which 

is defined as a set of the pairs of n, n∈N and d (degree of node n). r is the root node of 

this branch-tree ( )r N∈ . { }( , )r n dβ =  has to be created from the original graph G. 

Given G, a root node (r) is defined and then only the preceding nodes of r can be 

included into the branch-tree, i.e. n can be included into the branch-tree if and only if 

rn∈Ξ  (See Definition 5). 

When node n is added into the branch-tree, the degree of node n is initially set as zero 

(since node n has no children nodes in the branch-tree at this stage). Node n can then be 

expanded by including its preceding nodes into the branch-tree. The set of preceding 

nodes of node n added into the branch-tree are referred as children nodes of node n. 

After adding the preceding nodes of node n into the branch-tree, the degree of node n 

will be changed from zero to the number of children nodes of node n. This is the process 

to expand the ‘depth’ of the branch-tree which is referred to as the ‘branching process’. 

The branching process can be applied iteratively to other leaf nodes added into the 

branch-tree. Once the process terminates, { }( , )r n dβ = is produced. Example 1 below 

illustrates the branch-tree structure and branching process. 

Example 1 Illustration of the branching process 

Figure 2a shows an example of a full traffic network (G). Assume that node A is 

defined as root node { }A (A,0)β = . According to Definition 5 given earlier, nodes B and 

C are the preceding nodes of node A and they can be added into the branch-tree Aβ . 

Figure 2b shows the branch-tree after applying the branching-process to node A (adding 

nodes B and C into the original branch-tree shown in Figure 2b). At this stage 

{ }A (A,0), (B,0), (C,0)β = . Notice that the degree of node A is changed from zero to 

two (see Definition 8 above). Nodes B and C are now the leaf nodes of the branch-

tree Aβ .  

 
 

A

B C

D E

G H

F

(2a) 

A

B C

(2b) 

A

B C

D E

(2c) 

A

B C

D E F

(2d) 
 

FIGURE 2: Example of branch-tree and branching process 
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Assume that only node B will be expanded. Nodes D and E which are the children 

nodes of node B are added into the branch-tree during the branching process creating the 

new branch-tree as shown in Figure 2c. At this stage, 

{ }A (A,0), (B,0), (C,0), (D,0), (E,0)β = . Again, notice the change of the degree of node 

B from zero to two. If the branching process is terminated at this stage, the final branch-

tree Aβ  is the one shown in Figure 2c. Applying the branching process to expand the 

depth of the branch-tree with different set of leaf nodes can create different branch-trees 

from the same graph (see Figure 2d for a different branch-tree from the graph in Figure 

2a where the branch-tree is also expanded at node C).  

Definition 9: Sub-branch. Recall that { }( , )r n dβ = is a branch-tree. Given n which is 

one of the nodes in { }( , )r n dβ = , n rβ ⊂ β  is a sub-branch of rβ . Inside a branch-tree, a 

number of sub-branches can be defined. Assume that node n from a full branch-tree is 

selected, the sub-branch created from this node is the whole part of the branch-tree 

rooted from node n. Figure 3 shows an example of a sub-branch rooted from node B of 

the full branch-tree shown in Figure 2c. In this example node B from the branch-tree 

( Aβ ) shown in Figure 2c is selected as the root node of the sub-branch. Bβ , which is a 

sub-branch of the branch-tree, is thus the whole part of the branch-tree rooted from node 

B which are node D and E. Therefore, { }B (B,2), (D,0), (E,0)β =  and thus B Aβ ⊂ β . 

 

B

D E
 

 

FIGURE 3: Example of sub-branch 

 

Definition 10: Branch. Given a branch-tree { }( , )r n dβ =  and its associated original 

graph G, a branch is defined as a link a A∈  defined by a leaf node of { }( , )r n dβ =  as 

its origin node and a proceeding node of that branch node in { }( , )r n dβ =  as its 

destination node. For example, from the branch-tree shown in Figure 2d, the branches of 

this branch-tree are links D-B, E-B, and F-C.  

 

3.3 Relationship between branch-tree and closed charging cordon 

 

After introducing the necessary notation for the branch-tree concept, this section 

explains how a branch-tree can represent a closed cordon scheme.  

Proposition 1: For a given branch-tree ( { }( , )r n dβ = ), the tolled links are defined by a 

set of branches in the branch-tree. These tolled links will form a closed charging cordon 

around the root note r if and only if all nodes in { }( , )r n dβ =  have either d = 0 or 

d= nΞ . This implies that in expanding a leaf node (using the branching process) all 

preceding nodes of that leaf node must be included into the branch-tree. This is exactly 

the process adopted in the example in Figure 2.  

Proof. This proposition can be easily verified by considering the definition of a closed 

charging cordon mentioned earlier. By including all preceding nodes of a leaf node into 
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the branch-tree, all links entering that leaf node will be defined as tolled links and hence 

all paths entering that (previously) leaf node are tolled. From a root node (r), by 

including all preceding nodes of the root node into the branch-tree all paths entering that 

root node are tolled. In expanding the leaf node j (which are all preceding nodes of node 

r), from the proposition all preceding nodes of node j ( | jn n∀ ∈Ξ ) must be included 

into the branch-tree. Note that now all paths entering node j must pass through one of the 

preceding nodes of node j. By tolling the links defined by node j and its preceding nodes 

all paths entering node j are tolled. Previously, all paths entering node r via node j are 

tolled by the tolled link (r, j). After expanding node j, the new set of tolled links ensuring 

that all paths entering node j are tolled and hence all paths entering node r via node j are 

still tolled. This proof can be expanded to the general case between node j and j+1 where 

node j+1 is one of the children nodes of node j, hence it proves that the condition of a 

branch-tree proposed is sufficient for defining a charging cordon according to Definition 

1. □ 

Before generating different charging cordons, a set of predefined links forming an 

initial charging cordon in the network must be defined. The starting node of each link 

will become a root node for the branch-tree. For instance, assuming that in a network the 

predefined cordon comprises five links, five branch-trees will be generated to define the 

set of charging cordons. These five branch-trees generated from the predefined cordon 

can be combined into a single global branch-tree with a given virtual root node reducing 

five branch-trees to a single branch-tree which represents a charging cordon. 

Example 2 Relationship between branch-trees and charging cordons 

Figure 4a shows the hypothetical network used for exemplification. The grey node is 

assumed to be the city centre which is the preferred tolled area. In a network, as 

mentioned earlier a set of links forming an initial closed cordon around the tolled area 

must be predefined. Assume that Cordon 1 in Figure 4a is defined to be the initial cordon. 

From this initial cordon, a virtual root node (name “C1”) is defined for the branch-tree, 

and the first level nodes in the branch-tree are the preceding nodes of the links forming 

the initial cordon (Cordon 1). Figure 4b shows the branch-tree C1 representing the initial 

cordon. 

Assume that node E is to be expanded to create a new cordon. The original branch-tree 

in Figure 4b is then expanded at node E, creating the new branch-tree as shown in Figure 

4c. This new branch-tree forms Cordon 2 shown in Figure 4a. In Figure 4d, the original 

branch-tree is instead expanded at node G to produce Cordon 3. All three cordons in 

Figure 4a are closed cordons. The tolled links in each cordon are defined by the branches 

in the branch-trees. Note that nodes E-L, which are predefined by the user, are referred 

to as ‘target nodes’ because they are the set of nodes where all paths passing through 

these nodes must be tolled. The branching process will be applied to each target node in 

turn to define the shape of the cordon, as illustrated in Figure 4. This notation will be 

used in the algorithm for generating a closed charging cordon in the next section.  

Next, several issues related to the structure of a branch-tree and conventional rules for 

branching process will be discussed. 

 

3.4 Dummy nodes in a branch-tree 

 

For a tree, as defined in graph theory, there must be a ‘unique path’ between the root 

node and each node in the tree. This original concept of a tree is not valid for a branch-

tree built from a traffic network.  
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(4b) 

(4c) 

(4d) 

Cordon 1

Cordon 2

Cordon 3

 
FIGURE 4: Relationship between branch-trees and charging cordons 

 

Definition 11: Dummy node. For a given branch-tree, a node with more than one 

acceding nodes in the branch-tree is referred to as a dummy node.  

Example 3 Dummy nodes example 

Figure 5 illustrates this problem where node H has two acceding nodes, i.e. nodes E 

and F, and hence there are two possible paths to traverse between nodes A and H in the 

branch-tree. Let Bβ  and Cβ  be two sub-branches of branch in Figure 5. If B Cβ ∩β ≠ ∅ , 

then Bβ and Cβ are referred to as non-separable sub-branches. This means sub-branches 

Bβ  and Cβ  must have some overlapping parts (nodes) (see Figure 5). There must be at 

least one common node (θ) appearing in both sub-branches, ( ) B C, dθ ∈β ∩β . These 

nodes are named ‘dummy nodes’ such as node H in Figure 5. 

  
 

A 

B C

D E F G

H 

 
FIGURE 5: Dummy node in branch-tree 
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Dummy nodes will be expanded in only one sub-branch in order to avoid the 

inconsistency in the structure of the cordon. In order to do this, we establish rules for 

expanding the branch as follows: 

 

Algorithm 1: 

Step 1: Check if there is θ (dummy node) in the branch-tree, if true go to Step 2, 

otherwise continue branching process as described in Section 3.2. 

Step 2: For each θ, check if θ in all sub-branches are leaf nodes; if so go to Step 3. 

Otherwise go to Step 4. 

Step 3: Label θ as “Dθ” and put θ on the branch with zero degree as normal. The reason 

for re-labelling dummy nodes is to hint to the crossover and mutation process in 

GA that changing this node involves other dummy nodes in the branch. Finish 

the process. 

Step 4: Label node θ as “Dθ”. Then put “D” as the node degree for the node in the sub-

branch that will not be expanded. For the node in the sub-branch that will be 

expanded, operate the branching process as explained earlier. 

 

3.5 Two-way link issue 

 

Links and nodes in a graph, G = (N, A), represent roads and junctions in a road network. 

For a two-way link defined by node i and j, node i is a preceding node of node j and vice 

versa. As mentioned, in the branching process a leaf node, n, can be expanded by 

including all nodes in nΞ  into the branch-tree resulting in the change of the node degree 

from zero to nΞ . Assume that a leaf node n is expanded from node j.  In fact, node j is 

one of the preceding nodes of node n due to its two-way link property. If node n is to be 

expanded, node j should not be included into the branch-tree again. If node j is included 

into the branch-tree, the toll will be imposed on the traffic coming from inside the 

cordon.  

Example 4 Two-way links in general traffic network 

Figure 6 is used to illustrate the issue of two-way links. Figure 6a is the road network 

used in this example. Note that the link between nodes A and B is a two-way link. The 

original branch-tree is shown in Figure 6b where the tolled links are links (B, A) and (D, 

A). Node A is used to represent the area inside the charging cordon defined by the 

branch-tree. Assume that the branch-tree is to be expanded at node B that has both nodes 

A and C as its preceding nodes. In this case, only node C will be added into the branch-

tree, which represents link (C, B) (see Figure 6c). Node A will not be added into the 

branch-tree again. If node A were added into the branch-tree, link (A, B) would be 

defined as a tolled link. The toll on link (A, B) would then be imposed on the traffic 

coming from node A which is the traffic from inside the cordon. In the general process 

of building a branch-tree or in the branching process, there is a process to detect this 

two-way link issue to avoid tolling traffic coming out from inside the charging cordon. 

 

4. APPLYING GA TO SOLVE THE OPTIMAL CLOSED CORDON 

 

The optimisation algorithm developed for tackling the optimal cordon design problem 

is based on the idea of GA. The algorithm developed is termed GA-AS. Figure 7 depicts 

the overall process of GA-AS. To solve the optimal closed cordon problem, in the 

‘Initialisation’ stage GA-AS produces an initial population (the size of the population is 
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defined by ‘population numbers’) representing a set of charging cordons encapsulated in 

the form of chromosomes (using the branch-tree formulation). Then, in the ‘Evaluation’ 

process for each cordon an optimal cordon toll is found by testing it with different pre-

specified tolls. Each toll level is implemented in the network, and then a traffic 

modelling software package, in this case, SATURN (Van Vliet, 1982), is used to predict 

the responses of road users to the toll. The net total benefit from each toll level is 

calculated from the modelling outputs. The toll level producing the highest net total 

benefit is then selected as the optimal uniform toll for that cordon. It should be noted that 

any other traffic modelling software or even different equilibrium paradigms (e.g. 

stochastic equilibrium) could be used with the method described in this paper so long as 

it is able to produce the outputs required for the calculation of the net total benefit. 

 
 

B D
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FIGURE 6: Two-way link issue for branch-tree formulation 

 

 INITIALISATION 
Generate a set of closed cordons (chromosomes) 

EVALUATION 
Test each cordon with predefined tolls and identify an optimal uniform toll 

and related benefits (fitness) for that cordon 

SELECTION 
Select survival chromosomes based on their fitness

GA OPERATORS 
Apply crossover and mutation process to survival 

chromosomes

A set of chromosomes
for the next generation

 
FIGURE 7: Overall process of GA-AS 

 

After the optimal uniform toll for each cordon is found, the net total benefit associated 

with the optimal toll is assigned as the fitness of that charging cordon (chromosome). 

Then, GA-AS, in the ‘Selection’ process, selects the survival cordons (chromosomes) 

based on their fitness. The selected set of survival chromosomes are then crossed over 

and mutated sequentially (‘GA operators’) to produce the set of chromosomes for the 

next generation. The process is terminated by the predefined number of generations (user 

input).  



53 

 

The chromosome design in GA-AS for closed cordons associated with the branch-tree 

concept is discussed next. The algorithm (based on recursive programming) to generate 

the initial set of charging cordons is then described. Next, the selection process, which is 

based on the method of roulette wheel linked with the linear ranking method proposed 

by Whitley (1989), is explained. Then, the two important genetic operators used in this 

method, i.e. crossover and mutation, are discussed.  

 

4.1 Chromosome design 

 

It is crucial to design a chromosome structure that is compatible with the structure of 

the branch-tree explained in the previous section. More importantly, the chromosome 

structure should be able to maintain the feasibility of the solution (in this case, the closed 

cordon format) even after applying the crossover and mutation process. As mentioned in 

the previous section, the members of a branch-tree have two key characteristics, i.e. their 

node numbers and degrees. Therefore, two strings, each a series of numbers or alphabets, 

will be used to represent a chromosome. The first string, called the node string, contains 

the node numbers of the branch-tree. The second string, called the degree string, contains 

the degree of each node in the corresponding column in the node string. Figure 8 shows 

an example of a chromosome. 

 
 

A

B C

D E

 

A B D E C

2 2 0 0 0

Node string 

Degree string 

 
FIGURE 8: Chromosome structure for GA-AS 

 

The node string tells us that this branch-tree comprises nodes A, B, D, E, and C. The 

degree string tells us that nodes A, B, D, E, and C have the degrees of 2, 2, 0, 0, and 0 in 

that order. This chromosome represents the branch-tree shown in Figure 2c. However, 

from the node and degree strings, the only information provided is which nodes are in 

this branch-tree and the degrees of each node. They do not provide any information 

about the connection of the nodes in the branch-tree. For example, how may one know 

that node B is the preceding node of node A without looking at Figure 2c? The answer is 

in the order of the nodes in the node string. The algorithm for encoding a chromosome 

from a branch-tree explains the meaning of the node sequence in the node string. The 

algorithm used to encode the branch-tree to node and degree strings is as follows: 

 

Algorithm 2:2 

Step 1: Set k to be the first column in node and degree string. Set j equals to 1. Put the 

root node and its degree into column k.  

Step 2: Set Pj = a set of all preceding nodes of the node in k. Set jP = ∅ . 

Step 3: Check if j jP P= . If so, set j = j –1 and then go to Step 7. Otherwise go to Step 4. 

Step 4: Set k = k+1. 

                                                           
2
 The programming approach adopted to code this algorithm is the “recursive” program.  
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Step 5: Set nj to be a node in Pj but not in jP . Put nj into the k column of node string 

Step 6: Put the degree of nj into the k column of degree string. Add nj to jP . If degree of 

nj is equal to zero, go to Step 3. Otherwise set j = j+1 and go to Step 2.  

Step 7: Check if j = 0. If so, stop. Otherwise, go to Step 3. 

 

Example 5 Demonstration of encoding a branch-tree into a chromosome format for 

GA-AS 

From Figure 8, first node A is put into the first column of the node string and its degree 

(2) is put into the first column of the degree string. Then set { }1 B,CP =  which is the set 

of all preceding nodes of node A. In Step 5, node B is picked and placed in the second 

column of the node string. In Step 6, the degree of node B, which is two, is placed into 

the second column of the degree string and node B is added into 1P . Since the degree of 

node B is not equal to zero, j is set equal to 2 and we then go to Step 2. In Step 2, we set 

{ }2 D, EP =
 
and in Step 3 node D is picked and put into the third column of the node 

string. Also, the degree of node D, which is 0, is put into the third column of the degree 

column. Node D is also added into the set 2P . Since the degree of node D is zero, the 

process moves straight to Step 3. 

In Step 3, since { } { }D,E D≠ , node E is picked and the same process is repeated as 

node D (the degree of node E is also null). The process returns to Step 3 again, and this 

time { }2 2 D,EP P= = . Thus, j is set to 1, and the process moves to Step 7 and then Step 

3 sequentially (since 0j ≠ ). Since { } { }B,C B≠ , node C is picked and put in the fifth 

column. Again, its degree, which is zero, is put in the fifth column of the degree string. 

Now, { }1 1B,CP P= = . Therefore, in Step 3, j is set to zero and the process is terminated.  

 

4.2 Initialisation 

 

In this stage, a number of charging cordons are randomly generated. The number of 

cordons generated in the first generation of the GA is controlled by the pre-defined 

population numbers. The generation of a closed cordon is designed as a random process. 

The variable ‘Prop’ is defined as the probability of a node to be expanded (recall the 

definition of branching process explained earlier). The user must also define the initial 

closed cordon by defining a set of tolled links. The preceding nodes of these links will 

become a set of target nodes (see Figure 4). The initialisation process is as follows: 

 

Algorithm 3: 

For each target node defined by the user 

Step 1: Set k to be the first digit in the node and degree string. Set j equal to 1. Put the 

root node and its degree into column k.  

Step 2: Set 
kj nP = Ξ  (a set of all preceding nodes of the node in k). Set jP = ∅ . 

Step 3: Check if j jP P= . If so, set j = j –1 and then go to Step 9. Otherwise go to Step 4. 

Step 4: Set k = k+1. 

Step 5: Set nj to be a node in Pj but not in jP . Put nj into the k column of the node string 
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Step 6: Use algorithm 6-1 to check dummy nodes and check the issue of two-way links 

Step 7: Add nj to jP . If nj is a dummy node or representing the link in the opposite 

direction (two-way link issue), then go to Step 3. Note that if nj is ignored due to 

the two-way link issue, remove that node from jP . Otherwise, go to Step 8. 

Step 8: Generate a random number (rand). If rand > Prop, then put jP  as the degree of 

nj into the k column of the degree string; and then set j = j+1 and go to Step 2. 

Otherwise, the degree of nj is equal to zero (put “0” into the k column of the 

degree string); go to Step 3.  

Step 9: Check if j = 0. If so, stop. Otherwise, go to Step 3. 

 

As mentioned, in the previous section, there may be some issues over the dummy 

nodes and two-way links. These issues are considered in Step 6.  

 

4.3 Evaluation process 

 

Once the chromosome is generated, the next task is to evaluate its fitness. The fitness 

is measured according to the objective function which is the net total benefit. There are 

two possible strategies, grid-search for optimal toll and binary toll vector. 

 

4.3.1 Grid-search strategy 

 
In order to evaluate the objective function, the optimal toll level for each cordon 

(chromosome) must be defined. Since finding the optimal toll level involves solving the 

optimisation problem, the process of evaluating the exact benefit of each chromosome 

can be very time consuming. Instead, in this method the simple uniform toll regime is 

assumed in order to ease the evaluation process. This assumption is also consistent with 

the judgmental design criteria mentioned earlier. Initially, a set of predefined toll levels 

is defined e.g. 100, 200, and 300 pence. For the test in this paper, eight toll levels are 

defined which are £0.50, £0.75, £1.00, £1.25, £1.50, £2, £3 and £4. Each chromosome 

(representing a charging cordon) will be evaluated with each toll level. The toll level 

producing the highest objective function (net total benefit) will be chosen as the optimal 

uniform toll for that chromosome which gives the fitness (objective function) of that 

chromosome.  

 

4.3.2 Toll-vector strategy 

 

An alternative approach is to let GA-AS optimise the uniform toll level simultaneously 

with the cordon location. With this approach, a binary string representing different toll 

level is implemented. An initial set of possible toll level should be defined as mentioned 

earlier, e.g. eight possible toll levels of £0.50, £0.75, £1.00, £1.25, £1.50, £2, £3 and £4. 

Each cordon will have its own toll string (binary number) and the associated decimal 

number of the toll string identifies the toll level from the set of possible tolls defined a 

priori. Figure 9 shows an example of a toll string (binary number). From this toll string, 

its associated decimal number is five and hence its toll level is £1.50, which is the fifth 

toll level from the set defined earlier.  
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FIGURE 9: Chromosome structure for toll vector 

 

4.4 Selection process 

 

The selection process used in GA-AS is based on ‘stochastic universal sampling’ 

which uses a single wheel spin (Michalewicz, 1992). The so called ‘roulette wheel’ is 

constructed where each slot represents a chromosome. In the original form of the roulette 

wheel, the slots are sized according to the fitness of each chromosome, which represents 

the probability of a chromosome being selected. However, since the fitness value (total 

benefits minus scheme costs) in the optimal cordon problem can be negative (which 

causes a problem for allocating the space for each chromosome on the wheel) the linear 

ranking approach proposed by Whitley (1989) is adopted. The slots in the roulette wheel 

are sized according to the chromosome at rank i, where the first is the best chromosome, 

by the following equation: 

  
1

2 (2 2)
1

i

P i
p c c

P P

⎛ ⎞⎛ ⎞−
⎜ ⎟= − + − ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 (4) 

where P is the size of the population (set P), and 1 2c≤ ≤  is the ‘selection bias’: 

higher values of c cause the system to focus more on selecting only the better 

chromosomes. The strongest chromosome in the population can thus be selected with the 

probability of /c P ; the weakest chromosome can be selected with the probability of 

(2 ) /c P− . After each chromosome is assigned its probability to be selected, the next 

step is to calculate a cumulative probability (qi) for each chromosome: 

  
1

i
i jj

q p
=

=∑  (5) 

Each time, a chromosome is selected for a new population by generating a random 

number r from the range [0..1]. If r < q1 the first chromosome is selected; otherwise 

select the i-th chromosome such that 1i iq r q− < < . Indeed, some chromosomes would be 

selected more than once according to the selection probability of each chromosome. As 

part of the selection process, the idea of ‘elitism’ is also adopted to ensure that the best 

chromosome in the current generation will be included in the population of the next 

generation.  

 

4.5 Crossover process 

 

The chromosome structure in GA-AS is in fact very similar to the chromosome used in 

Genetic Programming (GP), which is also a branch-tree. Thus, it is sensible to adopt the 

crossover process normally adopted in GP. The crossover process in GP is to cross sub-

branches below the chosen nodes in two mated chromosomes. Those who are interested 

in more details of GP should consult Michalewicz (1992). 
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The complication involved in crossing the chromosomes in GA-AS is the strict 

structure of the branch-tree. The process has to start by identifying identical nodes in two 

mated branch-trees. Then, the crossing node is randomly chosen from the set of identical 

nodes. The parts of node and degree strings representing the sub-branches in two mated 

branches rooted from the chosen node are identified.  Then, the two sub-branches are 

crossed over to produce two new chromosomes. Example 6 and Figure 10 illustrate this 

process.  

Example 6 Illustration of crossover process for the branch-trees 

From Figure 10, there are two original mated branch-trees (in Figure 10 a and Figure 

10b). The set of common nodes in these two mated chromosomes (except root node) are 

nodes B, C, D, E, F, and G. Assume that node C is randomly selected by the crossover 

process. The sub-branches rooted from node C in two branch-trees are identified which 

are the parts inside the dash-line boxes in Figure 10a and Figure 10b. These two sub-

branches in the two mated chromosomes are then switched. In other words, the sub-

branch in the dash-line box in Figure 10a is moved to replace the sub-branch in the dash-

line box in the other branch-tree in Figure 10b, and vice versa. Figure 10c and Figure 

10d show the two new branch-trees after crossover. 
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FIGURE 10: Crossover process for branch-tree 

 

The existence of a dummy node requires the algorithm to check the new chromosome 

after the crossover operation. After applying GA operators, an algorithm for detecting 

the new dummy nodes as the result of the crossover operation must be applied to the new 

chromosomes.  

If the toll-vector strategy is adopted to optimise the uniform toll level as well, then the 

normal crossover process, as discussed earlier, can be applied to the toll string of two 

mated chromosomes.  



58 

 

4.6 Mutation process 

 

The second GA operator is the mutation process which aims to preserve the diversity 

amongst the population and to represent the stochastic evolution process in nature. In a 

typical mutation process, the value of the bit to be mutated in the string will be changed 

to the opposite value, i.e. if the current value is “1” then it will be changed to “0” and 

vice versa. However, the chromosome structure in GA-AS is not consistent with the 

traditional binary string chromosome. Thus, a new approach to mutate the chromosome 

is developed. The mutation process in GA-AS involves the branching process at a node 

(including both branching in and out). For a leaf node, if the node is to be mutated, the 

node will be expanded following the branching process explained earlier (this is the 

branching out process). Alternatively, if the node to be mutated is not a leaf node, the 

branch-tree will be branched in at that node, i.e. converting that node to a leaf node and 

removing all nodes below the mutated node from in a sub-branch. Example 7 and Figure 

11 illustrates how the mutation works.  

Example 7 Illustration of the mutation process for branch-tree 

The branch-tree in Figure 11c is used as the original branch-tree in this example. The 

two branch-trees in Figure 11a and Figure 11b exhibit the mutation as branching in 

where node F is contracted. In this example, nodes J and K are removed from the 

branch-tree as the result of the mutation at node F; the degree of node F is also set to 

zero. The two branch-trees in the lower part demonstrate the branching out as the 

mutation process where node I is expanded. Nodes M, N, and O which are the preceding 

nodes of node I in the full network are added to the branch-tree; the degree of node I is 

also changed to three.  
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FIGURE 11: Mutation process for branch-tree 

 

After the mutation process is applied to a chromosome the chromosome must be 

checked for any new dummy node. Note that in the branching out process, before adding 

preceding nodes the two-way link issue must be checked. Similarly to the crossover 
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process, the normal GA mutation method can be applied directly to the toll string if GA-

AS is asked to optimise the uniform toll level as well. 

 

5. GA-AS FOR MULTI-CONCENTRIC CHARGING CORDON SCHEME DESIGN 

 

In some cases, a charging cordon scheme may comprise a set of charging cordons. By 

introducing additional cordons, the tolls imposed on each trip can be better adjusted 

according to its length, contribution to congestion, externalities generated, etc. The GA-

AS method proposed in the previous section and the concept of branch-tree framework 

proposed in Section 3 can be extended to deal with the multi-concentric cordon design 

problem. This section explains the approach to extend GA-AS for this problem. The 

extended method is named GA-ASII.  

 

5.1. Required condition for multi-concentric charging cordons 

 

Definition 12: Multi-concentric cordons. There is a restriction on the design of the 

multiple charging cordon schemes. Let iC  denotes charging cordon i where { }1, ,i n∈ … . 

1C
 
is defined as the narrowest cordon and nC

 
as the widest cordon. Let iL  be the set of 

links covered inside the cordon iC . The restriction of the shape of the multiple cordon 

scheme adopted in this chapter is that 1i iL L +⊂ . This condition ensures that the 

narrower cordon i is completely located inside the next wider cordon (cordon i+1).  

Example 8 Multi-concentric cordons 

Figure 12 illustrates the meaning of this condition. From Figure 12, cordon 1, which is 

the narrowest cordon (or the most inside cordon), is completely inside cordon 2. 

Similarly, cordon 2 is completely inside cordon 3, which is the widest cordon. This 

shape of multi-concentric cordons scheme facilitates the extension of the branch-tree 

framework to this problem and it is also consistent with the idea of simple scheme 

design which enhances the practicality of the scheme.  
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FIGURE 12: Definition of multiple charging cordons scheme 
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5.2 Hyper-graph approach to define multiple charging cordons 

 

As mentioned, the desired topology of multiple charging cordon design explained in 

the previous section allows a straightforward extension of the branch-tree framework to 

representation of multiple charging cordons. The strategy is to divide the original 

network, G, into a number of sub-networks (denoted as kG′ ) as shown in Figure 13. The 

network will be divided by a series of cuts, denoted as kr . The area between two cuts 

( kr  and 1kr + ) represents a desired area for putting a charging cordon kC . Recall that an 

initial cordon must be given to define a set of charging cordons (see Section 3). For area 

kG′ , the ring kr  will be used as the initial cordon for cordon kC .  

 
 

cut 3 

cut 2 

cut 1 
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FIGURE 13: Defining multiple charging cordons with cuts 

 

For each kG′  a branch-tree concept explained earlier can be used directly to define a 

charging cordon in that area. In addition, this partition approach ensures that the 

multiple-charging-cordon scheme satisfies the requirement declared in the previous 

section. Figure 13 illustrates the partition approach. 

The set of cuts adopted to partition the network are cuts 1, 2, and 3 as shown in the 

figure. Cuts 1 and 2 define 1G′
 
which is the area for the first cordon, 1C  (the narrowest 

cordon). In addition, cut 1 is the initial cordon for the generation of a charging cordon in 

1G′ . 

 

5.3 GA implementation  

 

As mentioned, the requirements of multi-layer cordon and structure of the hyper-graph 

approach enable a direct implementation of GA-AS and branch-tree approach to the 

problem. For each kG′  defined, a branch-tree as defined in Section 3 is used to represent 

a charging cordon kC . This section explains some necessary modifications of GA-AS to 

the MCD problem. The key changes required are the chromosome structure and 

evaluation process.  
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5.3.1 Chromosome structure 

 

The chromosome structure for a single cordon design is comprised of two strings: node 

string and degree string (as explained earlier). In the MCD problem, two strings are 

needed for representing each cordon. Therefore, in finding K optimal cordons ( kC  for k 

= 1, …, K) a number of strings needed for one chromosome is 2K. The chromosome of a 

multi-layer cordon scheme in the MCD problem is thus a collection of K chromosomes 

of single cordons. Figure 14 shows an example of a chromosome for the MCD problem 

(with three charging cordons).  
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2 2 0 0 0 
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P U T N M 
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FIGURE 14: Chromosome structure for multiple charging cordons 

 

With the new chromosome structure, the initialisation, crossover, and mutation process 

explained earlier can be applied to each pair of node and degree strings.  

 

5.3.2 Evaluation  

 

Different toll levels may be allowed for different cordons. One strategy to find an 

optimal combination of toll levels is to test a multiple cordon scheme with all possible 

combinations of tolls. This strategy is suitable for the problem with a low number of 

charging cordons and possible toll levels (e.g. for two cordons with three possible toll 

levels, the number of possible toll combinations is only nine). However, the number of 

possible toll combinations can be increased dramatically with the number of cordons and 

possible toll levels on each cordon. For example, with two cordons and six possible toll 

levels on each cordon the number of possible toll combinations is 36.   

An alternative approach, toll-vector strategy, discussed earlier, which optimises both 

toll level and cordon location simultaneously, offers a more convenient implementation 

of GA-AS with the MCD problem. For each solution, a toll string (binary number string) 

representing the toll level of a cordon is associated with each cordon in that solution. In 

the case where all cordons will have the same toll level, only one toll string is required. 

The crossover and mutation process can be applied to these toll strings directly. Given 

the natural extension of the toll string approach to the MCD problem, GA-ASII will 

adopt the toll-vector strategy.  

 

6. TESTS WITH THE EDINBURGH NETWORK  

 

This section presents some initial test results of the algorithms developed, GA-AS and 

GA-ASII, with the network of the Edinburgh city in the UK. The Edinburgh network has 

350 links and 25 zones (see Figure 15). The equipment and operational costs have been 

estimated to be £183,400 per toll point and £85,300 per toll point per annum respectively, 
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(Oscar Faber, 2001). If we assume a 30 year life, a discount rate of 6% and 1000 peak 

hours per year then this is approximately equivalent to £100 per toll point per peak-hour. 

The tests conducted in this section are as follows: 

(i) Use GA-AS with grid-search to find optimal cordon and uniform toll 

(ii) Use GA-AS with toll vector to find optimal cordon and uniform toll 

(iii) Use GA-ASII with and without toll vector to find double cordons with two toll 

levels. 

 

6.1 Comparison between GA-AS with grid-search and toll-vector 

 

Figure 15 shows the Edinburgh network with three judgmental cordons. The three 

judgmental cordons were designed following the judgmental criteria discussed in May et 

al. (2002). The inner cordon 2 is used as the initial cordon for GA-AS and the ring road 

is used to define the boundary of the charging cordon. The optimal uniform toll level and 

its associated social welfare benefit were found for each judgmental cordon (see Table 2). 

 
 

Outer cordon 

Inner cordon 1 

Inner cordon 2 

 
FIGURE 15: Edinburgh network and three judgmental charging cordons 

 

GA-AS with grid-search and with toll-vector are then applied to find an optimal 

cordon and its associated optimal uniform toll. Table 1 shows the parameters used for 

both algorithms (the number of modelling runs are limited to be the same for both 

methods). Note that for each chromosome GA-AS with grid-search needs eight 

SATURN runs to find its associated benefit. Figure 16 shows the comparison of the plot 

of the best objective function found so far against the number of modelling runs for GA-

AS with the grid-search and toll-vector. The total CPU-time for a run of GA-AS (given 

the number of generations and population) is around three hours. 

 

TABLE 1: Parameters used for GA-AS 
Population number Generation number Probability of 

crossover 

Probability of 

mutation 

Number of elitism 

chromosomes 

50 200 0.75 0.15 5 

 

From the results, GA-AS with toll-vector strategy outperformed GA-AS with grid-

search strategy. GA-AS with toll-vector found an optimal solution after 4,400 runs 

whereas GA-AS with grid-search found the same solution after 6,720 runs. With the 
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grid-search strategy, a chromosome with a lower objective function (associated with its 

optimal toll) is less likely to survive compared to the case with the toll-vector strategy. 

For example, with the grid-search a chromosome i is pooled with n other chromosomes. 

Assume that other chromosomes (representing different cordons) have substantially 

higher objective functions with their associated optimal tolls (found from grid-search) 

compared to the objective function of chromosome i. In this case, the probability of 

chromosome i to be selected would be very low. On the other hand, with the toll-vector 

approach, although chromosome i is pooled with the same n chromosomes, it may have a 

higher probability to survive if the toll vectors of n other chromosomes produce lower 

objective functions compared to the toll vector of chromosome i. 
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FIGURE 16: Performance comparison between GA-AS with grid-search and toll-vector 

strategies 

 

The relationship of this phenomenon with the searching mechanism of GA is that GA-

AS with the grid-search will have a more limited searching space compared to the 

searching space of GA-AS with toll-vector. It is well known in theory of GA that some 

weaker chromosomes may lead the searching algorithm to a better chromosome. 

Therefore, by associating the fitness of each cordon to its optimal toll the algorithm may 

lose some weaker cordons whose topology may lead the algorithm to the optimal or 

better solution. In addition, GA-AS with grid-search may waste too much computational 

time in applying the grid search without associating the solutions with the crossover and 

mutation processes which are the search operators for GA.  

Figure 17 and Figure 18 show the actual distribution of the fitness of the chromosomes 

from GA-AS with toll-vector and grid-search respectively. The comparison of these two 

figures demonstrates the advantage of using GA-AS with the toll-vector strategy in terms 

of the diversity of the solution and searching space. Note that despite a smaller number 

of plots of the population on Figure 18 for GA-AS with the grid-search strategy, the 

number of simulation runs in both cases is equal.  

In fact, this result may not be limited only to the grid-search algorithm. A method for 

solving a mixed combinatorial optimisation (like optimal toll location and toll level) may 

perform better if GA is used to simultaneously optimise both variables. For the optimal 

cordon design problem, it seems to be a better strategy to use GA to simultaneously 
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optimise both cordon location and toll level. However, it should be noted that this 

analysis is only limited to one case and the results may be vary from case to case. 
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FIGURE 17: Fitness distribution of GA-AS with toll-vector 
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FIGURE 18: Fitness distribution of GA-AS with grid-search 

 

6.3 Optimal cordon without a constraint on toll level 

 
6.3.1 Maximise social welfare improvement 

 

Figure 19 shows the optimal cordon solution found with the toll level of £1.50. The 

cordon solution found has 13 tolled links (highlighted links).   

The optimal cordon found by GA-AS with the toll vector search is named OPC1. The 

optimal uniform toll found is £1.50. The cordon produces a net benefit around 

£7.31k/peak hour. As mentioned earlier, three judgmental cordons are also included in 

the tests for the comparison of their performances. The optimal uniform tolls for inner 

cordon 1, inner cordon 2, and outer cordon were found to be £0.50, £0.75, and £0.75 

with the associated net total benefit per peak hour of £2.10k, £3.99k, and £1.96k 

respectively. The net benefit generated from OPC1 is about 83% higher than the net 

benefit of the inner cordon 2 which is the best judgmental cordon (based on the net 

benefit).  
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FIGURE 19: Optimal cordon solution found by GA-AS 

 

The optimal toll found for OPC1 is £1.50 which is considered a reasonable level of toll. 

In fact, the current plan of the congestion charging in Edinburgh considers the 

implementation of £2 double toll rings. It is interesting to see the sensitivity of the net 

benefit of the scheme when the toll is varied. Figure 20 shows the net benefit and 

revenue curves of the OPC1 with eight different toll levels adopted during the 

optimisation process.  

Figure 20 confirms the optimal toll level found by GA-AS with toll vector 

(approximately £1.50) and shows that the benefit of the cordon varies significantly with 

the toll level. Unsurprisingly, if the objective function is to maximise the revenues, the 

optimal toll level for OPC1 could be well beyond £4 observing from the revenue curve 

in Figure 20.  
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FIGURE 20: Optimal cordon solution found by GA-AS 
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Apart from the best cordon found so far (OPC1), during the GA-AS optimisation 

process we also can identify the cordons producing the second and third highest net total 

benefit (named OPC2 and OPC3 respectively). Figure 21 shows the location of OPC2 

and OPTC and Table 2 shows the net total benefit and optimal toll level of these two 

cordons. 
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FIGURE 21: Cordons with 2nd and 3rd highest net total benefits 

 

TABLE 2: Summary of the results of designing a single optimal charging cordon for 

Edinburgh network 
Charging system Optimal toll No. of toll 

points 

Cost  

(£k/hour) 

Revenue  

(£k/hour) 

Total benefit 

(£k/hour) 

Net total 

benefit  

(£k/hour) 

Net revenues 

(£k/hour) 

Inner cordon 1 £0.50 9 0.90 12.60 3.00 2.10 11.70 

Inner cordon 2 £0.75 7 0.70 18.40 4.69 3.99 3.99 

Outer cordon  £0.75 20 2.00 22.20 3.96 1.96 1.96 

OPC1 £1.50 13 1.30 45.10 8.51 7.21 43.70 

OPC2 £1.50 14 1.40 45.00 8.51 7.11 43.60 

OPC3 £1.50 14 1.40 45.10 8.50 7.10 43.70 

OPC-REV £4.00 32 3.20 111.10 -45.99 -49.19 107.90 

D-OPC £1.25, £1.25 38 3.80 105.30 19.08 15.28 101.50 

 

OPC2 and OPC3 have one more toll point compared to those of OPC1. There are two 

different locations of tolled links from those of both OPC2 and OPC3 compared to the 

tolled links of OPC1. These links for OPC2 and OPC3 are pointed out in Figure 21. 

Interestingly, despite two different locations of toll points, the total benefits of OPC1, 
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OPC2, and OPC3 are almost identical (around £8.51k/peak hour). Thus, the higher net 

benefit of OPC1 is mainly due to a smaller number of toll points. It is interesting that a 

charging cordon with a smaller number of toll points (like OPC1) is capable of 

generating the same or even higher benefit compared to OPC2 and OPC3. This re-

confirms the importance of careful selection of the location of charging cordons and toll 

points. 

 

6.3.2 Maximise net revenues 

 

The objective being optimised in the previous subsection is the net total benefit. In this 

section, GA-AS is used to optimise the net revenues instead (using the same GA 

parameters as shown in Table 1). Figure 22 shows the best cordon and uniform toll level 

found for maximising the revenues. The optimal toll level for this charging cordon is £4, 

as expected. This charging cordon is named OPC-REV. OPC-REV consists of 32 toll 

points which is substantially higher than the number of toll points of OPC1. Table 2 

shows the main result of the test with OPC-REV.  From the result, OPC-REV generates 

approximately £111.1k /peak hour.  On the other hand, it also causes substantial negative 

impact in terms of the social welfare (with £-41.19k / peak hour of social welfare 

disbenefit). A combination of the high number of charging point, high toll level, and a 

wide range of the coverage of the routes in the network enables OPC-REV to generate 

such a high revenues. 

 

 
FIGURE 22: Location of OPC-REV (maximise net revenues) 

 

6.3 Multiple cordons design 

 

In Section 5, GA-AS and the branch-tree framework was extended to deal with the 

design of optimal multi-concentric charging cordon scheme. The new algorithm is 

named GA-ASII. In this section, GA-ASII was adopted to find optimal double cordons 

with two toll levels (one on each cordon). GA-ASII is applied with the toll-vector 
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strategy for optimising double toll levels. The parameters adopted for GA-ASII in the 

test are the same as presented earlier in Table 1.   

Figure 23 shows the locations of optimal double charging cordons found by GA-ASII. 

Although the toll levels were allowed to vary between the two cordons, the optimal 

uniform tolls found for the inner and outer cordons are both £1.25. The net benefit from 

this double cordon (D-OPC) is around £15.3k per peak hour which is more than double 

the net benefit of OPC1. The inner and outer cordons are comprised of nine and 29 toll 

points respectively giving the total number of toll points of 38. The revenue generated 

from D-OPC is about 5% lower than the revenue of OPC-REV. Figure 24 shows the 

surface of the net total benefit of D-OPC when the toll levels on the inner cordon and 

outer cordon are varied. The optimal tolls for inner and outer cordons from the surface 

are both £1.25. Differentiating the tolls on two cordons did not bring in additional 

benefit. Note that this result is only specific to this network and may not be true in other 

cases. 

 
FIGURE 23: Optimal double charging cordons for the Edinburgh network 

 

 
FIGURE 24: Variation of the net benefit of the optimal double cordon with different toll 

levels 
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6.4 Overall comparison  

 

This section summarises the results from all the tests explained earlier. Table 2 

presents the key performance indicators for all the tests conducted. As explained, there 

are four different sets of results. The first group is the test with the judgmental design 

(inner cordon 1, inner cordon 2, and outer cordon). The second test is the optimal single 

cordon design maximising the objective function of net total benefit (OPC1, OPC2, and 

OPC3). The third is the optimal single cordon design but with the objective of 

maximising the net revenue (OPC-REV). The final test is to find the optimal double 

charging cordon maximising the net total benefit (D-OPC). 

As explained earlier, the cordons designed by applying GA-AS outperform the 

judgmental design. The improvement of the benefit from the careful design is 

approximately 80% better than the performance of the best judgmental design. The 

optimal toll level for the optimised design is around £1.50 whereas the optimal uniform 

toll for the judgmental cordons is around £0.50 - £0.75. Introducing the second cordon, 

D-OPC, obviously increases the performance of the charging cordon scheme. The 

benefit generated by D-OPC is around 110% higher than the benefit from OPC1. In 

terms of the net revenues, as expected, OPC-REV generates the highest net revenues 

even when compared to the D-OPC. However, this comes with a substantial trade-off 

with the net total benefit of the scheme. 

 

7. CONCLUSIONS 

 

Based on the review, one of the most practical designs of a road pricing scheme is a 

charging cordon. This presents a challenge in devising a sounding method for aiding the 

practitioner in locating the best location of a cordon charging scheme. This paper 

presents a method based on Genetic Algorithm for solving the optimal charging cordon 

design problem. A special framework, referred to as the branch-tree framework, is 

developed to define a cordon from the structure of the network. There are three main 

benefits of this framework. The first is its ability to encapsulate the charging cordon 

structure into string which is a typical representation for a chromosome in GA. The 

second benefit is that by representing a cordon as a branch-tree, the crossover process 

can be applied to the chromosome directly and the resulting chromosome is ensured to 

be a closed charging cordon. The last benefit is that it allows the mutation process to be 

applied so that a mutated chromosome is a new cordon. The framework is also extended 

to the case for a multi-concentric charging cordons scheme. The properties related to the 

crossover and mutation operators of GA are still valid for the case with a multiple 

cordon.  

The methods, referred to as GA-AS for the single cordon design and GA-ASII for the 

multiple cordon design, are tested with the network of Edinburgh city of UK. Three 

judgmental cordons are also defined and tested to compare their performances with the 

optimised designs. The first test was applying GA-AS to find an optimal charging 

cordon to maximising the net total benefit. The resulting design outperformed the best 

judgmental cordon producing around 80% higher benefit. GA-AS was also adopted to 

optimise the design with the new objective to maximise the net revenue. This is mainly 

to demonstrate the flexibility of the algorithm for dealing with different objective 

functions. GA-ASII was used to find an optimal location for double charging cordons. 

By allowing a higher number of charging cordons, the optimised double cordon scheme 

generates a substantial higher benefit compared to the benefit from OPC1 (110% higher).  
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Apart from the illustration of the performance of the methods, a test was conducted to 

compare different searching strategies within the GA-AS algorithm. The comparison 

was to evaluate the best approach to optimise the toll level and toll location 

simultaneously. The first strategy tested is the grid-search strategy where each cordon is 

tested with a different predefined uniform toll. The toll level producing the highest 

benefit is assigned as the optimal toll level for that cordon and the associated benefit is 

assigned as the fitness of the chromosome. In this approach, for a chromosome a number 

of objective function evaluations (equal to the number of predefined toll levels) must be 

conducted to determine the fitness of that chromosome.  

The alternative strategy tested is the toll vector strategy where for each cordon 

(chromosome) a toll level is attached to the design in the form of binary string. Both the 

cordon location and toll level are evolved simultaneously. From the result, it is found 

that the toll vector strategy outperformed the grid-search strategy. The main reason is 

thought to be a wider searching space for the toll vector approach where all 

chromosomes with different toll levels are pooled for the crossover operation. With this 

approach, despite the same number of modelling runs, the crossover operator is applied 

to a higher number of chromosomes compared to the mechanism of the gird-search 

strategy. 
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