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Enhanced Longitudinal Magnetooptic Kerr Effect
Contrast in Nanomagnetic Structures
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We report on enhanced longitudinal magnetooptic Kerr effect signal contrast in thin-film nanomagnetic disks with in-plane magne-
tization when combined with dielectric layers that provide impedance matching to the structure and the underlying substrate. Kerr
signals can increase by a factor of three, while substrate reflectance is almost completely suppressed. This leads to an increase in Kerr
ellipticity relative to the background intensity and a subsequent improvement in the measured signal-to-noise ratio. Measurements using
a beam focused on opaque 400-nm Ni disks yield contrast improvements of a factor of 8. Arrays of nanodisks demonstrate more complex

behavior due to diffraction effects.

Index Terms—Antireflection films, dielectric coatings, magnetic nanostructures, magnetooptic Kerr effect (MOKE).

I. INTRODUCTION

HIN-FILM nanomagnetic structures are of interest as both

data storage and computational elements [1]-[3], making
detection of their in-plane magnetization state essential for
fundamental studies of element interactions. Magnetic force
microscopy is used extensively for detailed studies of domain
structure, while the magnetooptic Kerr effect (MOKE) with
focused laser beams is frequently employed for structures
larger than a few micrometers [1], [4]. Our goal is to extend
the utility of longitudinal MOKE to measurements of smaller
structures and/or shorter acquisition times by improvement
of the contrast (loop-height-to-average-intensity ratio) by the
addition of optical coatings.

Reports of the effect of dielectric overcoats on the contrast
in longitudinal MOKE date back to 1958 [5], [6]. However,
the largest effort in the application of dielectric layers to im-
prove performance occurred in connection with the develop-
ment of magnetooptic data storage media [7]-[9], using polar
MOKE to measure the out-of-plane magnetized materials. Re-
cently, Qureshi et al. [10], [11] explored the use of coatings in
measurements of the polar Kerr angle from nanomagnetic struc-
tures. We report how antireflection (AR) films can improve lon-
gitudinal MOKE contrast for thin-film disks with in-plane mag-
netization. Furthermore, we demonstrate contrast improvements
for a 400-nm disk of a factor of up to 8 under optimum measure-
ment conditions.

II. EXPERIMENT

The use of appropriate polarization optics (e.g., analyzing po-
larizer and quarter-wave retardation plate) allows the Kerr rota-
tion of polarized light reflected from a magnetic surface to be
converted into intensity changes. The MOKE signal through a
complete magnetization reversal cycle then consists of a large
DC component, Iy, and a small magnetization-sensitive com-
ponent d7. The fractional Kerr signal d1/1,,, is important as it
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is often proportional to the signal-to-noise ratio of a measure-
ment system [1].

We used two similar MOKE magnetometers [1] for our mea-
surements, each with a continuous-wave laser source and a 45°
angle of incidence. Ni films were measured at a wavelength
of 635 nm, focused to a 7 ym x 10 um (FWHM) spot on the
sample substrate. Nigi Feig films were measured at 532 nm, ei-
ther with a collimated ~2-mm-diameter beam or with lenses
to achieve a 4-um X 7-um spot. The wavelengths were simply
those available in the two analytical laboratories. Both systems
employ a quarter-wave plate prior to the analyzing polarizer to
convert Kerr ellipticity into Kerr rotation. Hysteresis loops were
obtained by applying magnetic fields to samples using an ex-
ternal electromagnet at 27 Hz.

For an optically opaque layer on a substrate, the optimum
MOKE response is obtained by coating with a high index ma-
terial [12]. However, as the size of the magnetic structure is re-
duced, eliminating as much of the substrate contribution as pos-
sible from the average intensity becomes the dominant concern
in improving the Kerr contrast. In our experiments, we fabri-
cated the nanodisks on Si(001) substrates using electron beam
lithography and lift-off, and then coated the substrate and disks
with a single layer of ZnS. ZnS is a readily available material
and is near-perfect for p-polarized antireflection coatings on Si
at 45° for improving MOKE signals from magnetic structures.
Films were deposited either by sputtering or thermal evapora-
tion.

III. RESULTS AND DISCUSSION

I-mm x I-mm arrays of 1-pym-diameter, 10-nm-thick
NigiFeqg (plus 2-nm Au cap) disks with a 4-um pitch were
coated with different thicknesses of ZnS. Fig. 1 shows the
response of these films under focused 532-nm light. All of the
traces have the characteristic peak in d/ /I,y the position of
which is dependent upon the Kerr rotation, the average reflected
intensity, and the degree of depolarization across the reflected
beam [1]. Significant depolarization can result from the curved
surfaces of optics and the range of angles a focused beam makes
when incident on a tilted surface in MOKE measurements with
focused beams. The magnitude of d7 /17, avg 18 increased twofold,
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Fig. 1. Kerr contrast from arrays of 1-pm-diameter Ni—Fe dots coated with ZnS
films of various thickness as a function of analyzer angle using a 4-pgm X 7-pm
focused spot for measurement (ZnS thickness: ¢: 0 nm; o: 40 nm; ¥: 50 nm;
A: 60 nm; B: 70 nm). The inset shows repeat measurements using a 2-mm
collimated beam. Lines are guides to the eye.
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Fig. 2. Kerr signal dI/I as a function of analyzer angle ¢ obtained from a
single 400-nm-diameter Ni disk uncoated () and coated (o) with 58-nm ZnS
and using a 7-pum X 10-pm focused spot for measurement. Curves are fits using
(2) with values for the depolarization factor v shown above.

and the depolarization is decreased (as indicated by the peak
shift to lower analyzer angles) for a 60-nm ZnS coating.

Measurements on the coated arrays with an unfocused beam
drastically reduced the depolarization of all reflected beams, al-
lowing very high d/I,., values to be obtained at very small
analyzer angles (Fig. 1 inset), at the cost of low signal levels.
Furthermore, the signal response to coating thickness changes,
with a 40-nm ZnS coating producing the largest dI/I,,. This
surprising result, we believe, is due to an enhancement gained
from suppressing nonzero diffracted orders and illustrates the
complexities present in obtaining an ideal AR coating for mag-
netooptical measurements.

We also fabricated isolated 22-nm-thick Ni disks with di-
ameters between 400 nm and 10 pm, both with and without a
58-nm ZnS layer. The fraction of the beam intensity intercepted
was calculated by convoluting the disk dimensions with the el-
liptical Gaussian beam profile. Fig. 2 shows the Kerr contrast
dI/I,s as a function of analyzer angle for a coated and un-
coated 400-nm-diameter disk.

The AR coating has a significant effect on the measured
signal, increasing d//I., by a factor of 8. The improvements
for 5- and 2-pym-diameter disks were factors of 4 and 6, respec-
tively, indicating the importance of the relative size of the disk
and laser spot.
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Fig. 3. Modeled dI/I,,, for different fill fractions. R is in units of the mag-
netic film’s reflectance.

To understand this behavior, we modeled the MOKE contrast
on the basis of our experimental configurations [1] and a mul-
tilayer calculation of the reflectivity [12] of the films. The sim-
plest averaging approach to calculate the response of a disk on
a substrate is an average based on the fraction of the intensity
[11], f, that strikes the substrate and the disk.

d_I . fdIgm £ noise
Iavg B fIﬁ1m+ (1 _f)R_i_q’Y

ey

where dI is the height of the Kerr loop, I.., is the mean in-
tensity, I, and d/g, are the mean intensity and Kerr signal
of the equivalent continuous magnetic film, respectively, ¢ is
the analyzer angle with respect to the extinction condition, and
7(~107%) is the depolarized component. R is the Fresnel re-
flectance of the (coated) substrate structure. Reductions in R
and ~y lead to improvements in contrast for small spots; g rep-
resents a reduction in the depolarization term that should scale
with the reductions in R and Ig;,,. Noise contributions are in-
cluded, as the noise floor presents a hard limit to the ability to
measure the Kerr signal. The functional form of (1) is plotted in
Fig. 3 for several values of the parameter R with the noise value
and analyzer angle ¢ held constant, and the Kerr reflection co-
efficient being small compared with the total Fresnel reflection
coefficient (r,s < 7pp). Several things become clear in this
simple formulation. As expected, if the reflectance of the sub-
strate is equivalent to that of the magnetic material, there will
be a linear reduction in dI/ Iy as the fill fraction is reduced.
If the substrate has a lower reflectance than the magnetic ma-
terial, the overall intensity drops more rapidly than the linear
loss of d gy, leading to a delayed roll-off in the Kerr contrast.
However, even though the contrast can be maintained near the
level of a beam-filling film, the uncertainty in the measurement
becomes large when the noise and signal levels become compa-
rable.

An alternative approach is to consider the various reflected
field amplitudes, including any cross-terms. The equation de-
scribing the Kerr contrast, not including diffraction, is

dr A[f?Epp + f(1= f)Esup) Eps sin(¢) cos(¢) % noise
Lavg a [fEpp + (1= f) Esun)? Sinz(d)) + f?Eps cos®(¢) + %g)

where Fy, and I are the Fresnel and Kerr components of
the field and FEq,, is the Fresnel component from the substrate.
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Fig. 4. Magnitude of dI as a function of disk diameter for Ni on Si, with cal-
culations for an intensity averaging model, and a field amplitude model with
an uncoated and coated Si substrate. The inset shows the ratio of slopes of d.
versus sin(¢T) cos( @) for coated (58-nm ZnS) and uncoated Ni disks as a func-
tion of disk diameter. ((: measured data; 4: amplitude model. The dashed line
is the prediction of the intensity model.)

(N.B. The expression is evaluated by taking the absolute value
of the products, and the substrate contribution is not necessarily
in phase with that of the disk.) As the size of the disk decreases
relative to the wavelength, diffraction effects become impor-
tant and the signal d/ falls off more rapidly than predicted by a
plane-wave treatment of amplitude terms. Fig. 4 shows the mea-
sured reduction in dJ for Ni on Si (uncoated) as a function of
disk diameter and compares this with the predicted values from
both the intensity and field models, normalized to the 10-pum
disk. From this plot, the fit to experimental data appears reason-
able for both models, indicating that the simpler intensity based
model could be used conveniently. However, the inset shows
a plot of the ratio of the slope of dI versus cos(¢)sin(¢) for
coated and uncoated disks of several sizes that is useful in de-
termining which model is most appropriate (N.B. the “15-pym”
data point is for a continuous film). In the intensity formulation,
the ratio of the coated and uncoated slopes is independent of
disk size, but the measured slope data follow the shape of the
field-predicted curve, with a slight vertical offset, and a min-
imum at a higher disk size than predicted. The vertical displace-
ment may be due to differences in the model parameters and the
actual dielectric properties of the films, and the shift to higher
diameters is consistent with diffractive losses.

IV. CONCLUSION

We have shown how antireflection dielectric coatings can be
used to improve the MOKE signals obtained from magnetic
nanostructures with in-plane magnetization. The level of im-
provement depends not only upon the dielectric properties of
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the materials but also on the relative size of the magnetic struc-
ture and the laser probe beam diameter. These are best described
by a model describing the interaction of the various amplitude
reflection coefficients rather than a simple intensity averaging
approach. We observed a factor of 8 increase in the contrast for a
400-nm disk and predict larger enhancements for smaller struc-
tures, making the use of antireflection coatings of interest to a
wide range of researchers within nanoscale magnetism.
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