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Analysis of Output Frequencies of Nonlinear Systems
Xiaofeng Wu, Z. Q. Lang, and S. A. Billings

Abstract—In this paper, an algorithm is derived for the determi-
nation of the output frequency ranges of nonlinear systems, which
extends previous results on the output frequencies of nonlinear sys-
tems to a more general situation. The new results are significant for
the analysis of the output frequency response of a wide class of non-
linear systems.

Index Terms—Frequency response, nonlinear systems, output
frequency range.

I. INTRODUCTION

T
HE frequency domain analysis of linear systems has been

well established and widely studied in engineering sys-

tems. The study of nonlinear systems in the frequency domain

was initiated in the late 1950s when the concept of generalized

frequency response functions (GFRFs) was introduced [1]. The

frequency domain approach for nonlinear systems is based on

the Volterra series theory of nonlinear systems, and the GFRFs

were defined as the multidimensional Fourier transformation of

the Volterra kernels. Based on the GFRF concept, many results

for the analysis of nonlinear systems in the frequency domain

have been achieved [2]–[12]. Lang and Billings derived algo-

rithms for computing the output frequencies/frequency ranges

of nonlinear systems for both multiple and general inputs

[6]—[8]. These results extend the well-known linear results

where the output frequencies are the same as the frequencies of

the input, to the nonlinear case, and indicate that the possible

output frequencies of nonlinear systems are much richer than

the frequencies of the input.

In order to extend these results to a more general case, this

paper addresses the issue of the determination of the output fre-

quency range of nonlinear systems when the system is subject to

an input, the frequency components of which are located in a fi-

nite number of separate frequency intervals of different widths.

Both an algorithm to compute the output frequency range and

an explicit expression for the frequency ranges are derived.

The paper begins with an introduction of the output frequency

response of nonlinear systems. This is followed by an overview

of previous algorithms which provide the basis of this study.

Then the new algorithm and an explicit expression for the output
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frequency range of nonlinear systems subject to inputs with fre-

quency components located in a finite number of separate fre-

quency intervals are derived. A simulation study is included to

verify the effectiveness of the new results. Finally, some conclu-

sions are drawn about the results achieved in the paper.

II. OUTPUT FREQUENCY RESPONSE OF NONLINEAR SYSTEMS

A. Output Spectrum

Consider the class of nonlinear systems which are stable at

zero equilibrium and which can be described in the neighbour-

hood of the equilibrium by the Volterra series [13]

(1)

where and represent the system output and input re-

spectively, is the th-order Volterra kernel, and

denotes the maximum order of the system nonlinearities. In

Lang and Billings [6], an expression for the output frequency re-

sponse of the nonlinear systems was derived in a manner that re-

veals how the underlying nonlinear mechanisms operate on the

input spectra to produce the system output frequency response,

when the system is excited by the general input

(2)

The result is given by

(3)

where and represent the Fourier transforms of

the system output and input, represents the system

th-order output frequency response, and

(4)

is known as the th-order GFRF, is the maximum order of

the system nonlinearity

(5)

denotes the integration of over the -dimen-

sional hyperplane , and reveals the way in
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which the input spectrum makes a contribution, of degree , to

the output frequency component .

Equation (3) is a natural extension of the well-known linear

relationship

(6)

to the nonlinear case, and compared with other results [11], [12],

provides additional insight into the composition of the output

frequency response of nonlinear systems. It is obvious that the

nonlinear system output frequency response is much more com-

plicated than in the linear case.

B. Output Frequencies

It is known from (3) that the possible output frequency range

of a nonlinear system is the union of the frequency ranges pro-

duced by each order of the system nonlinearities

(7)

where denotes the nonnegative frequency range of the

system output and represents the nonnegative frequency

range produced by the th-order system nonlinearity.

For an input with spectrum described by

when

otherwise
(8)

where

(9)

an algorithm was developed in [6] to compute the nonnega-

tive parts of the output frequency range contributed by the th

order system nonlinearity such that (10), shown at the bottom

of the page, where represents the transpose of matrix and

{vector} denotes a set composed of the elements of the vector,

represents the th row of matrix , the two functions

and are defined as

if

if

if

(11)

and

if

if

if
(12)

and

(13)

Equations (7) and (10) can be used to numerically calculate

the nonnegative output frequency range. A more transparent an-

alytical relationship between and the input frequency range

was derived in [7]. The result is (14), shown at the bottom

of the page, where can be taken as , the spe-

cific value of which depends on the system nonlinearities. If the

system GFRFs , for , and

, then .

Results similar to the above for output frequencies of non-

linear systems were also reported in [15], where nonlinear fil-

tering problems with communications systems were addressed.

...
...

...
...

(10)

when

when

is an operand to take the integer part
(14)
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III. ANALYSIS OF OUTPUT FREQUENCIES OF

NONLINEAR SYSTEMS

The objective of this paper is to extend the results given by

(7)–(14) to a more complicated case where system (1) is sub-

ject to a general input, the frequency components of which are

located in a finite number of separate frequency intervals of dif-

ferent widths.

A. Computation of Non-Negative Output Frequency Ranges

Consider the case where system (1) is subject to an input with

spectrum

when

otherwise
(15)

where

(16)

and

(17)

It is known from (3) that the frequency range of the th-order

nonlinear output should be determined by

(18)

with

(19)

For the simplest case of , it is easy to show that the

nonnegative output frequency range is , which fol-

lows exactly the linear system property. For the case of ,

considering , the frequency range can be written as

(20)

with

(21)

From (20) and (21), the nonnegative output frequency range pro-

duced by second-order nonlinearity when the input spectrum is

given by (15) can readily be obtained as

(22)

Based on the principle of deriving (22) from (20) and (21),

the following general result can be obtained.

Proposition 1: The algorithm for evaluation of the nonnega-

tive frequency range of the th-order nonlinear output for gen-

eral input (15) can be described as (23), shown at the bottom of

the page, where denotes the rows of

, a matrix, with column number starting from

to , and

...
(24)

where the matrix block ,

, can be written as

(25)

with each subblock being (26), shown at the bottom of

the next page, where .

Equations (23)–(26) give the new algorithm to calculate

the nonnegative output frequencies of system (1) under gen-

eral inputs (15). The implementation of the algorithm which

consists of (23)–(26) is straightforward using a matrix-ori-

ented programming language such as MATLAB. The proof

of Proposition 1 can be achieved by using the mathematical

deduction approach. Although the basic idea for the proof is

straightforward, the specific procedure involves much more

complicated matrix manipulations. The details are, therefore,

omitted due to space limitations.

...
...

(23)
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Remark 1: When in Proposition 1, equation (23) is

reduced to equation (10) indicating that the Proposition 1 is an

extension of the previous result.

Remark 2: Consider the situation that

, can be written as

(27)

In this case, by taking , the results obtained by the algo-

rithm can be viewed as the solution of the frequency range of

the th-order nonlinear output under a multitone input [6], [7].

For an illustration of the use of Proposition 1, consider an

example where , , , and

, which represents two separate frequency intervals of input

frequencies.

From Proposition 1, and the computation involves

determination of

(28)

In this case, see equation (29) at the bottom of the page.

Therefore, for ,

For ,

For ,

For , ,

For ,

For ,

For ,

...
...

(26)

(29)
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For ,

Consequently

(30)

Consider another example, where , ,

, , and represent three separate

frequency intervals of different widths. In this case

(31)

Following the same procedure, the output frequency range

contributed by the second order nonlinear output can be ob-

tained. The result is

(32)

B. Analytical Expression of the Output Frequency Ranges

In this section, an analytical relationship of the separate

frequency intervals of input frequencies with the

output frequency range is investigated.

Consider the case where the input frequencies are located in

two separate frequency intervals of and . The cor-

responding th-order output frequency range is

evaluated using Proposition 1 for to yield

(33)

(34)

(35)

An observation of the composition of (33)–(35) indicates that

the th-order output frequency range can be

described in Proposition 2 in the following.

Proposition 2: The th-order output frequency range

of system (1) subject to an input with spectrum (15) is

given by

(36)

Proof of Proposition 2: From the analysis in Section III-A,

It is known that the th-order output frequency is related

to the input frequencies based on (18), and the

values of the input frequencies are in

or as given by (19). Consequently

if out of the n input frequencies, are taken in and

are taken in , the minimum

value of thus obtained can be de-

termined as , and the maximum value of

thus obtained can be determined

as . Therefore, the range of

obtained for this particular choice of and

is

(37)

where clearly and are subject to the

constraint

(38)

As a result, the nth-order output frequency range is the union

of (37) with respect to those k1i and k2i (i = 1; 2; . . . ;m) which

are subject to the constraint (38). Thus, the result of Proposition 2

is proved.

Remark 3: When in Proposition 2, (36) is reduced to

the proposition in [7], i.e., the th-order output frequency range

is composed of the union of the intervals

(39)

when the system is subject to an input with its spectrum de-

scribed by (8).
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Fig. 1. Continuous time nonlinear Wiener model.

Proposition 2 is a rigorous theoretical result regarding the

th-order output frequency range of nonlinear systems when

the systems are subject to an input the frequency components of

which are located in separate frequency intervals. The proposal

shows an explicit relationship between the th-order nonlinear

output frequency ranges and the ranges of input frequencies,

therefore, it is significant for the theoretical analysis of nonlinear

systems in the frequency domain. One can still use (36) to work

out the frequency range via an exhaustive search

for those and which satisfy constraint

(38) from possible results. But given the straightfor-

ward implementation of Proposition 1 using a matrix oriented

programming language and the wide application of MATLAB in

many engineering fields, we suggest using Proposition 1 to nu-

merically evaluate the output frequency range of nonlinear sys-

tems and using Proposition 2 for theoretical studies of the output

frequencies of nonlinear systems. In addition, because Proposi-

tion 2 is based on the observation of the results obtained from

Proposition 1, the computation procedure provided by Propo-

sition 1 helps with understanding how the more compact and

theoretically more significant Proposition 2 is reached.

Although the derivation for Propositions 1 and 2 above were

made for continuous time systems, it is obvious that similar re-

sults also hold for discrete time nonlinear systems. It should

be noted that Propositions 1 and 2 are valid for nonlinear sys-

tems which are asymptotically stable in the neighbourhood of

the zero equilibrium point. This class of nonlinear systems is

known as weakly nonlinear systems [13].

IV. SIMULATION EXAMPLES

To verify the output frequency ranges of nonlinear systems

derived in the last section, two simulation examples are given in

the following.

A. Continuous Time Nonlinear Wiener Model

Consider the continuous time nonlinear Wiener model de-

scribed by

(40)

as shown in Fig. 1 where

(41)

in the first block denotes Laplace operator, and all initial con-

ditions for are taken as zero.

The input and output of the system in the time and frequency

domains are shown in Figs. 2 and 3, respectively.

Fig. 2. Input signal in the time and frequency domain of the Wiener model.

Fig. 3. Output signal in the time and frequency domain of the Wiener model.

Fig. 2 indicates that the system input frequency range is

and . The real output

frequency range of the system is as shown in Fig. 3

(42)

Because the system includes nonlinearities up to second order

and the input frequency range is and , fol-

lowing the results in Section III, it can be shown that

(43)
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Fig. 4. Discrete-time nonlinear Hammerstein model.

Fig. 5. Input signal in the time and frequency domain of the Hammerstein
model.

which is exactly the same as what can be observed from Fig. 3.

Therefore, the simulation study verifies the effectiveness of the

new results developed in Section III.

B. Discrete Time Nonlinear Hammerstein Model

Consider the discrete time nonlinear system shown in Fig. 4

described by

(44)

under the input given by equation

(45)

where denotes the backward shift operator.

The input of the system in the time and frequency domains

are shown in Fig. 5. By simulation analysis, the output of the

system in the time and frequency domains were obtained, the

results are shown in Fig. 6.

Fig. 5 indicates that the system input frequency range is

, and

. The real system output frequency range can be

observed in Fig. 6 as

(46)

Since the system includes nonlinearities up to the second

order and the input frequency range is , , and

Fig. 6. Output signal in the time and frequency domain of the Hammerstein
model.

, following the results in Section III, it can be shown

that

(47)

Therefore, , the computation result based on the

analysis in Section III is again perfectly consistent with the sim-

ulation result.

V. CONCLUSION

For linear systems, the possible output frequencies are ex-

actly the same as the frequency components in the input. For

nonlinear systems, however, the situations are much more com-

plicated. Normally the output frequency components are often

much richer than that in the input. For nonlinear systems which

can be described by a Volterra series model, both the algorithm

for evaluating the output frequencies and an explicit expres-

sion for the relationship between the input and output frequency

ranges have been derived in the authors’ previous studies [6]–

[8]. These extend the well known linear relationship between

the input and output frequencies to the nonlinear case. In this

paper, the results established in previous work have been fur-

ther extended to a more general case where systems under study

are subject to an input the frequency components of which are

located in a finite number of separate frequency intervals. The

new results have been proved theoretically, verified by simu-

lation studies, and can be used to perform more sophisticated

nonlinear system analysis and design in the frequency domain.
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