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Dissipation through spin Coulomb drag in electronic spin transport and optical excitations
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Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semi-

conductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the

associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the

linewidth of intersubband spin plasmons in semiconductor quantum wells, which suggests the possibility of a

purely optical quantitative measurement of the SCD effect in a parabolic well through inelastic light scattering.

PACS numbers: 73.50.-h,73.40.-c, 73.20.Mf, 73.21.-b

Spintronics applications are receiving increasing attention

in the hope of revolutionizing traditional technology by a pow-

erful exploitation of the spin – as well as the charge – degrees

of freedom. An intense research effort is underway to im-

prove our understanding of spin dynamics, especially related

to nanocircuits and their components, such as quantum wells

and wires. In this context the theory of spin Coulomb drag

(SCD) was recently developed [1–5]. This theory analyzes the

role of Coulomb interactions between different spin popula-

tions in spin-polarized transport. Coulomb interactions trans-

fer momentum between different spin populations, so that the

total momentum of each spin population is not preserved.

This provides an intrinsic source of friction for spin currents,

a measure of which is given by the spin-transresistivity [1].

SCD is generally small in metals, due to a typical Fermi tem-

perature of the order of 105 K, but can become substantial in

semiconductors, where the spin-transresistivity can be larger

than the Drude resistivity [3, 5]. As the quest for defect-free

materials with longer and longer spin-decoherence times is

continuing, spurred by practical requirements in spintronics as

well as in quantum computation devices, the SCD is bound to

become one of the most serious issues in spin polarized trans-

port, since, due to its intrinsic nature, it cannot be avoided

even in the purest material. In fact, the recent experimental

observation of SCD by Weber et al. [6] shows that the effect

dominates spin diffusion currents over a broad range of pa-

rameters, in agreement with theoretical predictions [2, 3, 5].

In this paper we discuss a critical issue for potential spin-

tronics devices, namely the power loss in spin transport and

dynamics due to SCD. We shall analyze in detail its effect on

optical spin excitations, and propose an experiment to mea-

sure the intrinsic SCD linewidth enhancement of spin plas-

mons in parabolic semiconductor quantum wells. While up to

now SCD has been considered only in relation to spin trans-

port, the proposed experiment would provide an alternative

way of measuring this subtle effect, and thus establish un-

equivocally the influence of SCD on optical excitations.

Let us consider a system composed of spin-up and spin-

down electron populations, as for example the electrons in the

conduction band of a doped semiconductor structure. We are

assuming spin-flip times long enough so that spin populations

are well defined on the relevant time scales. This assumption

– at the very core of spintronics – has been proved reasonable,

with experimentally measured spin-decoherence times of the

order of microseconds [7]. Previous papers on SCD have

mainly analyzed the dependence of the spin-transresistivity

over temperature [2–5]; this paper will focus on its frequency

dependence [1], which is important both for AC spintronics

applications and spin-resolved optical experiments.

In the linear response regime and for weak Coulomb cou-

pling one can write a phenomenological equation of motion

for the spin σ population [1]. The SCD force is defined as the

Coulomb force (per unit volume) exerted by spin σ̄(= −σ)
electrons, moving with center-of-mass velocity v σ̄ , on spin σ
electrons, moving with center-of-mass velocity vσ:

Fσσ̄(ω) = −γ(ω)m
nσnσ̄

n
(vσ − vσ̄) , (1)

where the number density, nσ , of σ-spin electrons of effec-

tive mass m, and the total density, n = n↑ + n↓, are those

of a homogeneous reference system. The drag coefficient γ
appearing in Eq. (1) is directly proportional to the real part of

the spin-transresistivity ρ↑↓[1]:

γ(ω, T ) = −
ne2

m
ℜρ↑↓(ω, T ; n↑, n↓) , (2)

where T is the electronic temperature. ℜρ↑↓ has a negative

value and ρ↑↓ can be defined through E↑|j↑=0
= −ej↓ρ↑↓,

with jσ the number current density of the σ spin population,

E↑ the effective electric field which couples to the ↑-spin pop-

ulation and includes the gradient of the local chemical poten-

tial, and e the absolute value of the electronic charge.

As noted above, SCD provides an intrinsic decay mech-

anism for spin-polarized currents, and is thus a source for

power loss in a spintronics circuit or device. From the gen-

eral definition of power and using Eq. (1), the SCD power

loss density per unit time for the σ-spin population is given by

Pσ(ω, n↑, n↓) = Fσσ̄ · vσ (3)

= e2

(

nσ̄

nσ
|jσ|

2
− jσ̄ · jσ

)

×ℜρ↑↓(ω, T ; n↑, n↓) . (4)

Notice that Pσ can change sign depending on the relative

strength and direction of the spin-resolved current densities,
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FIG. 1: Spin-transresistivity |ℜρ↑↓| vs rescaled frequency h̄ω/EF

for n = 10
x cm−3, x = 16, 17, 18 as indicated, and GaAs parame-

ters (m = 0.067me , ǫ = 12). Inset: |ℜρ↑↓| in mΩ cm vs h̄ω in eV

for the same densities. Dashed line: high-frequency limit, Eq. (6).

a positive sign implying that the σ spin population is being

dragged along by the faster σ̄ spin population. In particular,

for a system with spin populations drifting at the same average

velocity, Pσ(ω) = 0. In a system with slowly varying density,

we can use Eq. (4) to express the local power loss density in a

volume element centered around position r. The total power

loss per unit time in the system can then be calculated as

P̄σ(ω) =

∫

V

d3r [Pσ(r; ω, n↑(r), n↓(r))] . (5)

Fig. 1 shows the transresistivity ℜρ↑↓(ω; n↑, n↓) as a func-

tion of frequency, calculated for GaAs at T = 0, using a gen-

eralized random phase approximation [1]. We see that ℜρ↑↓

has a maximum when EFσ(nσ(z)) is of order h̄ω (EFσ is the

σ-spin Fermi energy). This maximum roughly scales as [3]

(ha∗/e2)/ns ≈ 140 μΩ cm · ǫme/(mns) with s<
∼1: it is then

reasonable to expect a sizable damping effect due to SCD. We

notice also that for very low densities, i.e. EF ≪ h̄ω,

ℜρ↑↓(ω, T = 0; n↑, n↓) ∼ −
h̄a∗

e2

(

2Ry∗

h̄ω

)3/2
4π

3
, (6)

independent of the carrier density (see Fig. 1 inset) [15].

To estimate the SCD dissipation, let Pσ(ω) ∼ e2j2
σℜρ↑↓,

see Eq. (4). For a GaAs AC spintronic device operating at

THz frequencies around the maximum of ℜρ↑↓, with jσ =
1A/cm2 and n = 1016cm−3 (1018cm−3), we obtain Pσ ∼
16mW/cm3 (0.28mW/cm3). One finds Pσ/PD = 25%
(44%), where PD(ω) ∼ e2j2

σρD, and ρD is the Drude re-

sistivity associated with a mobility 104 cm2/Vs. This simple

analysis shows that the dissipation from SCD and from im-

purities can be comparable. We expect an even higher SCD

power loss in devices based on low dimensional structures [5].

Due to problems with electrical injection [8] and the neces-

sity of driving spin dynamics on sub-picosecond time-scales

[9], large attention has been focused on optical spin injection

[7] and optically controlled spin dynamics [10]; in the fol-

lowing, we will explore how the SCD affects the lifetime and

dynamics of spin-dependent optical excitations.

The excitation spectrum of a system can be calculated in

principle exactly with time-dependent density-functional the-

ory (TDDFT) [11]. In TDDFT, an interacting time-dependent

many-body system is described through a non-interacting

Kohn-Sham system, characterized by an exchange-correlation

(xc) vector potential. The latter is a functional of the current

[12], and needs to be approximated in practice.

Microscopically, the dissipation of spin currents can be

viewed as loss of coherence due to decay into multiple

particle-hole excitations of the underlying electronic many-

body system [13]. Describing these effects in TDDFT within

a local approximation for the xc vector potential, one is nat-

urally led to the language of hydrodynamics [14]: dissipation

arises from viscoelastic stresses in the electron liquid, which

are proportional to the velocity gradients. This formal frame-

work is dictated by global conservation laws and symmetries;

however, the viscosity coefficients that are required as input

come from detailed microscopic calculations [14]. The corre-

sponding xc potential for spin-dependent systems [15] has an

additional contribution accounting for the SCD.

Our derivation of the excitation energies for a spin-depen-

dent system closely follows the spin-independent case [16].

Starting point is the TDDFT current response equation,

jσ(r, ω) =
e

c

∫

d3r′ χ σ(r, r′, ω)aσ(r′, ω) . (7)

Here, χ σ(r, r′, ω) is the Kohn-Sham current-current response

tensor, which is diagonal in the spin-channel. The effective

vector potential is defined as aσ = aext
σ + aH

σ + axc
σ , where

aext
σ is an external perturbation, and the Hartree and xc vector

potentials are given by

e

c
aH

νσ(r, ω) =
∇ν

(iω)2

∫

d3r′
∇′ · j(r′, ω)

|r − r′|
, (8)

e

c
axc

νσ(r, ω) =
∑

σ′

∇ν

(iω)2

∫

d3r′ ∇′ · jσ′ (r′, ω) fALDA

xc,σσ′(r, r′)

−
1

iωnσ(r)

∑

κσ′

∇κσxc

νκ,σσ′ (r, ω)

−
e2

ω
nσ(r)nσ̄(r)ρ↑↓(ω; nσ(r)nσ̄(r))

×
∑

σ′

σσ′

nσ(r)nσ′ (r)
jνσ′ (r, ω) , (9)

where ν, κ are Cartesian indices. In Eq. (9),

fALDA

xc,σσ′(r, r′) = δ(r − r′)
d2eh

xc(n̄↑, n̄↓)

dn̄σdn̄σ′

∣

∣

∣

∣

n̄↑,↓ = n0↑,↓(r)
(10)

is the frequency-independent xc kernel associated with the

adiabatic local-density approximation (ALDA), where eh
xc is

the xc energy density of a homogeneous electron gas, and n 0σ



the ground-state spin density of the system. The other terms in

Eq. (9) represent non-adiabatic xc contributions, which bring

in the dissipation. In the second term, σxc

νκ,σσ′ is the spin-

resolved viscoelastic stress tensor of the electron liquid [15].

The key quantity in the last term of Eq. (9) is ρ↑↓.

We now consider a specific excitation pσ → qσ between

the Kohn-Sham levels ψpσ and ψqσ , and assume the ground

state to be spin unpolarized. To derive the TDDFT correction

to the bare Kohn-Sham excitation energy h̄ωpqσ , we apply the

so-called small-matrix approximation [16, 17]. The result is,

to lowest order in the non-adiabatic corrections,

h̄2ω2

±σ = h̄2ω2

pqσ + 2h̄ωpqσ [(SH+ALDA

σσ ± SH+ALDA

σ̄σ )

+ (SVE

σσ ± SVE

σ̄σ) + (SSCD

σσ ± SSCD

σ̄σ )] , (11)

where the +/− sign refers to charge- or spin-density excita-

tions (CDE/SDE) respectively. SH+ALDA

σσ′ , SVE

σσ′ and SSCD

σσ′ are

the dynamical many-body corrections to the bare transition

energy h̄ωpqσ between the single particle levels pσ and qσ.

The Hartree+ALDA shift is given by

SH+ALDA

σσ′ =

∫

d3r

∫

d3r′ψpσ(r)ψqσ(r)ψpσ′ (r′)ψqσ′ (r′)

×

[

1

|r − r′|
+ fALDA

xc,σσ′(r, r′)

]

, (12)

which causes no dissipation, f ALDA

xc,σσ′ being frequency indepen-

dent and real. The viscoelastic shift is given by

SVE

σσ′ =
iω

ω2
pqσ

∑

νκ

∫

d3rσxc,pq
κν,σσ′ (r, ω)∇κ

[

jpqσ,ν(r)

nσ(r)

]

, (13)

where σxc,pq
κν,σσ′ is the xc stress tensor [14–16] with the exact

current jσ,ν replaced by jpqσ(r) ≡ 〈ψpσ |̂jσ|ψqσ〉, with ĵσ the

paramagnetic particle current density operator. Eq. (13) can

be viewed as the average rate of energy dissipation per unit

time in a viscous fluid, where σxc,pq
κν,σσ′ is the viscoelastic stress

tensor of the fluid, and ∇κ[jpqσ,ν/nσ] the velocity gradient.

In contrast to the familiar expression from classical fluid dy-

namics [18], SVE has both real and imaginary part.

The SCD shift is a central result of this paper:

SSCD

σσ ± SSCD

σ̄σ =
ie2ω

ω2
pqσ

∫

d3r ρ↑↓(ω; n↑(r), n↓(r))

×

[

nσ̄(r)

nσ(r)
|jpqσ(r)|

2
∓ jpqσ̄(r) · jpqσ(r)

]

.(14)

As we will show in an example below, under certain circum-

stances this new contribution to the broadening of an excita-

tion can actually dominate the damping process.

By comparison with Eqs. (4) and (5), we immediately rec-

ognize the structure of the power loss typical of the Coulomb

drag force [19]. Like the viscoelastic term (13), the SCD term

(14) contains both a real and an imaginary part. Notice that, if

the external driving force couples in a different way to the two

spin components, such that the average spin velocities are dif-

ferent, the SCD term contributes to the charge channel too. In

this particular case the two spin-populations may be consid-

ered distinguishable, characterized by a spin-dependent fre-

quency ωσ both in the charge and in the spin channel. This

implies that the Coulomb drag force exerted by one popula-

tion onto the other can be regarded as an external force.

This concept can be clarified by considering the intersub-

band charge and spin plasmons in a quantum well [20–22].

The inset to Fig. 2 illustrates the two types of density oscilla-

tions for a parabolic well, in which the n↑ and n↓ components

move back and forth, perpendicular to the xy plane of the

quantum well, in phase (CDE) or with opposite phase (SDE).

In the case of the SDE, the average net momentum transferred

by Coulomb interactions from the σ̄ to the σ-spin population

is directed opposite to the σ-spin direction of motion, so that

the SCD effect damps the motion of both spin populations.

For the charge plasmon the effect can become more subtle:

since the average spin velocities are in the same direction, the

net result of Coulomb interactions between the two spin pop-

ulations will be to transfer momentum from the ”hotter” to the

”colder” population, until equilibrium is reached. In this case

the SCD effect would not damp the motion of both spin pop-

ulations, but pump momentum from the faster to the slower.

We now proceed to estimate the size of the SCD effect for

optical excitations in a parabolic quantum well. According to

the Harmonic Potential Theorem [23], the intrinsic linewidth

of a CDE in a parabolic confining potential is strictly zero.

The TDDFT linear response equation (7) satisfies this require-

ment: CDE’s in a parabolic well have a uniform velocity pro-

file, so that the viscoelastic stress tensor vanishes. Likewise,

in expression (13) for SVE

σσ′ , ∇κ[jpqσ,ν/nσ] is very small. The

viscoelastic contributions to SDE’s are thus a higher-order

correction compared to the SCD contributions, which give

the dominant correction to the excitation frequency beyond

ALDA. The intrinsic SDE linewidth for a parabolic quantum

well therefore becomes ΓSDE ≈ ΓSCD

SDE
, where

ΓSCD

SDE(ω) =
e2Nsω

2ω2
pqσ

∫

dz ℜρ↑↓(ω; n↑(z), n↓(z))

×

[

nσ̄(z)

nσ(z)
|jpqσ(z)|2 + jpqσ̄(z) · jpqσ(z)

]

, (15)

with Ns the two-dimensional electronic sheet density.

Numerical results for ΓSCD

SDE
for a GaAs-based quantum well

are shown in Fig. 2. We assume only the first subband to be

occupied, i.e., nσ(z) = Ns|ψ1σ(z)|2, and approximate the

Kohn-Sham orbitals ψq,pσ(z) entering Eq. (15) by the first

two eigenstates of a harmonic oscillator with external poten-

tial h̄2z2/2mλ4. Furthermore, to lowest order in the non-

adiabatic corrections ωσ can be replaced with ωpqσ . For this

system the parameters which govern the linewidth of the SDE

mode are Ns and the quantum well curvature parameter λ.

The latter determines both the excitation frequency and the

characteristic width of the ground-state density distribution.

The results in Fig. 2 show that ΓSCD

SDE
can be nonnegligible (a

large fraction of meV) for experimentally reasonable parame-

ters [24], and ΓSCD

SDE
/h̄ω can be of the order of few percents
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FIG. 2: Upper panel: Spin-plasmon linewidth Γ
SCD

SDE for a parabolic

quantum well versus curvature parameter λ, for Ns = 10
10, 10

11

and 10
12 cm−2 and GaAs parameters. The inset illustrates the col-

lective motion of the two spin populations (CDE: in phase, SDE: out

of phase). Lower panel: rescaled linewidth Γ
SCD

SDE/h̄ω.

for a large range of curvature parameters and carrier densities.

For a specific Ns, the linewidth exhibits a well defined max-

imum as a function of λ. The position of this maximum is

determined by the competition of two distinct effects: (i) The

low-density saturation value of ρ↑↓ increases with λ [i.e. de-

creases with ω, see Eq. (6)]; (ii) The average particle velocity

decreases with λ (i.e. decreases with the parabolic curvature).

The two effects give opposite contributions to the dissipation

[see Eq. (3)], and the maximum occurs when the second effect

takes over. Due to the density dependence of ρ↑↓ (see Fig. 1), a

substantial contribution to the integrand in Eq. (15) can come

from the lateral regions of the quantum well, where the parti-

cle density is low. This is in contrast to the VE contribution,

which tends to be dominated by the high-density regions.

The above example shows that, even when other forms of

damping, such as disorder and phonons, are drastically re-

duced by careful selection of the system characteristics, the

dissipation induced by SCD cannot be avoided, due to its in-

trinsic nature.

Eq. (15) suggests an experimental way to extract the impact

of SCD on spin dynamics, namely by an optical measurement

of the linewidth of both charge- and spin-plasmons in the same

parabolic quantum well. Such an experiment can be carried

out using inelastic light scattering [25]. Under the reasonable

assumption that (i) extrinsic (ext) damping (non-magnetic im-

purities, phonons) affect the CDE and SDE in the same way,

and (ii) the viscoelastic term can be disregarded due to the

parabolic system geometry, we have

ΓSDE−ΓCDE ≈
(

Γext

SDE + ΓSCD

SDE

)

−
(

Γext

CDE

)

≈ ΓSCD

SDE , (16)

i.e., the SCD contribution to the spin-plasmon linewidth is

given to a very good approximation by the difference of the

SDE and the CDE linewidths. This provides a valuable op-

portunity for comparison with microscopic models for the

transresistivity via Eq. (15), using the appropriate Kohn-Sham

single-particle orbitals of the system.

In conclusion, we have presented a discussion of the power

loss in a device due to dissipation of spin-dependent currents

induced by SCD forces. We have suggested a new, purely op-

tical method to measure the SCD effect in spin-density excita-

tions in parabolic quantum wells. In the ω → 0 limit, a partic-

ularly interesting application of our formalism would be to de-

scribe the SCD intrinsic dissipation in spin-dependent trans-

port through single molecular junctions [26]. As the broad

effort in spintronics, quantum computation and transport in

micro- and mesoscopic systems continues, we expect a grow-

ing impact of the SCD effect in future applications.
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