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SUMMARY 

1. While tThe composition of communities of arbuscular mycorrhizal (AM) 

fungi can have a large effect on the performance of their plant hosts, but the 

role of individual fungal species in shaping this response is as yet unresolved.   
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2. We have used the fungicide benomyl to alter the community of AM fungi in 

undisturbed monoliths of soil in a natural community.  Changes in the 

community were characterised by root colonisation (%RLC), cloning, 

sequencing and tRFLP of a partial SSUrDNA fragment.  Eleven plant species 

were sufficiently abundant in the monoliths to be examined. 

3. In the highly mycorrhiza-dependent perennial herb Ajuga reptans, phosphate 

concentration was significantly reduced after benomyl treatment over a full 

growing season.  The other plant species showed low colonisation and no 

significant difference in phosphate concentration after benomyl treatment.   

4. Although colonisation in A. reptans was reduced, many mycorrhizal fungi 

survived in the roots.  Some became more abundant following fungicide 

treatment, suggesting competitive release.  Fungi that increased were 

generalists that have been identified in field samples from published studies 

colonising a wide range of plant species.  Those that declined were specialists 

with a narrow host range; five types had not been recorded previously in field 

samples.   

5. AM fungi in this study differed greatly in their response to perturbation, 

independent of the identity of the host plant.  If such functional diversity is 

widespread, then elucidating the part played by AM fungal diversity in 

regulating plant community structure will be key to our understanding and 

management of ecosystems. 

 2



 

 

Keywords: arbuscular mycorrhizal fungi, Ajuga reptans, host range, 

Glomeromycota, phosphorous, SSUrDNA 

 5 

 3



INTRODUCTION 

Uncultured micro-organisms dominate soil ecosystems (Fitter 2005).  One key group 

in which many species may be unculturable is the Phylum Glomeromycota that forms 

arbuscular mycorrhizas (AM).  These fungi are among the most abundant and 

ecologically important symbionts on earth, forming mycorrhizas with around two-

thirds of all plant species and occurring in virtually all ecosystems.  The 

Glomeromycota were traditionally viewed as a species-poor phylum. Relatively few 

AM fungal species have been successfully grown in culture, with all of them observed 

only in symbiosis with a host plant.  Almost all AM fungi are non-specific symbionts, 

readily colonising the roots of most plant species they encounter (Smith & Read 

1997).  This fact, combined with the apparent low diversity of this taxon (150-200 

described species, Morton & Benny 1990) and its enormous host range (>2 x 10
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plant species; Fitter & Moyersoen 1996), has led to the view that AM fungi are non-

specific.  If so, we would predict that AM communities would not show a high degree 

of differentiation among host plants.  However, results of spore-based morphological 

studies (Sanders & Fitter 1992; Bever et al. 1996; Eom et al. 2000) and molecular 

analyses of the occurrence of AM fungi within the root systems of plants collected in 

natural communities (Clapp et al.1995; Helgason et al. 2002; Husband et al. 2002; 

Vandenkoornhuyse et al. 2003; Öpik et al. 2003; Johnson et al. 2004; Santos et al. 

2006) demonstrate not only that the genetic diversity of these fungi is much greater 

than the morphological taxonomy suggests, but also that different plant species often 

harbour quite distinct AM fungal communities.  This suggests that even where AM 

fungi display a high degree of non-specificity, other factors are influencing 

community structure.  Since the majority of the fungi revealed by molecular 

techniques are apparently unknown in culture, the question has been raised as to 
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whether these uncharacterised species play distinct ecological roles and may be 

responsible for some of the profound ecological impacts of AM fungi (Newsham et 

al. 1994; van der Heijden et al. 1998; Hartnett & Wilson 1999; Dhillion & Gardsjord 

2004).   

Moora et al. (2004) recently showed that different communities of AM fungi had 

large effects on the performance of two closely-related, co-existing plant species.  

What remains to be resolved is the extent to which particular members of the AM 

fungal community associated with a plant species have distinctive impacts on plant 

performance.  The null hypothesis must be that all the fungi act in the same way, 

transporting P to the plant, protecting it from pathogens, binding roots to soil and 

hence promoting drought resistance, and performing any of the other functions that 

have been ascribed to mycorrhizas (Newsham et al. 1995).  However, many of these 

activities are mutually incompatible: enhancing P uptake depends on growth of the 

extra-radical mycelium outside the rhizosphere (Avio et al. 2006, Oliveira et al. 

2006), promoting drought resistance requires mycelial growth in the rhizosphere, and 

pathogen protection must depend on the internal mycelium.  It seems inherently more 

likely, therefore, that co-existing fungi have distinct functional capabilities (van der 

Heijden et al. 2003; Oliveira et al. 2006).  Those fungal taxa that display a degree of 

specificity towards particular host plants are likely to offer those plant species the 

greatest symbiotic benefit, since there is likely to have been a co-evolutionary 

response by both partners (Fitter 2005).   
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In an earlier laboratory study (Helgason et al. 2002), we showed that plants from a 

semi-natural woodland varied both in their overall response to AM colonisation, and 

to specific AM fungi.  The same study suggested that AM fungi display a range of 

colonisation strategies.  In particular, the taxa that were able to colonise all the host 
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plants were those that resulted in a consistent but small benefit to the plant, measured 

as P acquisition; these we identified as essentially opportunist taxa.  Here, we have 

used the fungicide benomyl to alter the fungal community colonising roots of the 

same natural plant community used previously by Helgason et al (2002).  We 

hypothesised that the fungicide would not affect all fungi equally, and that the fungi 

most likely to recover quickly from this environmental perturbation would be r-

selected fungi that display “weedy” characteristics of broad host range and weak 

symbiotic effectiveness.  We also predicted that a change in the fungal community 

favouring generalist types would be accompanied as before by a reduction in plant 

phosphate uptake, at least in the most mycorrhiza-dependent plants, because the less 

effective symbionts would be more abundant.   
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MATERIALS AND METHODS 

Experimental Design 

The experiment was conducted at Pretty Wood near York, UK (grid ref. SE 732 867, 

altitude 50 m), under a mature canopy of Quercus petraea (Mattuschka) Liebl. and 

sycamore Acer pseudoplatanus L.  We used the fungicide benomyl ([1-

[(Butylamino)carbonyl]-1H-benzimidazol-2-yl] carbamic acid methyl ester) at a 

concentration of  1.125 g l
-1

 to disrupt the AM fungal community associated with the 

ground flora in this woodland.  Benomyl has been widely used to reduce root 

colonisation by AM fungi (Fitter & Nichols 1988; Newsham & Fitter 1994; Hartnett 

& Wilson 1999; Smith et al. 2000; Smilauer & Smilauerova 2000; Callaway et al. 

2004).  However, it penetrates soil poorly and we adapted the technique we 

previously used at the same site (Merryweather & Fitter 1996) in which Entire 
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monoliths of soil (with growing plants) were lifted intact, placed in mesh baskets, 

replaced in situ and raised regularly for immersion in a bath of fungicide for 3 mins, 

found to be sufficient time for the monolith to be thoroughly drenched. Control 

baskets were immersed in water at the same time. 
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The experiment was set up during September and October 1996. Twenty-four cubic 

monoliths of soil (30 x 30 x 30 cm; volume 27 l) were created in three blocks of eight 

in adjacent sites in the wood, no more than 100 m apart, selected to represent distinct 

sub-communities to allow for variation in plant community structure and to ensure 

that some plant species were well represented in the experiment. Each basket 

contained between 3 and 6 plant species; block 1 all had Primula vulgaris Huds. and 

Glechoma hederacea L., block 2 all had Ajuga reptans L. and Teucrium scorodonia 

L., and block 3 all had Mercurialis perennis L.  Across all 24 baskets, the most 

abundant species were G. hederacea and Poa trivialis L. (17/24), A. reptans (18/24), 

Oxalis acetosella L. (13/24) and Lysimachia nummularia L. (12/24).  The treatments 

(plus and minus fungicide) were allocated randomly but equitably within these 

subsets of 8 baskets, to give 12 of each (4 in each sub-community). Treatments were 

applied monthly from 18 March 1997 to 18 June 1998.   

Leaf samples of the principal species were taken on three occasions (28 May 1997; 

21 May 1998; 20 July 1998), dried for 48 h at 70°C and a subsample digested for 

phosphorus concentration assay by the molybdenum blue method (Allen 1974). Root 

samples were taken at the final harvest (20 July 1998); part of each sample was 

analysed for P as above and part stained with 0.01% acid fuchsin (Kormanik & 

McGraw 1982) (using a phenol-free modification) and percentage root length 

colonised by AM fungi (%RLC) assessed using the magnified intersection method 

(McGonigle et al. 1990).  Soil phosphate concentration was measured by extracting 
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1g soil in 20ml deionised water for 30 minutes in a rotating shaker; P concentration 

in the supernatant was measured after centrifugation as above.  Leaf N concentration 

was measured on ground material using a CHN NA2100 Brewanalyser (CE 

Instruments, Milan Italy).  There were no treatment effects on leaf nitrogen or soil 

phosphorus (data not shown). 5 
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Molecular Methods  

DNA was extracted from sub-samples of the final harvest roots using a PEX 

extraction method (Edwards et al. 1997).  As only one species, A. reptans, showed 

either a high degree of root colonisation (%RLC) in the controls, or a significant 

decrease in %RLC and tissue P concentration, only A. reptans roots were analysed in 

detail. 18 root samples, 9 from control and 9 from benomyl treated monoliths were 

analysed. Partial SSU DNA fragments (c.550 base pairs) were amplified using a 

universal eukaryotic primer NS31 (Simon et al. 1993) and a fungal primer AM1 

(Helgason et al. 1998).  PCR products were cloned and digested with the restriction 

enzymes Hinf I and Hsp92II (Promega, Southampton UK) after Helgason et al. 

(2002).  The abundance of each Restriction Fragment Length Polymorphism (RFLP) 

profile was scored from 2% agarose gels.  Representative clones were sequenced; 

sequencing was performed by Lark Technologies Ltd (Essex, UK), using ABI 

BigDye™ chemistry (Applied Biosystems, Warrington UK).   

Those samples from all host species sampled that gave a sufficient product yield in 

the initial PCR were amplified using NS31 and AM1 primers labelled with WellRED 

Beckman Dye D4-PA and D3-PA respectively (Sigma-Proligo, Gillingham UK).  

The NS31-D4-PA primer was diluted 1:3 with unlabelled NS31 to compensate for the 

dye’s greater intensity, resulting in equivalent peak heights in the subsequent tRFLP 

analysis.  PCR products were checked on an agarose gel and 5µl aliquots were 
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digested with Hsp92II as described above. Digested PCR products were resuspended 

in deionised formamide following ethanol precipitation. A 15µl aliquot was added to 

30µl SLS loading solution (containing 0.16 µl Size Standard600; Beckman Coulter 

UK Ltd. High Wycombe UK).  Fluorescently labelled fragments were separated by 

capillary electrophoresis and detected by laser induced fluorescence using the CEQ 

8000 automated gene sequencer (Beckman Coulter, UK Ltd, High Wycombe UK).  

Samples were denatured at 90 ºC for 2 min before injection at 2 kV for 25 s and 

separation for 65 mins.  Fragments were compared to the internal standard using 

CEQ 8000 software for fragment size analysis.  Samples were rejected if maximum 

peak height was outside a range of peak height was between 10-100K fluorescence 

units; 4 samples exceeded the maximum and were diluted 1:1 with loading solution 

and re-run.  Each sample was scored for the presence/absence of two peaks 

diagnostic for specific AMF groups: Acaulosporaceae and Glomus intraradices/G 

.mosseae (Table 2).   
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Fungal host range 

In order to identify the host ranges, a reference sequence of each type was used as a 

query in a BLAST search (Altschul et al. 1997), and the nearest hits used to identify 

published studies where the sequences have been identified from field roots.  

Sequences from unpublished studies were excluded because the methodology could 

not be verified from the database entries alone.  Laboratory experiments using 

cultured isolates and trap cultures using field soils as inoculum were likewise 

excluded on the grounds that these represent artificial situations (additional 

information in Table S1 and Table S2 of supplementary information). 
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Statistical Methods 

Data of root colonisation by AM fungi were arcsine-square root transformed and 

tested using the GLM command for bivariate analysis of variance for blocked design 

of unbalanced data using SPSS 11. All other data were tested using standard bivariate 

analysis of variance for a blocked design.  Raw sequence data was checked by eye for 

quality and forward and reverse sequences assembled and checked using Lasergene 

v.6 software (DNASTAR Inc. Madison WI, USA).  Alignments were generated using 

ClustalX alignment (Thompson et al. 1997), and NJ tree building (Saitou & Nei 

1987).  Correlations were performed using SPSS 11.   
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RESULTS 

The intensity of mycorrhizal colonisation was unusually low in this community: only 

one species, A. reptans, was heavily colonised.  Four other species had >10% root 

length colonised in control plots and in all these benomyl reduced colonisation, 

though not significantly (Table 1).  Benomyl application reduced the mean 

community root length colonised by AM fungi, averaged across 11 plant species, 

from 15% to 4% at the final harvest (F1,101 = 8.73, P=0.004).  Among individual 

species the reduction was only significant for A. reptans, which had the highest 

colonisation in control plots (45 ± 12% of root length), reduced to 12 ± 7% after 

benomyl treatment.  The phosphorus (P) concentration of shoots and roots was 

affected by benomyl treatment only in A. reptans (Fig. 1), where it was reduced by 

37-40% except at harvest 1; at the final harvest, overall leaf P concentration was 

reduced by one-third in benomyl-treated A. reptans (1.8 vs 2.7 mg g-1).  There was no 

significant relationship between shoot P concentration and root length colonised, 

either for all plants together, or for A. reptans on its own (Fig. S1 supplementary 
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information).  Although benomyl treatment reduced colonisation of roots by AM 

fungi, that reduction was not simply responsible for the marked decline in P 

concentration in A. reptans. 

Morphological analyses can give only limited information on the species of fungi 

involved.  We therefore obtained 408 clones from 18 roots of A. reptans, from both 

control and benomyl plots (mean 22.7 clones per root).  RFLP analysis of the clones 

revealed a total of 26 RFLP types using HinfI and Hsp92II.  Sequencing confirmed 

that RFLP types sampled by the NS31-AM1 PCR could be grouped into 24 sequence 

types.  Of these, one was a group of Fusarium-like Ascomycetes, one was a mix of 

Archaeosporaceae and an Acaulospora sp. that could not be separated using this 

combination of restriction enzymes, and the remaining 23 were AM fungal sequence 

types that could be unambiguously resolved  (Glomeromycota: Table 2).  Individual 

roots had between 2 and 12 sequence types (mean 7.2).  This rich diversity of AM 

fungi from a single plant species at one site is comparable to that recorded in other 

recent detailed studies (Vandenkoornhuyse et al. 2003; Wirsel 2004). 
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Most of the fungi (17/24; 71%) increased in frequency in the benomyl treated plots, 

including the Ascomycete group.  There was great variation in the response of the 

AM fungi to benomyl treatment: while some types were almost eliminated, others 

were more abundant than in the control.  The variable response was reflected in a 

lack of correlation between the abundance of each sequence type in the control and 

treated plots.   

Five sequence types that were abundant in A. reptans had not been previously 

identified in any other host species in the field, either at this site or others; only one 

of those is known in culture (Glomus spurcum).  The values of the host range, 

defined as the number of genera from which the sequence type had been recorded, 
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were examined in relation to the abundance of each type in the controls and benomyl 

treated plots.  While there was no significant correlation between host range and 

abundance in control plots (Fig 2a), the treated plots showed a significant correlation 

between the abundance of sequence type and host range (Fig 2b).  Sequence types 

with wide host range were, on average, more resilient to this treatment, probably 

reflecting an ability to recover quickly and colonise any available root.   
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In the tRFLP analysis, low colonisation resulted in poor amplification yields, and only 

35 roots yielded sufficient PCR product for tRFLP analysis (Fig. 3).  The abundance 

of the two AM group-specific fragments showed a response to the treatment similar to 

that observed in A. reptans alone.  The proportion of roots showing Acaulosporaceae 

and G. intraradices/G. mosseae fragments was similar in the control treatment.  

However, the Acaulosporaceae were reduced whereas G. intraradices/G. mosseae 

doubled in frequency after benomyl application, suggesting that the response of the 

fungi to the treatment is independent of the identity of the host plant.  

 

DISCUSSION 

There has been much debate about the ecological role of individual AM fungal taxa 

(Hart et al. 2003).  Molecular studies of AM associations in natural communities have 

begun to reveal that AM fungal taxa vary greatly in specificity and host range (Clapp 

et al.1995; Helgason et al. 2002; Husband et al. 2002; Vandenkoornhuyse et al. 2003; 

Öpik et al. 2003; Klironomos 2003; Johnson et al. 2004).  We show here that this 

variation can be linked to the biology of the fungi.  Treating A. reptans growing in a 

natural community with the fungicide benomyl reduced both P concentration and 

colonisation, but there is not a straightforward correlation between colonisation and 

tissue P concentration, as would be predicted if all AM fungi were functionally 
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equivalent. The fungal taxa least affected by the fungicide were widespread taxa that 

have been recorded with many other plant genera, not only at this field site but 

elsewhere (Öpik et al. 2006).  The rare and specific taxa, some of which have not 

been recorded from field samples previously, may therefore have been principally 

responsible for promoting P uptake in A. reptans.  Cultures of Glomus sp. UY1225 

(Glo3) and G. hoi, two of the widespread taxa identified in A. reptans roots in this 

study (Fig 2b), have been used as symbionts in a previous laboratory experiment with 

A. reptans and several other co-occurring plant species from the same field site.  Both 

fungal taxa were successful colonisers, and both resulted in only a small increase in P 

uptake by A. reptans relative to uncolonised controls (Helgason et al. 2002).  The 

same effect was seen with most other plant-fungus pairs in the experiment.  

G.mosseae and G. intraradices, two commonly cultured taxa, are also among the 

most commonly identified sequence types in field studies.  G. mosseae increased in 

frequency, and G. intraradices remained the most abundant AM type after benomyl 

treatment, at the expense of Acaulospora spp.  That result is consistent with Fig 2b 

(open symbols) and reinforces the view that these fungi are indeed generalists.  This 

interpretation of course depends on demonstrating that the generalist taxa are less able 

to promote uptake of P, something this study was not able to do.  It is possible that 

this response is due to a differential effect of benomyl on the AM fungi that may not 

necessarily reflect a difference in function.  Clearly, the next step is to determine 

whether or not there is any functional diversity among taxa in the field.  Diversity in 

P-uptake has been demonstrated even within a single species in laboratory 

experiments (Munkvold et al. 2004), so it would be reasonable to predict such 

diversity in a field community.  
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There are a number of underlying assumptions made in equating relative abundance 

of clones with abundance of root colonisation e.g. that all targets amplify equally and 

in proportion at all abundances (Helgason et al. 1999).   It is notable that no AM taxa 

found in the control samples are absent in the treatment, suggesting that the increased 

diversity of taxa may be a function of the reduced dominance of the abundant AM 

sequence types.  Whether or not this is the case, the fact remains that the overall 

abundance of AM sequence types relative to other fungi declines and a number of 

taxa with apparently restricted host range decreased more.  Our data provide the 

framework then for explicit testing of the hypothesis that host range is linked to the 

biology of the fungus, in this case to disturbance in the form of fungicide application.   
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Benomyl treatment does not eliminate fungi in the Glomeromycota but it can be used 

to control them by regular treatment (Fitter & Nicholls 1988), as undertaken here.  It 

is likely that benomyl kills the extra-radical mycelium which is then regenerated from 

mycelium surviving in roots.  This interpretation is consistent with the finding that 

taxa which we have found consistently to produce extensive external mycelium (e.g. 

G. intraradices, G. hoi) recovered most effectively when regularly treated with 

benomyl, as compared with Acaulospora spp.  It is also likely that taxa that are most 

effective at producing and maintaining a large extra-radical mycelium will have a 

large host range, since they will encounter a wider variety of roots.  Host range is 

therefore likely to be linked, as shown here, with other aspects of fungal biology. 

 

Most studies of AM fungi are conducted with a limited number of species, such as 

Glomus intraradices, G. mosseae and Gigaspora margarita, because they are easy to 

culture and will colonise almost any host (Smith & Read 1997).  Even some of these 

species display preferential patterns of colonisation when offered different host plants 
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(van der Heijden et al. 1998; Helgason et al. 2002; Hart et al. 2003).  However, AM 

fungal species that are abundant in the field, whether revealed by spore collections 

(Merryweather & Fitter 1995) or molecular techniques (Helgason et al. 2002), may be 

difficult or impossible to bring into culture.  Our data imply that these uncultured 

species may be responsible for important symbiotic functions.  AWhile an increasing 

number of studies have shown that AM fungi are not randomly distributed among 

plant hosts in natural communities (e.g. Sanders and Fitter 1992; Clapp et al.1995; 

Bever et al. 1996; Eom et al. 2000; Helgason et al. 2002; Husband et al. 2002; 

Vandenkoornhuyse et al. 2003; Öpik et al. 2003; Johnson et al. 2004; Öpik et al. 

2006), but none of these have shown whether this pattern is caused by host specificity.  

An alternative explanation would be control by environmental factors. Abiotic niche 

differentiation among the fungi might lead to these patterns since the plant species 

will also respond differentially to the same factors.  This study demonstrates that AM 

fungi differ in both host-range (i.e. the biotic niche) and symbiotic function, and that 

these two characteristics may be linked.  Therefore, the discovery of high diversity of 

AM fungi in a wide range of natural communities, and notably in the roots of single 

plant species (Helgason et al. 2002; Vandenkoornhuyse 2003; Wirsel 2004) as here, 

seems likely to reflect diversity both in function (Newsham et al. 1995) and host-

range, which will play a major role in controlling the diversity of the plant 

communities with which they interact (Hart et al. 2003).   

5 

10 

15 

20 

25 

 

This study represents evidence from a natural ecosystem that the high levels of AM 

fungal diversity found associated with individual plant species allow diversity in 

functional properties of individual co-existing AM fungal taxa.  This functional 

diversity may provide the mechanism by which AM diversity might regulate plant 
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community diversity: plant species may be expected to persist best in communities 

where their specialist symbionts occur, an outcome that would have large implications 

for the conservation of endangered species, for the ability of communities to respond 

to rapidly changing environments, and for our ability to manage invasive plant 

species.  A key priority in rhizosphere biology is therefore to elucidate these patterns 

of diversity, colonisation, and function in natural communities. 
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Table S1 Host range data and references 
Table S2  Identified host genera: habitats and study locations 

Figure S1.  Relationship between leaf P concentration and mycorrhizal colonisation of A. reptans. 
This material is available as part of the online article from:  
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http://www.blackwell-synergy.com/doi/full/10.1111/j.1365-2745.XXXX.XXXXX.x 
 
Please note: Blackwell Publishing is not responsible for the content or functionality of any 
supplementary materials supplied by the authors. Any queries (other than missing material) should be 
directed to the corresponding author for the article. 
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Table 1.  Colonisation of roots by arbuscular mycorrhizal fungi in the principal 

species sampled in the plots.  Only a single plant of M. perennis was sampled from a 

control basket.  The only species in which the reduction in colonisation was 

significant was A. reptans: F1,14 = 9.54, P=0.008 

5 

10 

15 

Species Control (%RLC) Benomyl (%RLC) 

Poa trivialis 1.4 3.0 

Primula vulgaris 2.3 2.4 

Ajuga reptans 44.6 12.3 

Lysimachia nummularia 13.0 2.7 

Teucrium scorodonia 16.7 6.8 

Oxalis acetosella 0.0 6.7 

Glechoma hederacea 16.1 1.7 

Mercurialis perennis (19.0) 3.0 

Silene dioica 0.0 0.0 

Circaea lutetiana 2.8 0.0 

Urtica dioica 0.0 0.0 
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Table 2.  Sequence types identified in A. reptans roots using NS31-AM1 PCR.   

 Fragment sizes†  Clone numbers (relative abundance)  Nearest  

Identity* HinfI Hsp92II Control Benlate    Host Range‡ similar sequence (%)§ 

5 

10 

Ascomycete 503 90,146,267 29 41   U32414 100 

Archaeosporaceae 478,23,5 237,269 10 22   AF131054 98 

Archaeosporaceae 474,23,5 147,90,260,5 0 1   AJ563887(96) 

Archaeo/Acau17 474,23,5 147,90,265 0 4   AJ563887(96); 

       AF074346(96) 

Archaeosporaceae 301,177,22,6 102,137,267 0 1   AF131054 (93) 

Archaeosporaceae 485,26,5 246,270 10 14   AJ563866 (-) 

Archaeosporaceae 485,26,5 238,260,5 16 13   AJ563887 (98) 

Archaeosporaceae 419,55,23,5 147,90,260,5 0 1   AJ563887 (95) 

Acau11 77,428,5 148,90,23,249 0 0.0 1 0.008 1  AJ716002 (99) 

Acau2 121,384,5/  505,5 148,90,23,249 25 0.197 6 0.050 1  AF074346 (99) 15 

Acau7 121,384,5 148,90,272 11 0.087 11 0.092 7  Y17633 (99) 

 25 



G.etunicatum 261,249 148,90,272 4 0.031 0 0.0 3  Y17644  (99) 

G.hoi 503,5 144,93,271 9 0.071 20 0.167 11  AJ716012 (100) 

G.intraradices 120,383,5 95,142,271 33 0.260 23 0.192 22  AJ309462 (99) 

G.mosseae 260,244,5 95,143,271 3 0.024 8 0.067 14  AY635833 (100) 

G.spurcum 120,141,249 148,90,271 0 0.0 9 0.075 1  AJ315525 (99) 5 

10 

15 

Glo14 120,49,90,241,5 237,268 0 0.0 1 0.008 5  AF437664 (100) 

Glo18 168,90,244,5 143,93,271 1 0.008 2 0.017 8  AF437675 (99) 

Glo2 169,331,5/120,49,331,5 90,147,268 24 0.189 6 0.050 11  AJ418882 (99) 

Glo3(UY1227) 120,49,334,5 237,271 10 0.079 19 0.016 15  AF437719 (100) 

Glo4 168,90,243,5 236,270 0 0.0 5 0.042 10  AJ716005 (99) 

Glo54(new) 120,380,5 237,268 7 0.055 1 0.008 1  AJ496085 (97) 

Glo55(new) 502,5 237,270 0 0.0 3 0.025 1  AY129612 (97) 

Glo56(new) 168,333,5 235,271 0 0.0 5 0.042 1  AJ716007 (96) 

 

*  Sequence types were given names derived from the isolates with greatest similarity.  The 3 sequence types with low similarity to 

databank sequences (Glo54-56; the numbering is consistent with previous publications) were judged to be new types.   
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†  RFLP fragment sizes reflect the order in which they occur, and are given for a single representative sequence without primers; they may 

vary within a group by 1-3 bp in total length.  Acau2 and Glo2 have 2 RFLP patterns as the resulting sequences do not resolve into 2 

groups.  Only sequence types that fell into the groups resolved by NS31-AM1 PCR (in bold), i.e. the Diversisporales and Glomerales 

(Schüßler et al. 2001) were assessed for host range, as amplification of the Archaeosporales and Paraglomales is unpredictable with this 

primer pair.  Underlined fragments are those used in the t-RFLP analysis.   5 

10 

‡  Host range was estimated by the number of plant genera in which the sequence type has been found in other published studies and 

database entries.  This was restricted to studies using field material (Helgason et al. 1999; Daniell et al. 2001; Helgason et al. 2002; 

Husband et al. 2002; Kowalchuk et al. 2002; Vandenkoornhuyse et al. 2002; Regvar et al. 2003; Scheublin et al. 2004; Whitfield et al. 

2004; Wirsel 2004; Oba et al. 2004; Vallino et al. 2006; Santos et al. 2006).  (Table S1 and Table S2, supplementary information) 

§  % similarity is given where a full alignment was generated.  Representative sequences have been deposited in EMBL; accession 

numbers AJ854081-AJ854105.   
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Figure 1.  Leaf and root P concentrations of A. reptans in benomyl-treated and control 

baskets.  H1-H3 are harvests 1-3 
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Figure 2.  (a) Relationship between relative abundance of clones of each AM 

sequence type isolated from roots of A. reptans in the control baskets and their host 

range.  Total number of AM clones (n = 127) was used as the reference point, 

(Kendall’s tau correlation = 0.365, p>0.05; number of clones used rather than RA).  

(b) Relationship between number of clones of each AM sequence type isolated from 

5 
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roots of A. reptans in the benomyl treated baskets and their host range.  Total number 

of AM clones (n = 120) was used as above, Kendall’s tau correlation = 0.450, p<0.05; 

clone numbers used as above  Open symbols are taxa used in the studies discussed in 

the text, ∆ - G. hoi, ◊ - G. mosseae, □ - G. intraradices, ○- Glomus sp. Glo3.   
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Figure 3. Proportion of Terminal Restriction Fragments (TRF) that could be ascribed 

to Acaulospora spp. and G. intraradices/G. mosseae on the 35 roots from 7 species 

from which amplification was obtained, viz. 8 (control)/ 6 (benlate) A. reptans, 2/1 G. 

10 
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hederacea, 0/2 Circaea lutetiana L., 3/1 M. perennis, 3/3 L. nummularia, 1/2 O. 

acetosella, 3/0 P. trivialis; 20 plants from control treatments and 15 from benlate. 
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