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Microsegregation and inclusion development 
during the casting of steel

A.A. Howe
Corus RD&T, Swinden Technology Centre, Moorgate, Rotherham S60 3AR &  
Dept. of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK

Abstract
The enrichment of composition in the residual liquid during solidification is of itself an important parameter regarding 
the fitness for purpose of the alloy and, furthermore, will have a major influence on the precipitates and oxide inclusions 
that can nucleate and/or grow in the mushy zone. Corus sought a relatively simple, rapid model for this microsegregation 
and its associated inclusion type and size, for predictions across the thickness of continuously cast steels, suitable for use in 
conjunction with macro-models but demonstrably superior to the use of analytical equations. Notably, the analytical equations 
employ constant temperature equilibrium and diffusivity data for a process that can cover a very wide temperature range, 
and the assumed growth laws coupled with these data have an implied thermal history at odds with the environment of the 
macroscopic model within which the algorithm is to be used. The development and use of this model are described, along with 
its validation against a proven but time-consuming Finite Difference program for this purpose.

Keywords: Microsegregation, inclusion development, casting of steel.

1. Introduction
In certain steel grades, substantial changes in the oxide inclu-
sions are noted between liquid steel and cast steel samples. 
The microsegregation process is the obvious explanation, 
and this was the particular focus of the work. However, 
this involved deriving a rapid routine for microsegregation 
calculation suitable for use in conjunction with macro-
scopic solidification models, and which could be used for 
other purposes as well.

Analytical equations of microsegregation are in 
common use, notably the equation of Clyne and Kurz [1], 
but these cannot handle temperature-dependent vari-
ables such as diffusivity, or address the effects of dendrite 
arm coarsening. Moreover, they can assume a growth rate 
and corresponding temperature-time history that is incom-
patible with that naturally resulting from the thermal 
environment. Numerical models can avoid these problems. 
Corus already has relevant numerical models, i.e. a Finite 
Difference model for microsegregation of multicompo-
nent steels included the three-phase peritectic transforma-
tion [2,3], including dendrite arm coarsening according 
to an imposed law, and the MICRESS Phase Field model 
courtesy of a European Framework 5 project [4] for which 
the length-scale and geometry are part of the solution rather 
than required as input parameters. However, these are too 
time-consuming for use in conjunction with a macroscopic 
model. This paper describes Corus’ model that avoids both 
the limitations of the analytical equations and the time 
requirements of the full, numerical models.

2. Basis of microsegregation model
Before describing how the limitations of analytical models 
can be avoided, it is useful to consider the derivation of the 
standard Clyne-Kurz formulation. In essence, it straddles the 
range of solute behaviour from the equilibrium lever-rule to 
the Scheil equation, according to a parameter dependent 
on the diffusivity. In differential form, the lever rule can be 
written as follows, where CL is the concentration in the liquid, 
and the concentration in the solid at the interface is assumed 
to be given by kCL where k is the partition coefficient, f is the 
fraction solid, and a raised “dot” signifies the time derivative:

 ( ) ( )
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The Lever rule assumes a uniform increase of the solid 
composition to kCl, as would be the case for an infinite 
diffusivity. A more realistic solute balance equation will 
include a “back diffusion” term of the solute flux away from 
the interface into the bulk solid according to a finite diffu-
sivity. Treatment of finite diffusion requires treatment of 
an actual length-scale rather than a fraction solid, and the 
distance ordinate is represented here by r (the equations are 
easily modified for extension beyond 1D to a radius), with 
the diffusion coefficient given by D:
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The Scheil equation, in differential form, results simply 
from setting D to zero. However, a more useful limit is that 
of Brody and Flemings [5], extendable to finite, low values 
of D, whereby the gradient in the concentration towards the 
interface (dC / dr) is considered equal to the gradient of the 



77

Proceedings of the 5th Decennial International Conference on Solidification Processing, Sheffield, July 2007

concentration at the interface as the interface advances, i.e. 
kdCL / dr. The resultant solute balance formula is therefore:

 ( ) ( )
.
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l
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l Crrdr
dCk.Drk1C −+=−  (3)

Clyne and Kurz [1] got around the restriction to low 
diffusivities by devising a back-diffusion term that varied 
from the equilibrium limit to the Brody-Flemings limit 
according to the diffusivity. Consider the differential form 
of the Lever rule, written in terms of distances, r, rather than 
fraction solid. Essentially, Clyne and Kurz added a factor, A, 
to the back-diffusion/solid enrichment term:

 ( ) ( ) ...
1 lfll CrrCArkrkC −+=−                   (4)

This term, A, had to equal unity for infinite diffu-
sivity and zero for zero diffusivity, but moreover, it had to 
tend to the Brody and Flemings solution at low but finite 
diffusivities. Noting that dCl / dr in Equation 3 is equal to

.

.

ll
r
C

dr
dt.

dt
dC = , then A must tend to D / rr⋅ at low values of D to

render Equations 3 and 4 equal to each other. Clyne and Kurz 
assumed a parabolic growth law whereupon rr⋅ is constant, 
and which, combined with a constant diffusivity, allows 
the differential equation to be integrated analytically. They 
devised a rather complicated function to allow A to tend 
from zero to unity as D tends from zero to infinity. However, 
it was found [6] that a much simpler function corresponds 
to theirs very closely, and moreover, could be modified for 
other growth laws and geometries:

 α+
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where 2α = D / rr⋅

 
(5)

(In Clyne and Kurz’ case with an assumed, parabolic growth 
rate, α was given by y 2.
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This is the basis of the new model, but where D and rr⋅ 

are allowed to vary according to the variation in temperature, 
interactively compatible with the macroscopic actual or model 
environment. This merely requires the numerical, macroscopic 
model to perform sufficient iterations for this microsegregation 
routine to produce a stable answer, rather than an answer that 
still varies according to the number of iterations. The interac-
tion is through the heat balance equation.
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where dQ / dt is the heat extraction rate, H is the latent heat, 
CP is the specific heat capacity (whether approximated as 
being equal for the solid and liquid or weighted according 
to their volume fractions if different values of CP per phase 
are employed, and dfs / dt is given by (dr / dt)/rf . Assuming 
liquidus depressions are additive, as has been shown to be 
very successful up to medium alloy steels [7] and where mi is 
the liquidus slope, dT / dCl , for the solute i:
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i
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Then the suite of equations is readily solved for an arbitrary 
number of solutes without recourse to time-consuming itera-
tion with thermodynamic software. In addition, the effect of 
arm coarsening can be included according to a known, imposed 
law. The core solute balance is extended as follows [8]:
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where rt is the size of the representative cell at time, t. The 

rf term employed previously has to be changed to this new 
parameter, as it is no longer the final value. With rt imposed 
according to an equation only of time, t, this does not intro-
duce any further unknown parameters. Typically this would 
take the form  3

1
Gtrt =  where G is an empirical constant.

Summing terms for the various solutes that might be 
present and substituting into Equation 6, yields the following 
equation to be solved at each iteration of the macroscopic 
model:
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With the growth rate determined according to a known 
heat extraction rate, the terms dCli / dt and thence dT / dt can 
all be determined from the above equations, and r, Cl,i and 
T can be updated in first-order fashion according to the 
time increment employed for the calculations.

3. Growth of inclusions
The model addresses the worst case that should be expected 
from inclusion development in the mushy zone, i.e. with a 
suitable seed present to avoid any nucleation problems, and 
the size and composition of the inclusion being that expected 
from equilibration of the residual liquid. The procedure is 
thus straightforward. At each iteration, the residual liquid 
composition is compared with solubility product formulae 
for the relevant range of oxide species involving one or more 
of silicon, manganese and aluminium. If a particular oxide is 
identified as being stable, its size is calculated from the amount 
of its component elements present in the residual liquid. 
Within a well-formed columnar zone, the residual pool size is 
taken to be that of a volume corresponding to the secondary 
dendrite arm spacing. Within the more chaotic structure of 
the equiaxed zone, it is arguable that a larger volume should 
be considered because of the more ready percolation between 
dendritic interstices. That would be a time-consuming model-
ling exercise in itself, and for present purposes a 50% increase 
in diameter is assumed, corresponding to the sourcing of 
material from a little over three dendritic interstices.

4. Validation
The in-house Finite Difference model had already been 
successfully validated against experiment [3] and microseg-
regation models derived at other institutes [3,9]. This, there-
fore, formed the basis for testing of the streamlined model.

A time-dependent law for the secondary dendrite arm 
coarsening behaviour has to be known, for the current example 
being a simple cube-root time law consistent with standard 
expectation [8] and fitted to experimental data for the grades 
and casting machines in question. The same law is then used in 
the calculation throughout the cast section, with the amount of 
coarsening and inclusion growth therefore limited by the local 
solidification time as calculated by the macro/micro model.

An initial test for any iterative model is that the result 
converges on a consistent answer with successive refinement 
of the iterative step size (time-step). Moreover, to be of use, 
it should do so at a sufficiently coarse step size to keep the 
number of iterations reasonable and the run-time thereby 
very short. Of course, the converged solution should also 



78

Proceedings of the 5th Decennial International Conference on Solidification Processing, Sheffield, July 2007

be a close approximation to that obtained from the original 
FD model. The streamlined model typically reached a 
predicted, depressed solidus temperature within a fraction of 
a degree of the “infinite iterations” result within a fraction 
of a second’s run time. In Figure 1, an example is given of 
the convergence of the calculated results with decreasing 
step size.

It can be seen that the streamlined model converges 
for time-steps below about 10 s in this case of a ~ 660 s local 
solidification time, onto values within 2.5% of the full, 
Finite Difference solution. In Figure 2, example calcula-
tions are presented of the match between the streamlined 
model and the full FD model with increasing fraction solid. 
It can be seen that the development of carbon content is 
almost identical: the value of A in the streamlined model 
is high enough for the calculations to follow closely the 
equilibrium result, and the FD model assumes equilibrium 
for this element [3]. The streamlined model slightly over-
estimates the enrichment of silicon and underestimates the 
enrichment of manganese, but both within a few percent 
of the FD result until the very end of solidification, at the 
very sensitive calculation of the depressed solidus where 
the silicon enrichment is overestimated by about 10%. In 
absolute terms these differences are still rather small and, 
moreover, for the current concern of inclusion development 

in the mushy zone, the last few percent of solidification are 
not very important. Accordingly, the selection of inclusion 
species and the potential size that the inclusions could reach 
are essentially identical between the two models.

Actual sizes and frequency of occurrence of the poten-
tial, maximum sizes of inclusions are commercially sensitive 
data, but an illustration is presented here of the relative 
sizes calculated for two different caster configurations to 
demonstrate the application of the streamlined model in 
this regard, in Figure 3.

5. Discussion
The streamlined model has been shown to offer surprisingly 
good agreement with the full, FD model, and is thereby 
suitable for use in conjunction with macro-models. It 
predicts data on microsegregation and inclusion type/size 
information forming in the mushy zone, across the width 
and/or thickness of the cast section, which would invoke a 
prohibitive time requirement using the FD model.

However, various limitations should be noted:
i. Nucleation is not addressed. Homogeneous nucleation 

is very unlikely, so some, albeit tiny, “seed” oxide is 
probably required. This will result in otherwise equiva-
lent interdendritic interstices exhibiting anything 
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from no oxide particle up to the maximum particle size 
predicted by the model.

ii. No automatic differentiation is made between the 
columnar and equiaxed zones. For the former, the region 
from which material can be sourced for the growth of an 
individual oxide is likely to be one interdendritic pool, 
whereas in the more chaotic equiaxed zone, this feeding 
ground is likely to be larger. Currently, this effect is taken 
to approximately counter the reduced size at the centre 
that is otherwise expected of the observed “double-hump” 
profile of dendrite arm spacings across the casting.

iii. Macrosegregation spots or channels are not addressed: 
potentially these could promote larger inclusions and/
or different chemistries.

iv. Substantial, pre-existing inclusions are not addressed, 
i.e. any that might be present prior to solidification.

v. Currently, a single solidification phase is addressed, 
although work is in hand to extend the model to three 
phases and the peritectic transformation.
Regarding the last two, attention should be paid to 

their avoidance rather than to modelling their effects, but 
the micro model can be readily adapted to predict the result 
for a known macrosegregate or assimilation with a known 
exogenous inclusion. Regarding the first two, the predic-
tions are considered to be satisfactory and useful for the case 
described here.

6. Conclusions
A streamlined microsegregation model is presented, suitable 
for use within a macroscopic model of solidification, which 
allows for multiple solutes with widely differing diffusivities, 
temperature-dependent thermodynamic/diffusive data, and 
secondary dendrite arm coarsening, whilst avoiding imposed 
thermal histories that can be inconsistent with the natural 
thermal history for the combined micro/macro model. 
Excellent agreement is observed with a time-consuming, 
Finite Difference model. Its particular use highlighted here 
is for the prediction of the type and maximum size of inclu-
sion expected to develop within the mushy zone during 
solidification, for which it is proving very useful.
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