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Abstract
A fully-implicit numerical method based upon adaptively refined meshes for the thermal-solutal simulation of alloy solidification 
in 2D is presented. In addition we combine an unconditional stable second-order fully-implicit time discretisation scheme 
with variable step size control to obtain an adaptive time and space discretisation method, where a robust and fast multigrid 
solver for systems of non-linear algebraic equations is used to solve the intermediate approximations per time step. For the 
isothermal case, the superiority of this method, compared to widely used fully-explicit methods, with respect to CPU time and 
accuracy, has been demonstrated and published previously. Here, the new proposed method has been applied to the thermal-
solutal case with high Lewis number, where stability issues and time step restrictions have been major constraints in previous 
research.

Keywords: Numerical methods, alloy solidification.

1. Introduction
In order to model and simulate dendritic crystal growth in 
alloys, the phase-field method is one of the most popular 
and powerful techniques. However, the nature of phase-
field models leads to coupled systems of highly non-linear 
and unsteady partial differential equations (PDEs), which 
consist of a non-linear transport equation to model the 
microstructure and two diffusion equations to describe the 
concentration and temperature change in the system, where 
the ratio of the diffusivity coefficients (Lewis number) is 

physically of order 103. This difference in the length scale of 
the diffusion fields can be seen in Figure 1, where a typical 
concentration (c / c∞) and temperature field (θ) of a simula-
tion with Lewis number 40 is shown on the left and right 
respectively.

Where the concentration field, on the left-hand side, 
forms a very steep interface, the temperature field varies 
more gradually (the contour of the interface is plotted in 
the Figure to show where the interface lies). Typically, this 
complexity has led modellers to rely primarily on relatively 
simple numerical methods; however in this work we aim to 

Figure 1: The concentration field and the temperature field of a simulation with Lewis number 40.
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demonstrate that it is possible, and indeed advantageous, to 
make use of advanced numerical methods, such as adaptivity, 
implicit schemes and multigrid. The model is described in 
the next section before the proposed discretisation method 
is described and some results are shown. A detailed descrip-
tion of the discretisation method, as well as a comparison to 
widely used explicit methods, can be found in [1].

2. Phase-Field model
The phase-field model used here is the coupled thermal-
solute model for the simulation of microstructure formation 
in dilute binary alloys, given in [2]. The microstructure is 
represented by the phase variable φ which divides the liquid 
and the solid phases by a diffuse interface. The solid and 
liquid phases correspond to φ = 1 and φ = – 1 respectively, 
and in the interface region φ varies smoothly between the 
bulk values. The governing equations, in dimensionless 
form for vanishing kinetic effects, are
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where ψ = arctan(φy / φx) is the angle between the normal 
to the interface and the x-axis, A(ψ) = 1 + ε cos(ηψ) is an 
anisotropy function with anisotropy strength ε and mode 
number η. The dimensionless coupling parameter is given 
as λ = ~D / a2 = (a1W0) / d0 with d0 as the chemical capillary 
length. Also, a1 = 5√2 / 8 and a2 = 0.6267 [5] to simulate 
kinetic free growth with the dimensional solute diffusivity 
~D = Dτ0 / W0

2, where τo = (d0
2 / D)a2λ

3 / a1
2is a relaxation time 

and W0 = d0λ / a1 is a measure of the interface width. The 
dimensionless concentration field U is given as
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where c∞ is the value of the concentration c far from the 
interface and k is the partition coefficient. The system 
parameters are set to k = 0.15, W0 = τ0 = 1, ε = 0.02 and 
η = 4.0.

The highly nonlinear nature of these time-dependent 
PDEs is clearly apparent due to the anisotropy terms in 
the phase equation and the solute trapping term in the 
concentration equation, respectively. A further numerical 
difficulty arises from the fact that the ratio of diffusivities 
(Lewis number) Le = α / D is typically ~ 103. Here, the Lewis 
number is set to 40 in order to compare the simulation 
results with results published in [3].

3. Numerical methods
Due to the nature of the phase-field method, where the 
variables may change only in a small region relative to 
the computational domain, adaptive mesh refinement is 
a natural choice and leads to a computationally efficient 
method. The governing equations are discretised with a 
finite difference approximation based upon a quadrilateral, 
non-uniform, refined mesh. The adapted meshes are non-
uniform in the sense that we allow hanging nodes.

3.1 Spatial discretisation

For all of the computational results presented in this paper, 
second order finite difference schemes have been used. 
Important for the stability of the numerical method is the 
fact that the interface is always in the refined region. To 
ensure this, adaptive refinement is used based upon an 
elementwise gradient criterion. The final adaptive refined 
mesh for the simulation shown in Figure 1 is shown in 
Figure 2.

The mesh shows a very high resolution in the interface 
region in order to resolve the steep gradient of the phase 
and concentration field. Also, refinement away from the 
interface on coarser mesh levels is used to represent the 
temperature field accurately.

Figure 2: Final adaptive refined 
mesh, where different colours are 
used to mark the different mesh 
levels
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but that this increases rapidly over time and converges to 
a constant value which depends upon the choice of the 
tolerance. The final step size of the BDF2 method is slightly 
more than 0.18 which is 60 times bigger than the reported 
maximum time step size of 0.003, for the explicit Euler 
method on the same mesh size, in [3].

3.4 Non-linear multigrid solver

When using implicit time discretisation methods it is neces-
sary to solve a system of non-linear algebraic equations at 
each time step. A multigrid solver for adaptive refined meshes 
has been developed based upon the Full Approximation 
Scheme (FAS) for resolving the non-linearity and the 
adaptive multigrid approach, see [4]. A major property of 
the multigrid method is the h-independent convergence, 
which means that the convergence rate does not depend 
on the spatial element size. This has been demonstrated 
for the isothermal case, where we showed that our method 
converged almost independently of h with the same rate for 
uniform as well as adaptively refined meshes, see [1].

4. Results
The dendritic growth simulation is undertaken with the 
model parameters given in section 2. The only free para-
meter to choose is the coupling parameter λ, which depends 

3.2. Time discretisation

A widely used choice for temporal discretisation of phase-
field models are explicit methods such as the forward Euler 
scheme, see [3]. As already mentioned, the explicit methods 
suffer from a time step restriction. This condition is neces-
sary in order to ensure the stability of the discretisation 
scheme, and, for some non-linear systems, this can lead to 
excessively small time steps (Δt). In order to overcome this 
restriction the use of implicit time integration methods is 
proposed in this paper. These methods may be designed to 
be unconditionally stable, which means that the time step 
size does not depend on the space step size in order to ensure 
stability. Use of a second-order Backward Difference Formula 
(BDF2), combined with the described spatial discretisation, 
leads to a second-order time and space method. This is not 
true for second-order explicit time integration methods, such 
as Runge-Kutta or the trapezoidal or midpoint rules because 
the stability of these methods are also only preserved by the 
same condition as for the forward Euler scheme.

It is very clear that the BDF2 method converges with 
significantly larger time steps than the explicit Euler method 
and can provide comparable accuracy with much larger Δt, 
see [1].

3.3 Variable step size control

The initial conditions typically considered for this problem 
consist of a small region of solid at the centre of the domain, 
known as the nucleus. The growth velocity of the initial 
nucleus is very high at the beginning of the simulation, 
before the interface becomes unstable and dendritic arms 
begin to grow, ultimately reaching a steady-state velocity. 
Consequently, adaption of the time steps for the BDF2 
method is likely to be efficient and leads to an adaptive 
time and space discretisation method. The adaptive time 
stepping algorithm we use is based on the following rule: 
if the local time discretisation error is less or equal to the 
tolerance Tol, this time step is accepted and the next time 
step size is increased, whereas, if the local error is bigger 
than Tol, the step is rejected and redone with a smaller time 
step. Figure 3 illustrates the progression of the time step size 
for tα / d0

2 = 0…260000, for the tolerance Tol = 0.00125 on 
a mesh with minimum spacing of h / W0 = 0.78. One can see 
that a very small time step size is used right at the beginning 
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Figure 3: The evolution of the time step size for a given tolerance.
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Note, however, that the actual tip radius is only of 
limited usefulness when comparing simulation results against 
theoretical predictions. Instead, a calculated optimal para-
bolic tip radius is typically used, especially since theories 
which are based on the Ivantsov solution assume that the 
dendritic arm takes a parabolic shape. This parabolic tip 
radius is calculated by using a least squares fit. Therefore, 
it is assumed that a parabola which is lying on the x-axis 
and pointing to the growth direction can be represented 
as [5] y2 = – 2.0ρ(x – x0) by introducing a Cartesian coor-
dinate system (x,y) which is situated at the tip position x0. 
After extracting the right dendritic arm from the contour 
plot (φ = 0), and shifting to the origin of the new coordi-
nate system, the least-squares fit produces the unknown 
parameter ρ and x0. The least-squares fit and the actual 
arm of the dendrite are shown in Figure 5. The accuracy 
of the unknown parameters depend on the choice of the 
fitting interval, and in our case the interval is chosen to be 
~x = [– 50…– 5]. When extending or varying the interval, the 
calculated tip radius lies between 11.95 and 12.23, which 
gives the same average value as obtained when using ~x.

Additionally, the Péclet number Pe = Vtipρ / 2α can 
now be calculated. All the parameters shown in Table 1 are 
in very good agreement with the published results in [3].

4.2 Gibbs-Thomson comparison

The dimensionless form of the anisotropic Gibbs-Thomson 
relation for evaluation along the x-axis is given as [3] 
Ui = (– d0(1 – 15ε) / ρa – θi) / Mc∞ where ρa is the actual tip 

on the choice of the solutal diffusivity coefficient D. This 
parameter is set to D = 2a2 here, whereby it follows that 
λ = 2 and the capillarity length d0 = 0.441942. In order to 
simulate a pure four-fold symmetry, the radius of the initial 
seed is taken as R0 ≈ 10d0 or R0 ≈ 78d0. The rectangular 
domain is chosen to be Ω = [– 800,800]2 with Dirichlet 
boundary conditions (φ = – 1, U = 0, θ = – 0.55). A typical 
result for the simulation of the model described in section 2 
is shown in Figure 1 where the Lewis number is 40 which 
leads to a significant difference in the length scales. Figure 1 
shows the mixture concentration c / c∞ and the dimension-
less temperature field θ on the left-hand side and the right-
hand side respectively where the initial seed radius is set to 
r0 ≈ 10d0. The contour φ = 0 is also plotted into the right 
picture to show where the interface lies.

4.1 Parameter study

Two ways of verifying our results will be discussed in this 
section. Firstly, the simulation results will be compared 
against the results published in [3] and secondly a compar-
ison to the anisotropic Gibbs-Thomson relation will be 
performed.

Figure 4 shows the actual tip radius of curvature ρa 
and the tip velocity Vtip developing over time measured 
along the x-axis for t = 0…1000 on a mesh with minimum 
step size h / W0 = 0.78. Both parameters indicate that the 
simulation has reached a steady-state. The steady-state 
values are shown in Table 1 for two different initial solute 
concentrations.

Table 1: Steady-state simulation parameters for Le = 40 and different initial solute concentration.

Vtip Vtipd0 / α ρa ρ ρ / d0 Vtipρ / (2α)

Le = 40, λ = 2, Mc∞ = 0.07 0.452 0.0040 7.22 12.10 27.38 0.0546
Le = 40, λ = 2, Mc∞ = 0.01 0.793 0.0070 13.40 22.05 49.89 0.1744

Table 2: Steady-state simulation parameters for Le = 100.

Vtip Vtipd0 / α ρa ρ ρ / d0 Vtipρ / (2α)

Le = 100, λ = 1, Mc∞ = 0.07 0.503 0.0071 25.61 47.63 53.89 0.1913

Figure 5: Comparison of the original dendrite arm with the fitted 
parabola.

Figure 6: Comparison of the calculated interface concentration 
with Gibbs-Thomson relation.
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radius of curvature and θi is the interface temperature, which 
can both be obtained directly from the simulation results at 
each time step. The exact position, in the interface region, 
where the interface temperature should be evaluated is 
discussed in [2] and [3]. For comparisons with this relation, 
the interface concentration is calculated at each time step 
by computing the value of U directly behind the interface 
where φ ≈ 1, see [3]. The simulation was undertaken with 
an initial seed radius of R0 ≈ 78d0 which led to the same 
steady-state parameters as [3], see Table 1. As one can see 
in Figure 6, a very good agreement can be demonstrated 
for the comparison with the theoretical Gibbs-Thomson 
prediction.

4.3 The effect of increasing Lewis number

Further increases in the Lewis number lead to a signifi-
cant increase in the tip velocity, which can be a source of 
numerical instability. When using an explicit time integra-
tion scheme, this would cause the time steps size to drop. 
With our proposed implicit method, where the time step 
is additionally adapted, the final time step size can be kept 
relatively constant.

Results for the case with Le = 100 are also presented 
in [3], which show a good agreement with our results in 
Table 2, apart from a slight difference in the Péclet number 
that may be due to the fact that we obtain our results on 
a finer mesh than the authors in [3], which should lead 
numerically to higher accuracy.

5. Conclusions
This paper presents an efficient fully adaptive numerical 
scheme for the simulation of dendritic alloy growth in an 
undercooled melt in two dimensions. In order to solve 
efficiently on meshes with a very fine spatial resolution, 
adaptive meshing and a second-order implicit time discreti-
sation method are used and coupled with variable time step 
size control. This combination allows much larger time steps 
which reduces the execution time drastically compared to 
explicit time integration methods since there is no artificial 
stability restriction imposed on the time step size.

The presented steady-state simulation results show 
very good agreement with published results and theoretical 
prediction by the Gibbs-Thomson relation. Further studies 
may be undertaken, including the application of this numer-
ical method to problems with very high Lewis number and 
realistic material parameters.
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