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Single-Trial Multiwavelet Coherence in Application
to Neurophysiological Time Series

John-Stuart Brittain, David M. Halliday*, Bernard A. Conway, and Jens Bo Nielsen

Abstract—A method of single-trial coherence analysis is pre-
sented, through the application of continuous multiwavelets.
Multiwavelets allow the construction of spectra and bivariate sta-
tistics such as coherence within single trials. Spectral estimates are
made consistent through optimal time-frequency localization and
smoothing. The use of multiwavelets is considered along with an
alternative single-trial method prevalent in the literature, with the
focus being on statistical, interpretive and computational aspects.
The multiwavelet approach is shown to possess many desirable
properties, including optimal conditioning, statistical descriptions
and computational efficiency. The methods are then applied to
bivariate surrogate and neurophysiological data for calibration
and comparative study. Neurophysiological data were recorded
intracellularly from two spinal motoneurones innervating the pos-
terior biceps muscle during fictive locomotion in the decerebrated
cat.

Index Terms—Coherence, fictive locomotion, motor studies,
multiwavelet, time-frequency analysis.

I. INTRODUCTION

M
ANY signals recorded from neurophysiological systems

have proved well suited to coherence analysis [1]–[6].

Coherence provides a normative measure of association be-

tween processes in the frequency domain. Within motor studies

coherence has provided an intuitive measure of common

synaptic input to motor pools [2], [4], [6].

In constructing estimates of bivariate statistics, such as co-

herence, knowledge of both auto-spectra and cross-spectra are

required. A common problem in Fourier (and wavelet) analysis

has been the insufficient number of degrees of freedom to es-

timate both of these quantities within single trials [7]. In order

to estimate coherence it is first necessary to create consistent

spectral representations through the smoothing of periodogram

ordinates via ensemble averaging, or by smoothing in one or

both of the time/frequency domains. An example of single-trial

smoothing is Welch’s time-averaging over short, modified peri-

odograms [8].
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Traditional trial-averaging methods have proved extremely

insightful over the years, most notably as a mean measure for

common synaptic input to motoneurones [2], [4], [9] and cor-

tico-cortical activity [1]. Trial averaging does not by its very na-

ture provide information on trial-varying parameters. Features

which are not aligned in each trial or which are inconsistent be-

tween trials will be suppressed.

Experimental protocols are often heavily influenced by

the analysis methods available. Subsequently, experiments

are often designed to allow statistically reliable results to be

generated, usually through repeat trials. This places severe

restrictions on experimental protocols. Single trial analysis

opens up the prospect of developing more complex protocols,

allowing a wide range of dynamic and inter-related actions to

be considered through more natural kinematics.

Analysis of the frequency content of electrophysiological

signals has long been of interest to scientists and clinicians. For

example in electroencephalography (EEG) the composite time

varying signal is often described in relation to the amplitude

of signal within different frequency bands termed theta (4–8

Hz), alpha (9–12 Hz), beta (13–30 Hz) and gamma ( 30

Hz). It is now common to examine the synchronization be-

tween EEG sites using coherence analysis (for example [1]).

These frequency bands broaden at higher oscillation rates and

may be considered well suited to a variable time-frequency

decomposition [10], such as provided by wavelet analysis.

Although [10] showed that wavelet and Fourier techniques

may be considered equivalent under certain conditions, one

clear distinction is that the Fourier transform [as computed by

the fast Fourier transform (FFT)] naturally decomposes using

a fixed bandwidth, while the wavelet transform decomposes

using a frequency-dependent bandwidth.

Given a frequency banding scheme that appears logarithmic

in nature, such as seems prevalent in many electrophysiological

signals, the short-time Fourier transform (STFT) may be consid-

ered inappropriate and inaccurate as it imposes a fixed response

interval onto the analysis—all frequencies bands are analysed

using a fixed length time-window [11]. The wavelet transform

implements a time-window that varies with the frequency band

under consideration and is, thus, much better suited to signals

which possess variable bandwidth parameters [11].

In the wavelet literature, the squared magnitude of the

wavelet transform is often referred to as the wavelet power

spectrum. Drawing comparisons with Fourier analysis it is

apparent that such a quantity is in fact analogous to the peri-

odogram [12]. In order to generate a reliable estimate of the

spectrum it is necessary to smooth this “wavelet-periodogram”

either by ensemble averaging or locally in the time/frequency

0018-9294/$25.00 © 2007 IEEE
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plane. Wavelet methods have already proved suitable for en-

semble-averaging, where relative time dependence may be

examined across trials [13], [14].

Single-trial wavelet coherence was considered in [11],

where it was not immediately apparent how the smoothing

process should be performed. Since the paper’s publication

several methods have been proposed which include explicit

smoothing via a scale-dependent 2-D smoothing operator [15],

smoothing in one or both of the time/frequency domains [12]

and a time-averaging method based on Welch’s overlapping

segments [16].

We now introduce a method of determining bivariate

time-dependent statistics within single trials, via multiwavelet

analysis. Multiwavelet analysis is based on concepts at the

heart of Thomson’s multitaper method [17], extended to the

affine time-scale plane. The foundations for multiwavelet anal-

ysis have been developed in recent years (most notably [18]),

finding application in a number of disciplines [19]–[21]. A

multiwavelet framework for the practical estimation of bivariate

time-dependent statistics within single trials is now presented.

Existing methods for the estimation of single-trial wavelet co-

herence [11], [12], [16] all make use of some form of explicit

scale-dependent smoothing over the wavelet periodogram. Mul-

tiwavelet methods make use of implicit smoothing through the

application of several orthogonal wavelet functions. This ap-

proach has important practical advantages with regards to com-

putation and the subsequent interpretation of results (see Section

IV).

Due to the similar approach employed by the three explicit

smoothing methods described above, only one will be discussed

further as part of a comparative study with multiwavelets. We

make use of the method described in [15] due to its intuitive

construction and precedence in the current literature [15], [22],

[23].

In this paper, the method of multiwavelet analysis is consid-

ered within a bivariate spectral framework. Multiwavelets are

then compared with an alternative single-trial wavelet coher-

ence approach. Comparison is made between the fundamental

methodologies, statistical descriptions, interpretation of results

and computational aspects. Both methods are then applied to

surrogate and neurophysiological time series to highlight the po-

tential advantages offered by a multiwavelet approach.

II. METHODS

Given a time series , the continuous wavelet transform of

that series may be defined as [11], [24]

(1)

where we make use of two parameters, scale and location

. is taken to be the wavelet function, bounded by cer-

tain criteria. Briefly, wavelet functions must be of finite energy,

must hold under the admissibility condition and for complex

wavelets, their Fourier transforms should be real and vanish for

negative frequencies (for details see [24] and [25]).

A discretized version of the time series , where

is the sampling interval, allows the CWT to be written in dis-

crete-time form for practical implementation (see, for example,

[11])

(2)

with location parameter now taking integer values.

The convolution in the above equation may be more effi-

ciently computed through application of the FFT algorithm (See

[11] for details). We relate scale-location space to the more usual

time-frequency space by defining the relation ,

where represents time offset in seconds and represents fre-

quency in Hz. Time may be related to location via .

Taking a reference frequency to be the frequency at which the

amplitude spectrum of the wavelet function is at a maximum, we

can relate scale and frequency via . This mapping im-

plicitly reverses the ordering of parameters. Making these sub-

stitutions, we may now consider the wavelet transform as an

operator in time and frequency .

Using time-frequency representation, a first approximation

to the wavelet cross spectrum (the cross-wavelet-periodogram)

between two processes and may be constructed as

. We will have occasion to

write for the auto-spectra of , and

will refer to as the wavelet cross-spectrum between

processes and . Analogous to Fourier analysis, wavelets

do not provide enough degrees of freedom to estimate auto-

and cross-spectral values simultaneously. To alleviate this

problem the wavelet-periodograms must undergo some form of

smoothing to make them consistent and, thus, be considered

estimates of the wavelet spectrum [12].

We now define some bivariate statistics. For complex-valued

wavelet functions, the wavelet cross-spectrum will also be com-

plex, pertaining to a representation in polar form,

. The value of is taken to be the time-localized

phase between processes and . Phase may be determined as

the argument of the cross-spectra, . Coher-

ence provides a real valued normative measure of association

between processes [26]. The definition of coherence may be

extended for use within a time-frequency framework by con-

structing estimates at each point in time-frequency space using

the associated localized spectra

(3)

The lack of sufficient degrees-of-freedom in both Fourier and

wavelet analysis means that coherence constructed from un-

smoothed periodogram estimates will be identically equal to 1.

Smoothing the spectral estimates will allow coherence to vary

in the range [0,1], with a bias related to the degree of smoothing

performed [10].

An important issue in wavelet analysis is the existence of

the cone-of-influence (COI), defined to encapsulate the region

of a wavelet transform affected by boundary conditions. As
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the wavelet transform produces a variable time-frequency

decomposition, the COI expands at lower frequencies, and

for the lowest frequency components will impinge upon all

transformed points. In this paper, we take the definition outlined

in [11] for identifying the COI region. This is given at each

frequency by the -folding time1 such that the wavelet power

for a discontinuity at the edge drops by a factor .

A. Smoothing Filter

It was suggested in [15] that single trial wavelet coherence

could be estimated through spectral smoothing via a scale-de-

pendent smoothing operator. The specified operator utilized the

‘natural’ width of the wavelet in time and its decorrelation width

in scale. This shape was described as the best compromise solu-

tion, providing the minimum amount of smoothing necessary to

include two independent points in time and scale. Wavelet co-

herence has been applied using this approach in [15], [22], and

[23].

In application of the explicit spectral smoothing approach, we

make use of the Morlet function in the wavelet transform (fol-

lowing [15], [22], and [23]). The Morlet is defined in the time

domain as , with Fourier transform

[11]

(4)

where is the Heaviside step function. The Morlet wavelet

may be described as a Gaussian windowed complex exponen-

tial. The Gaussian envelope localizes the wavelet in time-fre-

quency space, while the complex exponential provides an oscil-

latory signal, appropriate for the detection of frequency compo-

nents. The complex nature of the Morlet allows the estimation

of phase characteristics in multivariate analysis. Strong analo-

gies have been drawn between the Morlet at a given frequency

and the Gaussian windowed STFT [10].

All subsequent transforms performed within the explicit

spectral smoothing framework make use of the Morlet wavelet.

The central frequency of the wavelet is commonly taken

to be between 0.8 and 1 [25]. The figures in this paper were

generated using angular frequency , corresponding to

.

The smoothing operator employed in coherence estimation

may be considered a scale-dependent 2-D filter. Such a filter

may be evaluated through application of two independent

linear filters, one smoothing in time while the other

smooths in scale . The smoothing of the wavelet

cross-spectrum may be expressed as

(5)

with smoothing of the autospectra by appropriate substitution.

Time smoothing is accomplished by defining the time-do-

main filter to be the wavelet envelope and normalizing to

unit energy. Scale smoothing is accomplished by taking the

frequency-domain filter to be a boxcar function of width pro-

1The time interval required for an exponential function to change by a factor
e .

portional to the scale-decorrelation length of the wavelet.

The scale-decorrelation length is described and determined

empirically in [11] for a number of wavelet functions, being

given the value in the case of the Morlet. Stretching

of the filters was also considered briefly in [15] as a means to

generate smoother coherence estimates while still containing

the same qualitative information. Smoother estimates are desir-

able as they provide lower 95% confidence limits and suppress

short-lived phenomena. With this in mind we introduce time

and scale localization parameters and which modulate

the width of the filter in time and scale. The two smoothing

operators are, therefore, defined as

(6)

(7)

with the relation . The constants and normalise

the filters to unit energy and are calculated numerically. is

the box-car function.

The -folding time used for COI determination in the case

of the Morlet is provided analytically in [11] as . The ad-

ditional smoothing performed on the wavelet spectra will how-

ever result in a more invasive COI. This estimate must, there-

fore, be considered a liberal boundary when applied to smoothed

wavelet spectra.

B. Multiwavelets

Multiwavelets originate from the principles underlying

Thomson’s multitaper method ([17], [27]). Multitaper methods

involve the estimation of spectra from a single-trial by aver-

aging together periodogram estimates. Each periodogram is

determined from the same data sequence but utilizing different

orthogonal data tapers. The resultant spectral estimate may be

considered more reliable, possessing reduced bias and variance

properties. For stationary analysis Thomson chose as tapers the

set of discrete prolate spheroidal sequences (DPSS), being the

most frequency-concentrated of all orthogonal, time-limited

windows. By specifying alternative optimality conditions,

different sequences of orthogonal tapers may be produced. For

example, by optimally concentrating explicitly in two dimen-

sions (time-frequency space) the Hermite functions result [20].

These arguments have been extended to affine time-scale space

in [20] and [18]. The resultant tapers turn out to be the class

of generalized Morse wavelets and their application may be

considered a wavelet transform.

Before defining the class of generalized Morse wavelets it is

essential to briefly summarise their construction and the desir-

able properties that ensue. For a more detailed explanation the

reader is referred to [18].

We begin by specifying a localization operator in time-fre-

quency space, , which operates over domain ,

characterized by [18], [28], [29]

(8)
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where

(9)

and denotes the gamma function while .

Restrictions are placed on the choice of parameters such that

and . Parameter specifies the concen-

tration region in time-frequency space.

The area of domain provides a measure of localiza-

tion that will prove useful in the construction of multiwavelet

spectra. We denote this area , a unitless measure

given analytically in (10) [18].

(10)

It was shown in [18] that for a localization operator in

affine time-scale space, there exists a complete orthonormal

basis such that . The eigenfunc-

tions that result form the class of generalized Morse wavelets.

Each eigenvalue has support for two eigenfunctions,

and , which correspond to analytic and anti-analytic

wavelets respectively. A definition for the analytic wavelet in

the frequency domain is provided in [18] as

(11)

where , is again the Heaviside step function and

. is the Laguerre

polynomial, defined by

(12)

The anti-analytic wavelet (which finds a use in complex

signal analysis) is defined in [18], but may also be given in

terms of the analytic wavelet as . In

this paper, we concern ourselves with real-valued time-series

and so require only one of these wavelet functions. Olhede and

Walden [18] show that in the construction of wavelet spectra

for real-valued signals, the analytic wavelet is sufficient. It

was shown in [18] that the analytic wavelet spectrum makes

implicit use of both analytic and anti-analytic wavelets. This

does not hold for the more general class of complex signals,

where explicit use of the two wavelet functions is required.

The eigenfunctions (generalized Morse wavelets) are

ordered by descending eigenvalues. The wavelet trans-

form of a time series using the th-order eigenfunc-

tion is denoted . A corresponding auto-spec-

trum estimate, referred to as the th-order eigenspectra

is denoted . The com-

plex-valued cross-eigenspectra is similarly defined as

.

An expression for the th-order eigenvalue is provided in [18]

as where is

the incomplete beta function. It was also shown in [18] that

the square of the positive eigenvalues provides a ratio between

Fig. 1. Wavelet spectra of individual Morse wavelets (� = 5, 
 = 2). Left to
right, spectra correspond to wavelet orders k = 0; . . . ; 4 and finally the mean
spectrum. Morse wavelets centerd on frequency f = 10 Hz (scale a = f =f ).

the energy contained within the restrictive domain of time-fre-

quency space (after transformation using an equivalent eigen-

function) and the energy of the original signal. Given a concen-

tration region we may determine the energy ratio for each

Morse wavelet within that region. The value of may be de-

termined from the parameter triplet and (10). In a

multiwavelet analysis this triplet will determine the number of

eigenspectra, , forming the final conditioned estimate. The ap-

proach adopted here is to include all wavelets which possess

energy concentration ratios within the specified re-

gion. For example, by choosing with ( , ,

and ), Morse wavelets result with energy concen-

tration ratios {1.00, 1.00, 0.99, 0.98, 0.96}. Unlike the Slepian

sequences utilized in multitaper analysis, Morse wavelets may

possess very broad transition bands between energy concentra-

tion ratios close to unity and those close to zero. Additionally, as

minimum-bias adaptive weighting schemes do not yet exist for

multiwavelet methods, we restrict our choice of eigenspectra to

those which posses high energy concentrations within the spec-

ified region.

The wavelet spectra of some generalized Morse wavelets, cor-

responding to orders 0 through 4, are illustrated for the case

( , ) in Fig. 1. Also included in this figure is the

mean of the five individual spectra. The wavelet spectra in Fig. 1

have been generated using the zeroth-order Morse wavelet with

( , ).

By transforming a time series with a set of orthogonal

wavelets, we provide a means to smooth the spectral estimate

by averaging over the eigenspectra. We, thus, define a

conditioned cross-spectral estimate as

(13)

where represent the weights for the eigenspectra and

. These weights are a normalization of a related

set , such that . The eigen-

functions are, therefore, weighted based on their energy con-

centrations within the localization region [18]. Auto-spectral

estimates are defined by appropriate substitution of processes.

The local wavelet spectrum has been shown to follow the

mean Fourier spectrum and subsequently be distributed

[11]. In a multiwavelet analysis the eigenspectra provide
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independent estimates of the underlying (assumed locally

stationary) spectrum. Taking the mean of the eigenspectra

would result in a conditioned spectral estimate distributed as

, possessing variance . By making

use of a weighting scheme the resultant spectral estimate will

possess variance [30]. This moti-

vates the definition of an equivalent number of eigenspectra

forming the conditioned estimate (14), a quantity that will

prove useful in the setting of confidence limits [2]

(14)

To relate scale and frequency in multiwavelet spectra, we

must take account of the multiple orthogonal wavelet functions

utilized in our estimate. For a multiwavelet analysis using

eigenfunctions, we determine the reference frequency simi-

larly to [19]

(15)

In this paper, edge effects are characterized by the COI which

may be determined numerically at each frequency by applying

the previously stated COI definition. Other methods have been

considered to account for edge-effects, for example [19].

III. APPLICATION

In this section, multiwavelets are explored further by

analysing surrogate data. The two methods for estimating

bivariate parameters are then applied to neurophysiological

data for comparative study.

The multiwavelet framework provides a mechanism for the

extraction of time-dependent coherence between processes.

In order to extract information from coherence estimates,

significance testing must be performed. Monte Carlo simu-

lations were undertaken in order to determine bias, variance

and 95% confidence levels for coherence generated by explicit

2-D-smoothing and multiwavelet methods. Both methods were

applied to 2-channel Gaussian white noise data of duration 30 s

sampled at 1 kHz (in correspondence with neurophysiological

data to be further explored). A total of 1000 simulations were

analysed per method. Only points outside of the COI were

considered during the simulations. Note that due to an invasive

COI, fewer points will be included at the lower frequencies. The

results are illustrated in Fig. 2. The bias, variance and 95% con-

fidence limits may be considered flat across the vast majority

of frequencies specified within the simulation range. For the

parameter sets chosen, the two methods provide similar levels

of confidence in the resulting coherence estimates. Despite pos-

sessing similar statistics the two methods cannot be considered

equivalent. This is because the time-frequency shapes utilized

in spectral smoothing are fundamentally different.

All forms of explicit scale-smoothing on wavelet spectra, by

their very nature induce edge effects encountered at the lowest

and highest frequencies. This results from an overrun of the

Fig. 2. Monte Carlo derived statistics for wavelet coherence generated using a
2-D scale-dependent filter with localization parameters (� = 580, � = 3)
and a multiwavelet analysis using generalized Morse wavelets with parameter
triplet (� = 5, 
 = 2, A = 24). The three statistics (top to bottom for both
figures) are 95% confidence limit, bias and variance. The intermittent vertical
bars delineate the f point for the multiwavelet case and an estimated equiv-

alent measure f̂ for the smoothing filter. Simulations were conducted on
2-channel Gaussian white noise data of length 30 s sampled at 1 kHz. The fre-
quency range of the simulation was 0.25! 500 Hz generated at a resolution of
20 scales/octave. Simulations were averaged across 1000 trials.

transform area by the 2-D filter, occurring in both time and fre-

quency domains. In order to minimise edge effects, it is recom-

mended that wavelet transforms are calculated beyond the spe-

cific frequency range of interest. Multiwavelet analysis makes

use of implicit time-frequency smoothing by applying a number

of orthogonal wavelets to the time series. The result is that no

low-frequency edge effects can be observed in the Monte Carlo

simulations. High-frequency artefacts occur in both methods

due to smoothing which extends beyond the Nyquist frequency.

For the set of parameters illustrated, coherence statistics are flat

between 0.5 Hz and 250 Hz (multiwavelet statistics also ap-

pear flat below and substantially above this range).

High-frequency overrun, where the wavelet transform ex-

tends beyond the Nyquist frequency, is an issue with serious

practical implications as illustrated by the change in coherence

statistics shown in Fig. 2. The issue was addressed in the context

of multiwavelets in [28], where a maximum analysis frequency

was determined below which high-frequency overrun has a

negligible effect. The maximum analysis frequency is taken to

be in accordance with [28]. The upper

frequency is determined by visual examination of the condi-

tioned Fourier spectrum for eigenfunctions at scale .

Taking ( , ) and we determine .

This provides a maximum plot frequency ,

displayed as an intermittent vertical bar on the right of Fig. 2.

Examination of Fig. 2 shows that the maximum plot frequency

provides a reasonable marker by which to delineate edge-af-

fected frequencies from those which are unaffected.

The same point cannot be derived for the scale-depen-

dent filter method due to dissimilarities in spectral construction.

For practical consideration however, an approximate point

may be determined by visual examination of the Monte Carlo

simulations. This point is depicted as an intermittent vertical bar

in Fig. 2, where we determine .

The orthogonality inherent within multitaper methods leads

to approximately uncorrelated eigenspectra. By extending this

argument to multiwavelet methods we may approximate the
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Fig. 3. Numerical COI illustrated as a black parabola on three multiwavelet
transforms of a quadratic chirp signal. Multiwavelet analysis based on the gen-
eralized Morse wavelet with parameters (� = 5, 
 = 2). Left to right, A =

8,16,24 (contributing K = 1,3,5 eigenspectra) which has a progressive affect
on the COI.

confidence limit for coherence based on the null hy-

pothesis of independence as [2], [6], [26]

(16)

The 95% confidence limit is, therefore, determined by set-

ting in the above equation. The confidence limit

is seen to depend entirely on the choice of , the equivalent

number of eigenfunctions utilized in the estimation of condi-

tioned spectra. The coherence bias between two uncorrelated

processes is approximately . These approximations have

been compared with Monte Carlo simulations for a variety of

multiwavelet parameter sets , where in each case the

simulation results followed the analytic value closely for fre-

quencies below . All Morse parameter sets used within this

paper have been compared with simulation results to confirm

statistical significance.

Surrogate data provides a means to evaluate analysis methods

on data with known statistical properties. The analysis methods

are, therefore, further considered by evaluating a quadratic

chirp signal contaminated by independent identically dis-

tributed (i.i.d.) Gaussian white noise . Realizations of the

chirp signal (17) were generated for univariate and bivariate

processes of duration 1-s sampled at 1 kHz. The signals

possessed a signal-to-noise ratio of 2.8 dB, reflecting the

inherently noisy nature of time series recorded from the nervous

system. Chirp statistics for data of length may be considered

symmetrical about a point in time . The frequency of the chirp

signal around the point of symmetry is given by , extending

in quadratic form to at . For the simulated data used

in this study , and

(17)

Three multiwavelet spectra were generated for a 1-s real-

izations of single-channel quadratic chirp signal, illustrated in

Fig. 3. All three spectra were generated using Morse wavelets

with ( , ). Ordered from left to right the domain

areas are ,16,24 respectively. By taking the energy con-

centration cutoff only 1 eigenspectrum contributes to

the domain, with contributing 3 eigenspectra

and contributing 5 eigenspectra.

Fig. 4. Multiwavelet auto-spectra, coherence and phase for two identical
quadratic chirp signals corrupted by independent Gaussian white noise. Multi-
wavelet transform performed using generalized Morse wavelets with parameter
set (� = 5, 
 = 2, A = 24). The COI is displayed as a black parabola. The
95% confidence limit for coherence is displayed as a black contour taking a
value of �0.53.

Fig. 3 demonstrates several important practical aspects of

multiwavelet analysis. First, increasing domain area leads

to broader spectral smoothing which can substantially reduce

the effects of background noise. This is evidenced by a reduc-

tion in spectral variability and power around the chirp signal.

Such reductions must however be tempered by an associated

loss of localization within the time-frequency plane. The ef-

fects of smoothing can also be seen on the chirp itself in the

form of spectral spreading. A second point to note is the posi-

tion of the (numerically determined) COI. As increases there

is a progressive encroachment of the COI onto the spectral es-

timate. This has important ramifications that restrict the region

of wavelet spectra that may be interpreted in terms of the under-

lying physical process. The problem is especially prevalent if we

are interested in very low-frequency content. From the figure we

see that increasing from 8 to 24 moves the lowest point out-

side of the COI from 2 Hz to 5.5 Hz.

A bivariate multiwavelet analysis was then applied to a

2-channel quadratic chirp signal, the channels consisting of

a common chirp corrupted by i.i.d. Gaussian white noise

sequences ( , ). The multiwavelet analysis was

performed using the Morse parameter set ( , ,

). The COI in the analysis of a 1-s segment of data was

numerically determined to encroach on all data points below

5.5 Hz. The analysis was, therefore, performed within the

frequency range [5.5, 250]Hz. Fig. 4 depicts the data from a

two channel quadratic chirp process presented with associated

multiwavelet auto-spectra, coherence and phase.

Features from the time-frequency representations of Fig. 4

may be related to the original signals in a time-dependent

manner. By presenting wavelet auto-spectra below their re-

spective data channels a direct correspondence may be drawn
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Fig. 5. Scale-dependent 2-D-smoothing analysis of two neurophysiological
time series. Series taken from microelectrode recordings made during fictive
locomotion in the cat. Both intracellular recordings are taken from motoneu-
rones innervating the posterior bicep (Pb) muscle. Figures correspond (top to
bottom) to: raw and filtered time series for ch.1, auto-spectra for filtered ch.1,
raw and filtered time series for ch.2, auto-spectra for filtered ch.2, coherence
between filtered channels 1 and 2. The 95% confidence limit for coherence is
displayed as a black contour taking a value of �0.53.

between features in the spectra and behaviour in the signals.

Also presented are multiwavelet coherence and phase which

illustrate bivariate statistics as developed in Section II. The

coherence statistic highlights the shape of the quadratic chirp

signal in time-frequency space as common between the two

channels (achieving values close to 1). Other regions are dis-

similar in time-frequency space and so achieve values close to

0. The phase diagram appears to show zero phase between the

two chirps with random fluctuations elsewhere.

In order to illustrate the application of single trial wavelet co-

herence to neurophysiological data, we chose to examine simul-

taneous recordings of membrane potential fluctuations observed

in a pair of spinal motoneurones during a period of fictive loco-

motion in a reduced animal preparation (further details can be

obtained from [2]). In this preparation, the locomotor drive is

generated by activity arising in interneuronal networks within

the lumbar spinal cord whose organization and properties are

largely unknown [31] but are often referred to as locomotor pat-

tern generators. The recordings consist of a pair of motoneu-

rones innervating the posterior bicep (pb) muscle which in this

preparation is active predominantly during the flexion phase of

the step cycle. The 2-channel recordings were made over a pe-

riod of 300 s sampled at 10 kHz.

Spectra and coherence estimates of the intracellular record-

ings were generated for disjoint segments of length 30 s

after downsampling to 1 kHz. For explicit 2-D-smoothing the

wavelet transform was performed within the frequency range

Fig. 6. Multiwavelet analysis of the same two neurophysiological time series as
utilized in the scale-dependent 2-D-smoothing analysis. Figures correspond (top
to bottom) to: raw and filtered time series for ch.1, auto-spectra for filtered ch.1,
raw and filtered time series for ch.2, auto-spectra for filtered ch.2, coherence
between filtered channels 1 and 2. The 95% confidence limit for coherence is
displayed as a black contour taking a value of �0.53.

[0.25, 500]Hz at 20 scales/octave. Smoothing was then per-

formed within the range [0.5, 250]Hz, thus allowing relatively

flat confidence limits to be maintained within the interval.

Concentration parameters ( , ) were used in the

analysis. A multiwavelet analysis was also performed within

the frequency range [0.5, 250]Hz, using the parameter doublet

( and ) with area . For illustrative purposes,

only results from the mid-section of the first segment are pre-

sented (10 20 s; see Figs. 5 and 6). By focusing on a reduced

time-frequency region boundary effects are also minimized to

the extent that the COI does not appear in either figure.

Figs. 5 and 6 show the same analysis using explicit

2-D-soothing and multiwavelet methods. As before, spectra

and coherence may be related to the data in a time-dependent

manner. The top plot in each figure depicts the raw motoneu-

rone recording for channel 1 and its filtered equivalent. The

data are filtered (high-pass moving-average, cutoff 4 Hz) as it is

the timing of common presynaptic inputs to the motoneurones

that are of particular interest and where any low-frequency

(dc-coupled) components would saturate the analysis. These

common synaptic inputs are of particular interest as they

reflect the anatomical divergence of key interneurones in the

locomotor generating networks whose physiological properties

can be indirectly studied through a time and frequency anal-

ysis. Filtering suppresses the leakage phenomena associated

with a broad activity envelope, permitting the examination of

frequencies components within the range of interest (4 Hz and

above). The raw data are presented to highlight the evolution

of the locomotor drive potential. The third plot in both figures
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depict the raw and filtered data for channel 2. Below each of

the time series representations are their equivalent wavelet

auto-spectra. It can be seen from either figure that a high power

concentration occurs during periods of increased locomotor

drive, even in the filtered representation of the data. A distinct

feature of wavelet-based analysis is that discontinuities in time,

such as the spiking events evident in channel 2, are isolated and

progressively time-localized as the analysis moves to higher

frequencies. Time-dependent single-trial coherence is depicted

in the bottom plot of each figure.

In application to intracellular motoneurone data, coherence

provides an intuitive spectral representation of common presy-

naptic drive to the motoneurones. High levels of coherence in-

dicate strong coupling, either recurrent or driven by a common

source. Coherence also provides a measure of the strength of

such coupling, proving invaluable in the determination of neural

connectivity. The multiwavelet approach to coherence estima-

tion provides an optimal method of time-frequency localization.

Such methods allow the examination of synaptic coupling prop-

erties between motoneurones within individual epochs. Tradi-

tional ensemble methods will suppress features which are in-

consistent or mis-aligned between trials. Single-trial estimation

has the potential to quantify such trial-to-trial variability.

The coherence estimates of Figs. 5 and 6 clearly show there

is a complex and dynamic relationship between the two sig-

nals. The two signals appear to become uncoupled at frequen-

cies above 8 Hz during periods of increased locomotor drive.

During the quiescent periods the signals are correlated over a

wide frequency range, although this correlation is also inter-

rupted by short periods where the signals again become uncor-

related. This analysis may provide information about dynamic

changes to common presynaptic inputs to the two motoneurones

during periods of fictive locomotion.

IV. DISCUSSION

Calibration and comparative studies have shown that multi-

wavelet methods are suitable for the detection of time varying

frequency components within time series. Both spectra and

coherence generated by explicit time-frequency smoothing and

multiwavelet methods show marked similarities. Examining

Figs. 5 and 6 it is evident that similar spectral features are

being extracted from the data in a time-dependent manner. The

choice of wavelet and smoothing functions has a visual impact

on the resultant analysis, most notable in the wavelet spectra.

A fundamental difference between the two methods outlined

is in the shape of the smoothing operation. For the explicit

2-D smoothing approach, the wavelet periodograms have al-

ready been transformed using the Morlet wavelet and, thus, a

high level of correlation exists between neighboring points in

time and frequency. These points are then smoothed using a

scale-dependent 2-D filter. By contrast multiwavelet methods

extract time-frequency localized spectra directly from the data

using orthogonal data tapers (see Fig. 1). These eigenspectra

are then combined in a weighted average to produce an estimate

of the underlying spectrum. While confidence limits for the two

methods have been kept comparable within this report, it should

be noted that due to the inherent differences in methodology

the resultant figures, while similar in some aspects, cannot be

considered equivalent.

Multiwavelets possess many desirable properties. The con-

struction of the class of generalized Morse wavelets utilises

an optimality condition. Thus, unlike the explicit smoothing

methods, we may state that multiwavelet analysis is optimally

concentrated within an area of time-frequency space. Despite a

construction which restricts the choice of wavelet class to that of

the Morse wavelets, a wide range of wavelet functions can still

result through the tuning of parameter sets. The ( , ) param-

eters control the shape of time-frequency localization. For ex-

ample, the non-generalized Morse wavelets, defined to be those

where ( , ), localize within a narrow time-support

band, but provide very poor frequency localization. The choice

of ( , ) allows a more balanced localization space for

the chosen dataset. Additionally, the choice of , the domain

area used in the construction of the conditioned spectral esti-

mates, provides a localization/variance tradeoff. Larger choices

of result in the inclusion of more orthogonal terms (or eigen-

spectra) which produce more consistent spectral estimates, but

with broader time-frequency localization properties.

The tuning of parameters and also provides a means to re-

duce confidence limits. Increasing , for example, will produce

eigenfunctions which more tightly localize within the specified

area . This is demonstrated by an increase in their respective

energy concentration ratios . An increase in concen-

tration ratios leads to a greater number of eigenspectra forming

the conditioned spectral estimates. This subsequently leads to a

reduction in confidence limits, characterized by an increase in

. Any reduction in confidence limits must however be tem-

pered by an associated distortion in the time-frequency region.

While is held constant for increasing , the reference fre-

quency will vary producing a wavelet transform at the new

set of scales . The COI will also be affected by this

change. Of particular interest in the spinal motoneurone anal-

ysis are frequencies within the alpha range. With parameters

( , , ), confidence limits for coherence

(based on the null hypothesis of independence) were 0.53.

By setting , confidence limits were reduced to 0.21

(utilizing eigenspectra). Due to the rescaling of the

wavelet transform (induced by a change in ) the time-localiza-

tion became too broad for meaningful feature extraction within

the alpha range. This approach may prove more productive in

examining higher frequency ranges such as the beta and gamma

bands.

Approximate statistics for the bias and confidence limits of

coherence have been stated analytically, valid for regions where

high-frequency overrun is not significant. Statistics for methods

based on explicit spectral smoothing will always depend on the

underlying wavelet transform parameters. This issue was dis-

cussed in [23] where 95% significance levels were shown to

depend largely on the choice of analysis resolution (scales per

octave). Since multiwavelets perform implicit smoothing across

frequencies such undesirable dependencies are avoided.

The implicit approach to time-frequency smoothing em-

ployed by multiwavelets provide computationally desirable

properties. By making use of the implicit smoothing property

it is possible to generate multiwavelet spectra at individual
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scales/frequencies. This is in contrast to explicit smoothing

methods which require the calculation of a complete wavelet

transform extending significantly beyond the frequency range

of interest in order to generate statistically reliable and con-

sistent spectral estimates. For cross-spectra, two wavelet

transforms must be combined before smoothing with what is

in effect a scale-dependent 2-D filter. On all but the shortest

of data segments this will prove computationally expensive

and slow. Multiwavelets provide a means to create memory

efficient transforms, thus, potentially opening up the method to

much larger datasets.

The neurophysiological analysis highlights that different cou-

pling mechanisms appear to operate within the different phases

of the locomotor cycle. This information can be exploited in fu-

ture experiments aimed at the identification and study of the in-

terneuronal populations that participate in generating locomotor

behaviour.

The analysis framework described here also lends itself to the

study of motor function in people with motor disabilities (such

as spinal cord injury, stroke or movement disorders), where the

long recording periods traditionally required for neurophysio-

logical analysis are impractical due to the subjects limited ca-

pacity to perform tasks over prolonged periods. The ability to

study either neuronal activity (local field potentials, EEG, etc.),

muscle activation patterns (EMG) and/or movement kinematics

over short periods and generate statistically significant informa-

tion will provide useful insights into the pathophysiologies that

lead to motor disability, and may well lead to methods for as-

sessing the success of rehabilitation or other novel therapeutic

interventions.
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