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This paper presents a new continuum model describing the dynamics of multiclass traffic flow on multilane 

freeways including weaving sections. In this paper, we consider a specific freeway weaving type, which is 

formed when an on ramp is near to an off ramp and these two ramps are joined by an auxiliary lane. Traffic 

interactions in this weaving zone are very complex due to the involvement of weaving flows and non-weaving 

flows in the so-called mandatory lane-changing process. To handle this complexity, it is essential to have a 

good understanding of the (microscopic) driving behavior within the weaving zones. These behaviors are 

modeled based on a gap-acceptance model. The methodology to obtain a weaving continuum traffic model is 

thus twofold. On the one hand, we develop a (macroscopic) model to determine the mandatory lane-changing 

probability based on a renewal process. On the other hand, we implement the lane-changing model into a 

current gas-kinetic traffic flow model for heterogeneous traffic flow on multilane roadways. From this, 

corresponding macroscopic model is obtained based on the method of moments. 

 
KEYWORDS: Gas-kinetic model, macroscopic model, gap-acceptance model, weavings 

 

1. INTRODUCTION AND BACKGROUND 

 

According to the Highway Capacity Manual (HCM) 2000 (HCM, 2000), weaving is 

defined as the crossing of several traffic streams moving on the freeway in the same 

direction. Due to the complexity of traffic interactions in a weaving area, the capacity of 

freeways is often reduced significantly and, consequently, the traffic operation is 

deteriorated. This illustrates the importance of research, theory and modeling for the 

traffic operation at weaving sections of freeways.  

In the seventies, a weaving area operation study was initiated in a U.S.� Highway 

Research Program for reviewing the capacity of freeways. In this study, an analytical 

method was developed by MacShane and Roess (1970) to model the lane-changing 

processes at the weaving sections. Recently many researchers have been working on 

capacity analysis of weaving sections and its dependence on the length of the weaving 

area. Makigami and Iizuka (1993) developed a method of evaluating the weaving traffic 

operating conditions and finding a systematic way to determine weaving section length 

based on multiple merging probability theory. In this research, the weaving traffic 

considered only merging phenomena. Lertworawanich and Elefteriadou (2003) proposed 

a method for estimating the capacity at weaving sections based on a gap-acceptance 

theory. A similar approach is also chosen in this research because it allows to model at a 

high level of detail the lane-changing processes in weaving sections, which give rise to a 

significant impact on the traffic operation conditions in these zones. Almost all of these 

models are developed at microscopic level and, therefore, require much effort on 

calibration and validation. To contribute to this research stream, in this paper we propose 

a continuum (macroscopic) traffic model to describe the traffic operations at weaving 

sections. The main benefit of applying macroscopic traffic models over microscopic 

models is the relatively small number of parameters simplifying model calibration, while 

it still provides desirable results.  
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Recently, research on macroscopic models of multilane traffic and multiclass traffic 

(MLMC) on freeways has become suitable for application in areas such as prediction 

and optimizing traffic control (model based). These strategies may allow network 

operators to use the existing infrastructure more efficiently. Specific examples of control 

measures that can only be modeled in a class-specific framework are dynamic truck 

overtaking prohibitions, uninterrupted passage for buses by ramp metering at on ramps, 

and dynamic lane allocation control. The significant contributions to these research 

topics are the works by Helbing (1997), Shvetsov and Helbing (1999), Hoogendoorn 

(1999), Hoogendoorn and Bovy (1999), etc. Most of these models are developed from 

gas-kinetic model for mixed traffic on multilane roadways. These types of model 

describe the evolution of the phase-space density (PSD) of vehicles on a freeway in 

which the left hand side (LHS) of the partial differential equation describes the 

continuous dynamics of the PSD due to the motions of traffic flow while the right hand 

side (RHS) describes the discontinuous changes of this function due to the events such 

as lane-changing, deceleration, etc. Extending this approach, an analytical model 

capturing the main characteristics of traffic operations on motorways such as congestion 

near on ramps has been derived mathematically from microscopic driving behaviors 

using renewal theory by Ngoduy et al. (2004a). This model explicitly takes into account 

the dynamics of traffic at on and off ramps by modeling the so-called mandatory lane-

changing process within these zones. However, this model still distinguishes the 

interactions of merging and diverging traffic, which is an important part of traffic 

operations at a weaving section.  

In this paper, a specific weaving section type (Figure 1) is considered in detail. In this 

type of weaving (defined as type B according to HCM 2000 (HCM, 2000)), an on-ramp 

is connected with an off-ramp by an auxiliary lane. Let 0 denote the lane index of 

auxiliary lane, and 1, 2 denote the lane index of the shoulder lane and the median lane, 

respectively. Traffic operation within the considered weaving section includes: 

 

 

                                               

          

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: Lane changing at weaving section 

 

• Merging traffic from the auxiliary lane to the shoulder lane with fraction 0,1
uα  

(defined as weaving flow). 

(a) Merging (b) Diverging 
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• Diverging traffic from the shoulder lane to the auxiliary lane with fraction 1,0
uα  

(defined as weaving flow). 

• Through traffic on the shoulder lane with fraction 1,1
uα  (defined as non-weaving 

flow). 

• Through traffic on the auxiliary lane (that is traffic that continues from the on-ramp 

to the off-ramp) with fraction 0,0
uα  (defined as non-weaving flow). 

• Note ,
u
i jα equals the ratio between the flow rate that intends to change from lane I to 

lane j and the total flow rate in lane i. 

Obviously the merging and diverging probability depend on all of these traffic streams. 

The calculation method for merging and diverging probability is based on gap-

acceptance model and renewal theory, described in the ensuing of this paper. The main 

contribution of this paper to the state-of-the-art in continuum traffic flow theory is 

therefore the modeling of discontinuities of traffic flow at a weaving section on 

multilane freeways. It introduces the mandatory lane-changing process into the RHS of 

the current MLMC continuum models based on microscopic driving behaviors within 

the weaving zone. Based on the details of this mandatory lane-changing process, a 

relevant control measure at on/off ramps (ramp metering), or design of infrastructure 

(length of auxiliary lane) can be applied in order to obtain a better operation on freeways. 

 

2. MODELING APPROACH 

 

This section describes the approach to model the lane-changing processes in a gas-

kinetic traffic flow model. Before going into details of the modeling approach, let us 

start with the most important assumptions for developing the gas-kinetic equations for 

interrupted traffic stream. 

 

2.1 Behavioral assumptions 

 

These assumptions are concerned with the drivers� behavior in traffic stream when 

making lane-changes: 
1. The speed of lane-changing vehicles is not influenced by the lane-changing 

maneuver. That is, the lane-changing vehicles do not reach the target lanes 

instantaneously with a higher/lower speed. 

2. The speed of the following and the leading vehicle in the target lanes is unaffected by 

the lane-changing maneuver (that is, there is no acceleration/deceleration during a 

lane-change). 

3. Only one lane-change can be performed during each time interval (time gap available 

for a lane-change). That is, lane changes are not executed instantaneously. 

4. When a fast vehicle catches up with a slow vehicle, the faster vehicle always intends 

to change to the adjacent lane in order to maintain its desired speed (used for the 

derivation of immediate lane-changing rate). 

5. Lane selection model: when a driver intends to change lanes, first the target lane 

needs to be selected. The probabilities that a lane is selected as the target lane depend 

on a number of factors, such as the speed of the concerned vehicle, the user-class, 

traffic conditions in the current lane and the target lane.  A lane selection model can 

be of either a discrete type (Ben-Akiva and Lerman, 1995) or a logit type (Ahmed, 
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1999). The result of the lane selection model is the probability to select either the 

right lane, the left lane or to remain in the current lane. If either the right lane or the 

left lane is selected, the vehicle will seek for an acceptable gap in the selected lane. 

The traffic regulations can also be in-cooperated in this model. For example, under 

European traffic regulations, the first option is always to move to the left when a 

slower vehicle needs to be passed. 

6. Gap acceptance: in this paper, �gap� stands for the space gap, that is, the distance 

between the front ends of two successive vehicles in the same lane. A vehicle is able 

to change to the target lane when both the lead-gap and the lag-gap are accepted. The 

lead-gap is accepted if, after the lane change has been carried out, the space between 

the lane-changing vehicle and the leader in the target lane is larger than a certain 

threshold distance (critical lead gap). The lag-gap is accepted if, after the lane-change 

has been carried out, the space between the lane-changing vehicle and the follower in 

the target lane is larger than critical lag gap (Tanner, 1962). 

7. The critical gaps are considered single values, which are a linear function of speed 

and the reaction time of the follower (there is no different driving styles within a 

vehicle class and driver does not change his behavior with local traffic condition).  

8. Drivers are willing to accept smaller gaps when approaching the end of the current 

lane. That is, the remaining distance to the end of the current lane influences the gap-

acceptance behavior (used for the derivation of mandatory lane-changing 

probabilities). 

9. The follower in the target lane may create gaps for the lane-changing vehicles by 

changing lanes to the left if there is an opportunity to do so (used for the derivation 

of mandatory lane-changing probabilities). 

 

2.2 Statistical requirements 

 

These assumptions are based on empirical data concerning the distribution of mean 

speed and distance gaps. These assumptions are useful for a simple mathematical 

derivation since it is almost impossible to derive a MLMC macroscopic model with 

assumptions that cover all realistic phenomena. Our purposes are to derive a 

macroscopic model that, on the one hand, is able to explain critical traffic phenomena 

theoretically (see Ngoduy et al., 2006) and, on the other hand, is able to reproduce well 

real-life observations without requiring complicated calibration and validation process 

(see Ngoduy et al., 2004a; Ngoduy, 2005). 

10. The individual vehicle speeds conform to a Gaussian distribution. This requirement 

is used to determine the interaction lane-changing rate in the original models of 

Hoogendoorn (1999), Shvetsov and Helbing (1999). 

11. The gap distribution is known. For analytical purposes, we use the exponential 

distribution of gaps. However, the derived model can be solved numerically with 

other types of distributions, such as, the M3 distribution type (Cowan, 1975). 

 

2.3 Gap-acceptance model 

 

In this section, we describe how a gap-acceptance model functions in lane-changing 

processes. The gap-acceptance model expresses the drivers� assessment whether or not 

gaps on the target lanes are acceptable for a lane-change (see Tanner, 1962). Let lead-

gap and lag-gap denote the gap between the subject vehicle and its leader and between 

the subject vehicle and its follower in the target lane, respectively. In the case of merging 



203 

 

(Figure 1a), the decision to make a lane change from the acceleration lane to the 

shoulder lane is based on both the lag-gap and the lead-gap. When these gaps suffice, the 

subject vehicle can merge to the main. In the case of diverging (Figure 1b), the subject 

vehicle can exit from the main carriageway if the lead-gap between the subject vehicle 

and its leader, and the lag-gap between the subject vehicle and its follower in the off- 

ramp lane is sufficient. Let dlag and dlead denote the critical lag-gap and the critical lead-

gap of vehicle, respectively, for lane-changing manoeuvres. By applying the safe-

distance model (Jepsen, 1998) we obtain the following results: dlead = dmin + l + ȝ(x)Tv 

and dlag = dmin + l + Tw; where v and w are the speed of the subject vehicle and of the 

following vehicle in the target lane, respectively (Note that the second order term is 

neglected in the development of our model due to its small contribution, which is 

approximately 0.022v2 (see Hoogendoorn and Bovy, 1999). The ramp factor ȝ(x) ∈ [0,1] 

(ȝ(x0) = ȝmax, ȝ(xend) = ȝmin and ȝ(x) = 1 when x < x0 and x > xend) considers the 

willingness to accept smaller gap of the considered lane-changing drivers when 

approaching the end of the ramp. 

Let A(v|x, t) be the event that a vehicle driving with speed v finds sufficient gaps on the 

target lane at location x and time instant t. According to Ahmed (1999), in the context of 

lane-changing processes, there are desire to change lanes (for example, fast vehicles 

interact with slow ones and desire to change lane) and opportunities to do so. Since at 

the weavings, all weaving vehicles are forced to change lane (either enter or exit the 

main lane), we only consider the later, that is, to determine the probability to 

merge/diverge. According to gap acceptance model, the merging/diverging probability 

ʌi,j (i=0, j=1 when traffic enters to the freeway, while i=1, j=0 when traffic exits from the 

freeway) is equal to the probability that event A occurs, which is: 

 ( ) ( )( ) ( )( ), lag lag lead leadi j P A P h d w P h d vπ = = ≥ ≥ . (1) 

Equation (1) neglects the correlations between the critical lead-gap and the lag-gap for 

the sake of simple derivation. Indeed, these correlations can be captured by adding a 

specific error terms but this work will be done in the future. To determine P(A), we need 

to calculate the probability distribution function of the lead-gap and the lag-gap using a 

so-called renewal process, described in the following section. 

 

2.4 Renewal process in traffic flow 

 

The concept of renewal processes can be found in statistical literatures, for example in 

Cox (1962). Let us consider a stream of vehicles which constitutes a renewal process N. 

Let hn denote the total gap between two successive vehicles located at xn and xn-1. Let us 

assume that (h1, h2,�, hn) are independently identically distributed random variables 

with p.d.f. f(h). Suppose that we interrupt the renewal process N by inserting a vehicle at 

some specified location x between xn and xn-1 (see Figure 2). Let hlag and hlead denote the 

distance between x and the next vehicle upstream of x and between x and the next 

vehicle downstream of x. That is, hlag = x � xn-1 and hlead = xn � x. In the terminology of 

the renewal process, the lead-gap hlead acts as excess life, the lag-gap hlag acts as current 

life and the total gap h = hlead + hlag acts as total life. 

Distribution of the lead-gap or excess life is calculated as: 

 ( ) ( )
lead

1 F h
f h

h

−
=  (2) 
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FIGURE 2: Excess, current, and total life at location x 

 

where h  is the total average distance gap, which is calculated by the following formula 

(Hoogendoorn et al., 2002): 

 
( )01 1d l TV r

h
r r

− + +
= =

γ
, with 

( )0

1

1- d l TV r
γ =

+ +
. (3) 

The factor Ȗ in equation (3) accounts for the space requirement (length of vehicle) in 

dense traffic, r=r(x,t) and V=V(x,t) denote the traffic density and mean speed, 

respectively. Since in this paper, we assume that the distance gap is exponentially 

distributed, equation (2) becomes: 

 ( )lead
rhf h re−γ= γ  (4) 

Distribution of the lag-gap or current life is calculated based on the total clear gap 

between the next vehicle in front of x and the next one behind x. That is, the lane-change 

of the follower on the target lane to create more gaps for the subject vehicle is taken into 

account. For example, if vehicle n-1 changes lanes, the total clear gap becomes hn-1 + hn. 

If both vehicle n-1 and vehicle n change lanes, the total clear gap becomes hn-1 + hn+hn+1. 

In general, let H = h1 + h2 + � + hn denote the total clear gap. The p.d.f. of the lag-gap 

becomes: 

 ( ) ( )
lag

1- F H
f h

H
=  (5) 

To calculate the c.d.f. of the total clear gap F(H) in equation (5) , the so-called Laplace 

transform theorem is used. If the gap is exponentially distributed, that is, ( ) rhf h re−γ= γ  

and the c.d.f. ( ) 1 rhF h e−γ= − , the corresponding Laplace transform of f(h) will be 

( ){ } ( );L f h s r r s= γ γ + . Hence, the Laplace transform of ( )n nf H h=∑  becomes 

( ){ } ( ) ( );
nn

nL f H s r r s= γ γ + . It turns out that this is Laplace transform of the 

function: 

 ( ) ( )
( )

1n rh

n

r rh e
f H

n

− −γγ γ
=

Γ
 and ( ) ( )

( ) ( )
1

1

n rh

n n

rh e
F H F H

n

− −γ

−
γ

= − +
Γ

 (6) 

where Ƚ denotes the gamma function, defined by ( ) 1n xn x e dx− −Γ = ∫ .   
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Note that equation (6) is indeed an Erlang distribution which is well-documented in 

any statistical literatures, however for a general gap distribution other than exponential 

type the renewal theory and Laplace transform should be applied.  

 

2. MODEL DEVELOPMENT 

 

This section describes the derivation of high order multilane and multiclass continuum 

model for traffic dynamics on freeways with weaving from a gas-kinetic model. The 

model describes in detailed how drivers merge and/or diverge within this section. The 

developed model is able to capture the following situations: 

• Drivers merge or diverge along a considerable stretch of freeway (auxiliary lane). 

• Drivers are willing to accept smaller gap when reaching the end of auxiliary lane. 

• Drivers on the shoulder lane are cooperative by changing to the median lane in order 

to give way for merging vehicles. 

 

3.1 Generalized gas-kinetic model of weaving sections 

 

This section establishes the gas-kinetic equation for weaving traffic flow. Since the 

traffic from on-ramp does not directly influence traffic flow on the left lanes of the 

shoulder lane (i=2), the generalized MLMC gas-kinetic model of Hoogendoorn (1999), 

Shvetsov and Helbing (1999) is applied for those lanes. This model holds also for those 

lanes in the diverging case when traffic desiring to exit switch to the shoulder lane 

before the beginning of the weaving area. The only difference in our model is that the 

immediate lane-changing (ILC) probability of vehicle class u from lane I to either 

adjacent lane j is determined by gap acceptance model. For traffic operation on the 

shoulder lane and on the auxiliary lane we need to determine the MLC rate. According to 

Shvetsov and Helbing (1999), the MLC rate is proportional to the traffic flow entering or 

exiting the freeway and inversely proportional to the length of ramps. Let ( ), , ,i u x v t±ω  

denote the incoming and outgoing flow rate to and from the freeway, respectively, at 

location x and time instant t. They are determined as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0,1 0 1,0 1
1, 0,1 1, 1,0

0,1 0 1,0 1
0, 0,1 0, 1,0

, , , ,
, , ; , , ,

, , , ,
, , ; , , ,

u u u u
u u

u u

u u u u
u u

u u

x v t v x v t v
x v t x x v t x

L L

x v t v x v t v
x v t x x v t x

L L

+ −

− +

α ρ α ρ
ω = δ π ω = −δ π

α ρ α ρ
ω = −δ π ω = δ π

 (7) 

where į(x)=0 if x is outside of the weaving area, į(x)=1 otherwise. L denotes the 

weaving length.  

The mandatory lane-changing rate ( ), , ,i u x v t±ω  determined in equation (7) contributes 

to the discontinuous events of the dynamics of traffic flow in weavings. The generalized 

gas-kinetic equation describing the dynamics of the lane and class specific phase-space 

density ( ), ,u
i x v tρ  reads: 
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( ) ( )

( ) ( )

max
imm,

int lc
convection

interaction immediate lane-change
acceleration

spon mand

lc lc

spontaneous lane-change mandatory lane

i uu u u u u
t i x i v i t i t iu

i

u u
t i t i

V v
v

⎛ ⎞−
⎜ ⎟∂ ρ + ∂ ρ + ∂ ρ = ∂ ρ + ∂ ρ
⎜ ⎟τ⎝ ⎠

+ ∂ ρ + ∂ ρ

'() '*(*) '*(*)
'***(***)

'*(*)
-change

.
'*(*)

 (8) 

Equation (8) describes the changes of the phase-space density (PSD) within a small 

distance [x,x+dx] and time step [t,t+dt] due to the following processes: 

• Convection, reflecting the changes of PSD due to the motion of vehicles along the 

road. 

• Acceleration, describing the changes of PSD due to the tendency of vehicles to 

accelerate to the desired speed (free speed). 

• Interaction, reflecting the interaction between fast vehicles and slow vehicles. That is, 

when the fast vehicles catch up with slow ones, they have to slow down in order to 

avoid the collision. 

• Immediate lane-changing, reflecting the lane-changes due to the interaction between 

fast vehicles and slow vehicles. That is, when the fast vehicles catch up with slow 

ones, they might change their lane. 

• Spontaneous lane-changing, accounting for the lane-changes due to the preference of 

drivers on a particular lane, which reflect the traffic regulations, for example the fast 

vehicles drive on the left lane while the slow ones drive on the right lane. 

• Mandatory lane-changing, accounting for traffic entering and exiting the freeway (act 

as sink/source). The mandatory lane-changing rate is determined for the shoulder 

lane and the auxiliary lane within a weaving section as: 

 ( ) ( ) ( )
mand

, ,
lc

, , , ,u
t i i u i ux v t x v t+ −∂ ρ = ω +ω . (9) 

Equation (8) serves as an immediate step for the derivation of the macroscopic 

continuum model for traffic stream with on- and off-ramps, which is shown in the 

Section 3.4. 

 

3.2. Immediate lane-changing probability 

 

In this section, we refine the immediate lane-changing models of Hoogendoorn (1999), 

Hoogendoorn and Bovy (1999), and Shvetsov and Helbing (1999) by including driver 

behavior. The application of the gap-acceptance model to the immediate lane-changing 

process is shown in Figure 3. In this situation a vehicle approaches a slower vehicle and 

intends to change lanes to either adjacent lane if available. The subject vehicle then 

seeks for a sufficient gap in its selected target lane and changes lanes immediately when 

an appropriate gap is found. If the preferred target lane (that is, the right lane in 

compliance with European driving rules) is failed, the subject vehicle will consider the 

other lane for a lane-change (that is, the left lane). If all of these choices are failed, the 

subject vehicle will stay in the current lane. In the context of the immediate lane-

changing process (Figure 4), let us consider a vehicle of class u (in lane 2) changing 

lanes to the left. The subject vehicle can change lanes if there are sufficient gaps between 

it and the leader and the follower, irrespective of vehicle class (so denoted by class s, 

s∈U). Obviously, the lead-gap depends among the other things on the speed of the 
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subject vehicle (denoted by v) while the lag-gap depends on the speed of the follower 

(denoted by w). Let ,
,
u s
i jA  be the event that a vehicle of class u driving in lane i finds 

sufficient gaps between vehicles irrespective of class (denoted by s) in lane j. The 

average probability that ,
,
u s
i jA   occurs, according to the gap-acceptance model, is: 

 ( ) ( )( ) ( )( ),, ,
, lead lead lag lag

1 1
j j j su s i u

i j
v w

P A F d v F d w
⎡ ⎤⎡ ⎤= − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

. (10) 

 

 
FIGURE 3: Structure of immediate lane-changing decision of a driver 

 

 
FIGURE 4: Immediate lane-changing on a multilane roadway 

 

From equations (2) and (5) we obtain the c.d.f. of the lead-gap and the lag-gap for a 

lane-change as: 
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( )( ) ( )
( )

( )
( )

( )( ) ( )
( )

( )
( )

, ,
lead lead

, ,
lag lead

,
lead lead lead

0 0

,
lag lag lag

0 0

d 1 d ,

d 1 d .

i u i u

j s j s

d v d v

j ji u
j j j

d w d w

j j s j
j j j

F d v f h h r F h h

F d w f h h r F h h

⎡ ⎤= = γ −⎣ ⎦

⎡ ⎤= = γ −⎣ ⎦

∫ ∫

∫ ∫

 (11) 

Substituting equation (11) into equation (10) results in: 

 ( ) ( ) ( )
( )

( )
( ), ,

lead lead

2,
, 1 d 1 d

i u j s

u s
j j j ji j

d v d w
v w

P A r F h h F h h

∞ ∞
⎡ ⎤ ⎡ ⎤= γ − −⎣ ⎦ ⎣ ⎦∫ ∫ . (12) 

Assumption of the exponential distribution of gaps results in: 

( ) ( )( ) ( )( )
( ) ( )
( ) ( ) ( ) ( )

,, ,
, lead lag

min min

min min

exp exp

exp exp

exp exp exp exp .

j su s i u
j j j ji j

v w

u s
j j s i j j u j

v w

u s
j j s j j i j j u j j j

v w

P A r d v r d w

r d l T v r d l T w

r d l r T v r d l r T w

= −γ −γ

⎡ ⎤ ⎡ ⎤= −γ + + −γ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= −γ + − γ −γ + − γ⎣ ⎦ ⎣ ⎦

  (13) 

By substituting Taylor expansion 
0

/ !x ne x n
∞

=∑  to equation (13) we get: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

,
min min,

0 0

exp exp

1 1
.

! !

u s
j j s j j ui j

n nn nu s
j j i j j jn n

v w
n n

P A r d l r d l

r T r T
v w

n m

∞ ∞

= =

⎡ ⎤ ⎡ ⎤= −γ + −γ +⎣ ⎦ ⎣ ⎦

− γ − γ
×∑ ∑

 (14) 

Let ( )kkM v V= −  with 2k ≥ , the assumption of Gaussian speed distribution leads to 

( )2 1 0 z=1,2,...zM + = . Using the definition of mean values for speed V and speed 

variance Θ as v V=  and ( )2-v V = Θ , expansion of Mk results in: 

 

( )

( )

( ) ( )

2
2

3 3 3
3

2

,

0,

...

0.5 1 0.
k k k k

k

M v V

M v V v V

M v V v V k k V
−

= − = Θ

= − = − =

= − = − − − Θ =

 (15) 

Hence: 

 ( ) 2
0.5 1

k k k
v V k k V

−= + − Θ . (16) 

By substituting expression (16) into equation (14), after a straightforward algebraic 

calculation (see Ngoduy, 2005) we end up with: 
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( ) ( ) ( )
( ) ( )

,
min min,

2 2

exp exp

1 0.5 1 0.5 .

u s u u s s
j j s i i j j u j ji j

u u s s
i j j i j j j j

P A r d l T V r d l T V

r T r T

⎡ ⎤ ⎡ ⎤= −γ + + −γ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

× + Θ γ + Θ γ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (17) 

The probability that any vehicle in lane j interacting with the lane-changing vehicle from 

lane i belongs to class s is calculated as: /s
j jr r , hence the probability that a vehicle of 

class u can change from lane i to lane j irrespective of vehicle class running in lane j 

becomes: 

 

( ) ( ){
( ) ( )

, min min

2 2

exp exp

1 0.5 1 0.5 .

s
ju u u s s

i j j j s i i j j u j j
js U

u u s s
i j j i j j j j

r
p r d l T V r d l T V

r

r T r T

∈

⎡ ⎤ ⎡ ⎤= −γ + + −γ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎫⎡ ⎤ ⎡ ⎤⎪× + Θ γ + Θ γ ⎬⎢ ⎥ ⎢ ⎥
⎪⎣ ⎦ ⎣ ⎦⎭

∑
 (18) 

From equation (18), we can see that the immediate lane-changing probability depends 

on the current traffic condition in each lane such as the density, the speeds and speed 

variances. The influence of model parameters on traffic flow stability will be discussed 

in the following section.  

 

3.3. Merging/diverging probability 

 

According to Ahmed (1999), the so-called mandatory lane-changes exhibit different 

behavior compared to the immediate lane-changes presented in the previous section. 

Mandatory lane-changes often occur at bottlenecks and cause a major impact on road 

capacity due to the increase of traffic demand, which leads to traffic breakdown. In the 

remainder of this section, traffic dynamics at a weaving zone are discussed. The 

structure of a mandatory lane-changing process is shown in Figure 5, in which vehicles 

are forced to change to a fixed target lane. 

 

 
FIGURE 5: Structure of mandatory lane-changing decision of a driver 
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For causes of clarity, we assume that there is only one auxiliary lane (but the derivation 

for a multilane weave ramp is straightforward by treating possible lane-changes between 

auxiliary lanes as immediate lane-changes). Let us denote the lane index in decreasing 

order from the median lane I to the shoulder lane 1 and index 0 for the auxiliary lane. To 

determine the mandatory lane-changing probability at location x and time instant t, we 

need to take into account the lane-changing rate from the shoulder lane to the left lane in 

order to give way to merging vehicles (see Figure1a). Let 1,2
uΩ  be the fraction of the 

vehicle class u in the shoulder lane (lane 1) which is willing to change to the adjacent 

lane (lane 2). 

Let us consider a vehicle class u on the auxiliary lane trying to merge to the shoulder 

lane as shown in Figure 1a. The decision to make a lane change is based on the gap-

acceptance model as described earlier. While the lead-gap p.d.f. is determined by 

equation (2), the lag-gap p.d.f. is determined by equation (5) in four situations as follows: 

 

3.3.1. Case 1 

 
In this case, both the follower and the leader are non-weaving vehicles, irrespective of 

vehicle class (denoted by s). The probability that Case 1 occurs is ( )21,1
sα . There are two 

sub-cases described as below: 

• Case 1.1: If the follower is willing to move to the median lane with probability 1,2
sΩ  

in order to give way to the merging vehicle and is able to do so, the space available 

for merging is (hn+1+hn). Hence, in this case, the c.d.f. of the lag-gap on the shoulder 

lane for merging is: 

 ( ) ( ) ( )
1, 1,
lag lag

1 1, 1
lag lag 1 1 1lag

0 0

d 0.5 1 2 d

s sd d

sF d f h h r F h h⎡ ⎤= = γ −⎣ ⎦∫ ∫ . (19) 

• Case 1.2: If the follower is not moving to the median lane, the space available for 

merging remains hn. Hence, in this case, the c.d.f. of the lag-gap on the shoulder lane 

for merging is: 

 ( ) ( ) ( )
1, 1,
lag lag

1 1, 1
lag lag 1 1 1lag

0 0

d 1 d

s sd d

sF d f h h r F h h⎡ ⎤= = γ −⎣ ⎦∫ ∫ . (20) 

By summing these two sub-cases we obtain the lag-gap c.d.f. for Case 1 as: 

( ) ( ) ( ) ( )
1, 1,
lag lag

1 1,
lag 1,2 1,2 1 1 1 1,2 1,2 1 1 1lag

0 0

0.5 1 2 d 1 1 d

s sd d

s s s s sF d p r F h h p r F h h⎡ ⎤ ⎡ ⎤= Ω γ − + −Ω γ −⎣ ⎦ ⎣ ⎦∫ ∫ . 

  (21) 

 

3.3.2. Case 2 

 
In this case, the follower is a weaving vehicle and running just before the nose of the 

on-ramp while leader is a non-weaving one. The probability that Case 2 occurs is 

( )1,1 1,0
s sα α . Since both vehicles in the shoulder lane do not change their lane at the 
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moment of interaction, the space available for merging remains hn. Hence, the lag-gap 

c.d.f. on the shoulder lane available for merging is determined as equation (20). 

 

3.3.3. Case 3 

 
In this case, the follower is a non-weaving vehicle while the leader is a weaving one. 

The probability that Case 3 occurs is ( )1,1 1,0
s sα α . There are four sub-cases described as 

below: 

• Case 3.1: If the follower is willing to move to the left in order to give way to merging 

vehicle and is able to do so and the leader is able to move to the auxiliary lane 

immediately when it finds sufficient lead-gap in the auxiliary lane, the space 

available for merging is (hn+1+ hn+hn-1). Hence, in this case, the c.d.f. of the lag-gap 

in the shoulder lane for merging is: 

 ( ) ( ) ( )
1, 1,
lag lag

1 1, 1
lag lag 1 1 1lag

0 0

1
d 1 3 d

3

s sd d

sF d f h h r F h h⎡ ⎤= = γ −⎣ ⎦∫ ∫ . (22) 

• Case 3.2: If the follower is willing to move to the left in order to give way to merging 

vehicle and is able to do so, and the leader is unable to move to the auxiliary lane, the 

space available for merging is (hn+1+hn). The lag-gap c.d.f. for this sub-case is as the 

same as equation (19). 

• Case 3.3: If the follower is unable to move to the left while the leader is able to move 

to the auxiliary lane, the space available for merging is (hn+hn-1). The lag-gap c.d.f. is 

calculated for this sub-case as the same as equation (19). 

• Case 3.4: If follower is unable to move to the left and the leader is unable to move to 

the auxiliary lane, the space available for merging now remains only hn. The lag-gap 

c.d.f. is calculated for this sub-case as the same as equation (20). 

By summing these four sub-cases we obtain the lag-gap c.d.f. for Case 3 as: 

 

( ) ( )

( ) ( )

( ) ( )

( )( ) ( )

1,
lag

1,
lag

1,
lag

1,
lag

1 1,
lag 1,2 1,2 1,0 1 1 1lag

0

1,2 1,2 1,0 1 1 1

0

1,2 1,2 1,0 1 1 1

0

1,2 1,2 1,0 1 1 1

0

1
1 3 d

3

0.5 1 1 2 d

0.5 1 1 2 d

1 1 1 d .

s

s

s

s

d

s s s s

d

s s s

d

s s s

d

s s s

F d p r F h h

p r F h h

p r F h h

p r F h h

⎡ ⎤= Ω λ γ −⎣ ⎦

⎡ ⎤+ Ω −λ γ −⎣ ⎦

⎡ ⎤+ −Ω λ γ −⎣ ⎦

⎡ ⎤+ −Ω −λ γ −⎣ ⎦

∫

∫

∫

∫

 (1) 

In equation (23), 1,0
sλ  denotes the probability that a vehicle irrespective of class in the 

shoulder lane finds sufficient lead-gap in the auxiliary lane determined as: 

 
( ) ( )min

2

, 1 0.5
u u

i j s i ir d l T Vu u u
i j i j j i

s U

e r T
−γ + +

∈

⎡ ⎤
λ = + Θ γ⎢ ⎥

⎣ ⎦
∑ . (24) 
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3.3.4. Case 4 

 
In this case the follower and the leader are both weaving vehicle, the follower is 

running just before the nose of the on-ramp. The probability that Case 4 occurs is 

( )21,0
sα . There are two sub-cases described as below: 

• Case 4.1: If the leader is able to move to the auxiliary lane, the space available for 

merging is (hn + hn-1). The lag-gap c.d.f. is calculated for this sub-case as the same as 

equation (19). 

• Case 4.2: If the leader is unable to move to the auxiliary lane, the space available for 

merging is hn, the lag-gap c.d.f. is calculated for this sub-case as the same as equation 

(20). 

By summing these two sub-cases, the lag-gap c.d.f. in Case 4 is calculated as: 

 ( ) ( ) ( ) ( )
1, 1,
lag lag

1 1,
lag 1,0 1 1 1 1,0 1 1 1lag

0 0

0.5 1 2 d 1 1 d

s sd d

s s sF d r F h h r F h h⎡ ⎤ ⎡ ⎤= λ γ − + −λ γ −⎣ ⎦ ⎣ ⎦∫ ∫  (25) 

From equations (21), (23), and (25), we obtain the lag-gap c.d.f. for merging event as: 

( ) ( ) ( )

( )

1, 1,
lag lag

1,
lag

1 1,
lag 1 1 1 1 1 1 1 1lag

0 0

1 1 1 1

0

1 d 1 2 d

1 3 d ,

s s

s

d d

s s s

d

s

F d X r F h h Y r F h h

Z r F h h

⎡ ⎤ ⎡ ⎤= γ − + γ −⎣ ⎦ ⎣ ⎦

⎡ ⎤+ γ −⎣ ⎦

∫ ∫

∫

 (26) 

where 

 

( )( )
( ) ( )

( ) ( )

1 1,1 1,2 1,2 1,0 1,0

2

1 1,1 1,2 1,2 1,1 1,0 1,2 1,2 1,0

2

1,1 1,0 1,2 1,2 1,0 1,0 1,0

1 1,1 1,0 1,2 1,2 1,0

1 1 ,

0.5 1

1 ,

1
.

3

u u u u u u

u u u u u u u u u

u u u u u u u

u u u u u u

X p

Y p p

p

Z p

= −α Ω −α λ

⎡
= α Ω +α α Ω −λ⎢

⎣
⎤

+α α −Ω λ + α λ ⎥
⎦

= α α Ω λ

 (27) 

When the gap is exponentially distributed, applying equation (6) for n = 1, 2 and 3 

gives: 

 ( ) ( )
1, 1, 1,

1 1 1 1 1 1lag lag lag
2

1 1, 1, 1,
lag 1 1lag lag lag

1
s s sr d r d r ds s s s sF d e X d e Y d e

−γ −γ −γ
= − − −# # , (28) 

where 

 
( )( )

( ) ( )

1 1,2 1,2 1,0 1,0 1,0 1,0 1,0 1 1

2
1 1,0 1,0 1,2 1,2 1,0 1 1

0.5 1 1 ,

1
1 ,

12

u u u u u u u u

u u u u u u

X p r

Y p r

⎡ ⎤= Ω −α −α λ +α λ γ⎢ ⎥⎣ ⎦

= α −α Ω λ γ

#

#
 (29) 

and the merging probability is obtained as follows: 



213 

 

 ( )
1, 1, 1,0,

1 1 1 1 1 1lag lag lag1 1 lead
2

1, 1,1
0,1 1 1lag lag

1

s s sus
r d r d r dr du s s s s

v ws U

r
e e X d e Y d e

r

−γ −γ −γ−γ

∈
π = + +∑ # # . (30) 

The algebraic calculation of equation (30) is rather similar to the one mentioned in 

Section 3.2 (for more details see Ngoduy, 2005): 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 min 0 0 1 1 min 1 1
2

1
0,1 0 1 1 0

1

2 2

1 min 1 1 1 min 1 1 1 1 1 1

2

1 1 1 1 min 1 1 1 1 1

1 0.5

1 1 0.5

2

u u s s
s u

s
r d l T V r d l T Vu u u

s U

s s s s s s s s
u u

s s s s s s s
u

r
e r T e

r

X d l T V Y d l T V r T

X r Y d l T V Y T

−γ + +μ −γ + +

∈

⎡ ⎤
π = + Θ μγ⎢ ⎥

⎣ ⎦

⎧⎡ ⎤ ⎡ ⎤⎪× + + + + + + + Θ γ⎨⎢ ⎥ ⎢ ⎥
⎪⎣ ⎦ ⎣ ⎦⎩

⎡ ⎤− γ + + + − Θ⎢ ⎥⎣ ⎦

∑

# #

# # # .
⎫
⎬
⎭

 

  (31) 

Similar approach is applied to derive the probability that a vehicle can go off the 

freeway:  

( ) ( ) ( )

( ) ( ) ( )

0 0 min 1 1 0 0 min 0 0
2

0
1,0 1 0 0 1

0

2 2

0 min 0 0 0 0 0 0 0 0 0 0 0

1 0.5

1 1 0.5 ,

u u s s
s u

s
r d l T V r d l T Vu u u

s U

s s s s s s s s
u

r
e r T e

r

Z d l T V r T Z r T

−γ + +μ −γ + +

∈

⎡ ⎤
π = + Θ μγ⎢ ⎥

⎣ ⎦

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤× + + + + Θ γ − γ Θ⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

∑

# #
 

  (32) 

where 

 0 0,1 0,1 0 00.5u u uZ r= α λ γ# . (33) 

From equations (31) and (32), it is clear that given local traffic condition, the reaction 

time plays a very important role in the lane-changing behavior. The higher the values of 

reaction time the lower the possibility to make a lane-change. That means the higher 

fraction of trucks in the shoulder lane and the auxiliary lane results in the more 

congestion of the traffic operations within weaving section. Furthermore, taking a closer 

look at the different driving style within a vehicle class, an aggressive driver often 

accepts smaller gaps than a timid driver. Consequently the former often causes more 

disruption for traffic flow than the latter. Another factor that contributes considerably to 

the lane-changing behavior within weaving section is the ramp factor ȝ, which is 

decreasing with the remaining distance to the end of the auxiliary lane. The lower the 

value of ȝ leads to the higher probability to change lanes and, consequently results in the 

more unstable traffic flow in the target lane. That explains why approaching the end of 

auxiliary lane, drivers are willing to accept smaller gaps to change lanes and disturb 

traffic in the target lane more considerably.  

 

3.4. Generalized macroscopic continuum model of weaving sections 

 

This section will establish a new macroscopic model for traffic flow dynamics at 

weaving section. The derivation bases on the gas-kinetic model developed above using 

the so-called method of moments, which is described in the ensuing of this section. That 

is: 
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 { } { }
0

gas-kinetic model d macroscopic model v

∞

→∫ . (34) 

Compared to the gas-kinetic model, the macroscopic model is more suitable for 

theoretical and numerical analysis of traffic phenomena, real-time application in traffic 

control. The derivation of continuum traffic flow models from gas-kinetic traffic models 

using the method of moments has been applied by many researchers such as Leutzbach 

(1988), Helbing (1997), Hoogendoorn (1999), Hoogendoorn and Bovy (1999), etc. By 

applying the method of moments we can obtain the equations for the dynamics of 

density, mean speed or flow rate. Let us briefly describe the working of the method of 

moments as following. We multiply both sides of equation (8) with vk (k = 0, 1, 2, �), 

then integrate them over the range of speed v. That is: 

 

( ) ( ) ( )

max 1
,1

0 0 0

imm spon

, ,
int lc lc

0

d d d

d .

k k
i uu k u k u

t i x i v i u
i

u k u k u k k k
t i t i t i i u i u

v V v
v v v v v

v v v v v v

∞ ∞ ∞ +
+

∞
+ −

⎛ ⎞−
⎜ ⎟∂ ρ + ∂ ρ + ∂ ρ
⎜ ⎟τ⎝ ⎠

⎡ ⎤
= ∂ ρ + ∂ ρ + ∂ ρ +ω +ω⎢ ⎥

⎣ ⎦

∫ ∫ ∫

∫
 (35) 

Let ( ) ( ),

0

, , , d
u

u u k u k
i k i i

i
m x t x v t v v r v

∞

= ρ =∫  and ( ),0 ,max 1
,

,
u

u u u k
i ii k

i
m x t r V v −= , the 

LHS of equation (35) becomes: 

 

max 1
,1

0 0 0

,0
, ,

, , 1

d d d

.

k k
i uu k u k u

t i x i v i u
i

u u
i k i ku u

t i k x i k u
i

v V v
v v v v v

m m
m m k

∞ ∞ ∞ +
+

+

⎛ ⎞−
⎜ ⎟∂ ρ + ∂ ρ + ∂ ρ
⎜ ⎟τ⎝ ⎠

−
= ∂ + ∂ +

τ

∫ ∫ ∫
 (36) 

For the RHS of equation (35), all the first three terms have been described in literature, 

for example in Shvetsov and Helbing (1999). The last term is determined below: 

 ( ) ƒ ( ),,
,

0

, , d ,k k
i ui u

i u
x v t v v x t v

∞ ±±±ω = ω∫  (37) 

where  

 ƒ ( ) ( ), ,

0

, , , di u i ux t x v t v

∞
± ±ω = ω∫  and 

( )
ƒ ( )

,

,
,0

, ,
d

,

i uk k

i u
i u

x v t
v v v

x t

∞ ±±

±

ω
=

ω
∫ . (38) 

From the obtained results, we come up with macroscopic continuum model when we 

set k = 0 for first order model, k = 1 for second order model, or even higher order model 

if k = 2. In this paper, we show equations for the dynamics of density (k = 0) and flow 

rate (k = 1). By definition, the macroscopic traffic variables for MLMC traffic flow are: 
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( ) ( )

( )
( )

( )

( )
( )

( ) ( )
( )

0

0

2

0

, ,

, , , d ,

1
, , , d ,

,

1
, , , d , 

,

, ,

u u
i i

u u
i iu

i

u u u
i i iu

i

i u i u

r x t x v t v

V x t x v t v v
r x t

x t x v t v V v
r x t

V x t v

∞

∞

∞

±±

= ρ

= ρ

Θ = ρ −

=

∫

∫

∫

 (39) 

where ( ), ,i uV x t
±  denotes the mean speed of vehicles class u entering to lane i (with plus 

sign) or exiting from lane i (with minus sign) at location x and time instant t. By 

substituting expressions (39) into the RHS of equation (36) for k = 0 and k = 1, we obtain 

the corresponding expressions as follows: 

( ) ( ) ƒ ƒ, ,
, ,, , , ,

1 1 mandatory lane-change

immediate lane-change spontaneous lane-change

u u u u s u u s u u u u
i u i ut i x i j i i j j i j i j ij i

s U j i j i

r q p p r r
+ −

∈ = ± = ±
∂ + ∂ = Ψ − Ψ + Δ −Δ + ω +ω∑ ∑ ∑ '*(*)

'*****(*****) '****(****)

, 

  (40) 

( ) ( )

( )

,max2
,

, 1 , 1 , 1 , 1

brakingrelaxation

, ,
, ,

1

immediate lane-change

1 1

u u u
i iu u u u u u u u u si

t i x i i i i i i i i i i i iu
s Ui

u u s u u s
j i i jj i

s U j i

r V q
q r V p

p p

− − − +
∈

∈ = ±

−⎡ ⎤ ⎡ ⎤∂ + ∂ +Θ = − −α π − −α Π⎢ ⎥ ⎢ ⎥⎣ ⎦τ⎣ ⎦

+ Φ − Φ

∑

∑ ∑

'********(********)'**(**)

'*****(**** )
( ) ƒ ƒ

, ,, , , ,

1
mandatory lane-change

spontaneous lane-change

.u u u u
i u i uj i j i j i i u i u

j i

q q V V
+ −+ −

= ±
+ Δ − Δ + ω +ω∑ '***(***)

* '****(****)

 

  (41) 

In equation (41), , 1 , 1
u u
i i i i− −α π  denotes the fraction of weaving vehicles that exit the 

shoulder lane while ( ), 1 , 11 u u
i i i ip− +−α  denotes the fraction of non-weaving vehicles that 

change lanes to the left due to the interaction process. Accordingly, 

( ), 1 , 1 , 1 , 11 1u u u u
i i i i i i i ip− − − +

⎡ ⎤−α π − −α⎢ ⎥⎣ ⎦
 becomes the fraction of vehicles that remain in the 

shoulder lane, which is multiplied with the interaction rate ,u s
iΠ  to cause the changes of 

lane and class specific traffic flow rate u
iq  due to braking process. Note in weaving 

sections, the equilibrium relations mentioned in Hoogendoorn (1999) are not applied. 

To close system (40) and (41), we need to determine the speed variance u
iΘ  by 

assuming that the speed variance is a function of mean speed u
iV  and density u

ir  as 

follow: 

 ( )( )2u u u
i i ir VΘ = η , (42) 



216 

 

where ( )u
irη  is a step-like function of density, which conforms to the following 

expression: 

 ( )
1

,
,0 1 exp

u cr u
iu u u i

i ii u
i

r r
r

r

−
⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟η = η + δη +

⎜ ⎟⎢ ⎥δ⎝ ⎠⎣ ⎦
. (43) 

The step-like function parameters ,0u
iη , u

iδη , u
irδ , and critical density ,u cr

ir  are 

estimated from empirical observations (see the typical values for these parameters 

estimated from the Dutch free way A9 in Ngoduy, 2005). 

 Set of equations (40) and (41) are of hyperbolic type and can be solved using 

numerical methods presented in Ngoduy et al. (2004b). All factor functions describing 

the changes of traffic variables due to braking, ILC and SLC processes such as: ,u s
iΠ , 

,u s
iΨ ,  ,u s

iΦ , and ,
u
i jΔ   are given in Shvetsov and Helbing (1999). 

 

4. NUMERICAL STUDY 

 

To give an insight into the model performance, let us simulate the model developed in 

Section 3.4 with a two lane freeway 3km in length and having a weaving from KM2.0 to 

KM2.5 in 3 hours (Figure 6a). Traffic composition consists of car (90%) and truck 

(10%). Traffic demand to the main lanes and to the weaving section is given in Table 1. 

Traffic fractions are 0.5 in all movements. The numerical scheme presented in Ngoduy 

et al. (2004b) in which the road is divided into cells 100m in length, the simulation time 

step is 1 second, is applied. Open boundary condition is used for this simulation. The 

parameters used for the simulation are given in Table 2. Note that for the sake of 

simplicity, we assume that the parameters are the same for lane but different for truck 

and car. 

 

TABLE 1: Traffic demand to the main lanes and to the weaving section 
Time (sec) Unit 0 1800 3600 7200 10800 

Main lanes Veh/h/lane 1800 1800 1800 1800 1800 

Weaving Veh/h 800 800 1800 1800 800 

 

TABLE 2: Traffic demand to the main lanes and to the weaving section 
Parameters Notation/Unit Truck Car 

Ramp factor ȝmax 0.9 0.9 

 ȝmin 0.2 0.2 

Free speed ,maxu
iV  (km/h) 85 120 

Jam density ,maxu
ir  (veh/km) 120 160 

Reaction time u
iT  (sec) 2.2 1.6 

Relaxation time u
iτ  (sec) 35 18 

Speed variance coefficients ,0u
iη  0.008 0.01 

 u
iδη  0.05 0.08 

 u
irδ  (veh/km) 3 6 

 ,u cr
ir

 (veh/km) 28 38 
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FIGURE 6: Density in the right lane (b), in the left lane (c) and in the auxiliary lane (d) 

 

Figures 6b and 6c illustrate the dynamics of traffic densities in main lanes. It is clear 

that behind the bottleneck (e.g. KM2.0), a growing region of congested traffic forms 

immediately due to the peak of demand to weaving section (t = 3600-7200 sec), which 

makes the flow in the shoulder lane (lane 1) exceed the capacity. Congestion in the main 

lanes blocks the vehicles desiring to merge which leads to the congestion in the auxiliary 

lane although the peak flow is less than the capacity of this lane (Figure 6d). We find 

that the structure of congested traffic flow reproduced by the model is well-consistent 

with observations in microscopic models (Helbing and Tilch, 1998). 

By varying the traffic demand, we construct a contour diagram of the weaving lengths 

with respect to the combination of different traffic demands for a given merging 

probability (Figure 7). Here we assume that the traffic operation is good when the 

merging probability is 85%. This is an important property of the developed model since 

it can be used to set up a nomogram to support the design guidelines in HCM 2000 for 

weaving geometry. 

 

5. CONCLUSIONS  

 

In this paper, we have developed a gas-kinetic traffic flow model for mixed traffic at 

weaving sections on freeways and derived the corresponding macroscopic model using 

the so-called method of moments. In this model the lane changing maneuvers have been 

modeled using renewal theory. The calculated lane-changing probabilities depend on a 

lot of factors such as density, speed, speed variance, weaving flow fraction and vehicle 

compositions on the target lane. Moreover, the model has also taken into account the 

(a) (b) 

(c) (d) 
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give-way effect and the willingness to accept smaller gaps of subject drivers when 

approaching the end of weaving area, which have been often neglected in previous 

macroscopic traffic models. 

 
FIGURE 7: Contour diagram for necessary weaving lengths to keep main traffic flow 

stable 

 

We argue that the proposed model is more generic than other continuum models since 

it is based on microscopic principle in terms of modeling the inflow from on-ramp or 

out-flow to off-ramp but requires fewer parameters than microscopic models, which 

results in the simplification of the calibration and validation process. Numerical 

simulation results show that the developed model is well-consistent with microscopic 

models in reproducing the formation of traffic congestion within weaving sections. 

Furthermore, the developed model is useful in supporting the geometry design manual 

for weaving sections by means of constructing counter diagram of necessary weaving 

lengths based on probabilistic method. 

Our current work is to investigate the working of the proposed model in case the 

behavior of drivers differs within a vehicle class (e.g. timid or aggressive driver) or 

changes due to the current traffic conditions, for example the reaction time increases 

when the local traffic becomes unstable. This work requires an application of the 

distribution of critical gaps within a vehicle class instead of a single value as assumed in 

this paper. This research direction may result in a model to explain better the wide 

scattering of the flow-density relation, which is often observed at weaving sections. 
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APPENDIX. NOTATION 

 

Shorthand 

 

p.d.f. : probability density function 

c.d.f. : cumulative density function 

PSD : phase-space density 

ILC : immediate lane-change 

SLC : spontaneous lane-change 

MLC : mandatory lane-change 

RHS : right hand side 

LHS : left hand side 

MLMC : multi-lane multi-class 

exp : exponential function  

 
Definition of mean operator 

 

Let ( )xψ  denote the mean operator of any function ȥ(x). It is determined by the 

following expression: ( ) ( ) ( )d
x

x y f y y
+∞

−∞
ψ = ψ∫ , where f(x) denotes the probability 

density distribution of variable x.  

 

Independent variables 

 

x : location x (m) 

xend : location of the end of weaving section (m) 

x0 : location of the beginning of weaving section (m) 

v : speed v (m/s) 

t : time instant t (s) 

L : weaving length (m) 

I : freeway lane index (i=0,1,2,�,I) 

u : vehicle class index (u=1,2,�,U) 

 

Mesoscopic variables 

 

( ), ,
u
i x v tρ  : lane and class specific phase-space density at location x and time 

instant t  

( ), ,u
if x v t  : lane and class specific gap probability density function  

( ), ,
u

iF x v t  : lane and class specific cumulative gap probability density function 

( ),
lead

, ,i uf x v t  : lane and class specific lead gap probability density function  

( ),
lead

, ,i uF x v t  : lane and class specific cumulative lead gap probability density 

function 

( ),
lag

, ,i uf x v t  : lane and class specific lag gap probability density function  
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( ),
lag

, ,i uF x v t  : lane and class specific cumulative lag gap probability density 

function 

 

Macroscopic variables 

 

( ),u
ir x t  : lane and class specific density at location x and time instant t 

(vehicle/m) 

( ),
u

iV x t  : lane and class specific mean speed at location x and time instant t 

(m/s) 

( ),u
iq x t  : lane and class specific flow rate at location x and time instant t 

(vehicle/s) 

( ),u
i x tΘ  : lane and class specific speed variance at location x and time instant t 

(m2/s2) 
,

( , )
u e

iV x t  : lane and class specific equilibrium speed at location x and time 

instant t (m/s) 

( ), ,u
i j x tα  : lane and class specific traffic flow fraction at a weaving section. 

 

Lane-changing variables 

 

( ), ,u
i j x tπ  : class specific average probability to find sufficient gaps in the target 

lanes j for a mandatory lane-change from lane I at location x and 

time instant t 

( ), ,u
i jp x t  : class specific average probability to find sufficient gaps in the target 

lanes j for an immediate lane-change from lane I at location x and 

time instant t 

( ), ,i uV x t
±  : class specific mean speed of traffic merging to (plus sign) or 

diverging from (minus sign) lane I at location x and time instant t 

(m/s) 

( ), ,i u x t
±ω  : class specific average rate of merging traffic to (plus sign) or 

diverging traffic from(minus sign) lane I at location x and time 

instant t (vehicle/m2). 

( ),
,

u s
i x tΠ  : lane and class specific interaction rate (vehicle/(m.s)) 

( ), ,u s
i x tΨ  : lane and class specific changes of density due to interaction between 

vehicles (vehicle/(m.s)) 

( ),
,

u s
i x tΦ  : lane and class specific changes of flow rate due to interaction 

between vehicles (vehicle/s2) 

( ),u
i x tΔ  : lane and class specific spontaneous lane-changing rate (1/s)  
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Model parameters 

 
,maxu

iV  : lane and class specific free speed at location x and time instant t (m/s) 

u
iτ  : lane and class specific time needed to relax to the equilibrium 

situation (s) 

ul  : class specific average length of a vehicle (m) 

min
ud  : class specific minimal safe distance (m). 

u
iT  : lane and class specific reaction time (s)  

u
iD  : lane and class specific gross distance headway (m) 

,
lead
i ud  : lane and class specific lead distance gap (m) 

,
lag
i ud  : lane and class specific lag distance gap (m) 

ih  : lane specific expected unoccupied space (m) 

,maxu
ir  : lane and class specific jam density (vehicle/m) 

,u cr
ir  : lane and class specific critical density (vehicle/m) 

,0u
iη , u

iδη , u
irδ  : step-like function parameters 

( )xμ   : ramp factor, which is a function of location x 

 


