UNIVERSITY OF LEEDS

This is a repository copy of Sensitivity analysis of the probit-based stochastic user
equilibrium model .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2472/

Article:

Clark, S.D. and Watling, D.P. (2002) Sensitivity analysis of the probit-based stochastic user
equilibrium model. Transportation Research B : Methodological, 36 (7). pp. 617-635. ISSN
0109-2615

https://doi.org/10.1016/S0191-2615(01)00021-2

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A ‘ Universities of Leeds, Sheffield & York

White Rose Research Online
http://eprints.whiterose.ac.uk/

TS
i

A

Institute of Transport Studies
University of Leeds

This is an author produced version of a paper published in Transportation
Research B. This paper has been peer-reviewed but does not include final
publisher pagination and formatting.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/2472/

Published paper

Clark, S.D.; Watling, D.P. (2002) Sensitivity Analysis of the Probit-Based
Stochastic User Equilibrium Model. Transportation Research Part B:
Methodological 36(7) 617-635

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk


http://eprints.whiterose.ac.uk/
http://www.its.leeds.ac.uk/

SENSITIVITY ANALYSIS OF THE PROBIT-BASED

STOCHASTIC USER EQUILIBRIUM ASSIGNMENT MODEL

Stephen D. Clark and David P. Watling,
Institute for Transport Studies,
University of Leeds, UK.

(email: sclark@its.leeds.ac.ykwatling@its.leeds.ac.yk

Revised version: 30/4/01

ABSTRACT

The probit-based Stochastic User Equilibri(®JE) model has the advantage of being able
to represent perceptual differences in utilibyoss the driver populan, while taking proper
account of the natural correlations in theskties between overlapping routes within the
network (which the simpler logit SUE is unalbedo). Its main drawback is the potentially
heavy computational demands, and this has previously been thought to preclude a
consideration of theengitivity analysis of probit-based SUE, veneby an approximation to
changes in the equilibrium solution is dedd as its input parameters (specifically
origin/destination flows and link cost-flow futm@n parameters) are perturbed. In the present
paper, an efficient computational method erforming such an analysis for general
networks is described. This approach usegin&ion on SUE path flows, but is not specific
to any particular equilibrium solution algorithfroblems inherent ithe consideration of
general network topologies are identifieddanethods proposed for overcoming them. The
paper concludes with an application of the method to a realistic network, and compares the

approximate solutions with those abited by direct estimation methods.



1. INTRODUCTION

The basic function of a traffic assignment modébigelate various input data (e.g. origin-
destination demand matrix, network topologgpacities, signal timings) to various output
measures (e.g. link flows, travel times). In pice; the approach typically adopted is: (i) to
‘calibrate’ the input data/parameters sdtesmodel reproduces currently observed traffic
conditions; and then (ii) to test a numbeatiérnative hypothetical policies by adjusting the
input data, and re-running the model for epolicy. Since each policy option requires a new
model run and output analysis, time limitationsam that it is rare for anything more than a
small number of alternatives to be testede Wodel therefore has a rather passive role,
providing limited help to the planner in undgnding the relationship between input data

(including potential policies) and output measures.

In the present paper, we shall explore the technigsenativity analysis, which aims to

extract explicit information on the relatiship noted above, by postulating simple
approximating functions to describe the impact of changes in the model inputs on changes in
the model outputs. Given its long history in the transport research literature, it is surprising

that this technique seems to have been little exploited in practice.

Specifically, the aim will be to deduce expressifursa first order sensitivity analysis of an
equilibrium assignment model, yielding adar relationship between the equilibrium flows
and the input data. Although it may seem an unusteal to approximate such an intrinsically
non-linear system as a traffic assignment process by a linear model, the claim is only that
such an approximation will be valid in theighbourhood of some ‘nominal’ solution (this
latter computed from a standard run of tqeikbrium model). The advantage of such an
approach is that it provides information on ag® of hypothetical scenarios and their related

equilibrium solutions. The pential applications include:
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Identification of ‘critical’ variables, such as identifying the most sensitive links to demand

or capacity changes (see, e.g., Yang, 1997).

Error analysis, whereby the propagation of given input sampling distributions to output error
distributions may be traced through the sensitivity expressions (Leurent, 1996, 1998; Bell &
lida, 1997), thus quantifying the impactrafasurement/sampling errors. Ultimately, in
addition to point estimates such as the meanagproach can be used to provide confidence

intervals.

Optimal design. One particularly fruitful way of exploiting the sensitivity expressions is to
embed them in a solution algorithm (particularly for bi-level problems), with the aim to
determine optimal values of some design varialsialsject to the constraint that the resulting
flows are in equilibrium (Magnanti & Wongd984; Davis, 1994; Yang, 1997; Bell & lida,
1997). Example applications of such an aagh include optimal pricing (Yang & Bell,

1997) and traffic control (Yang al., 1994).

Estimation problems, a particular example being the problem of origin-destination matrix
estimation from link counts (Yarg al., 1992; Verlander & Heydecker, 1994). Again, as in
the optimal design problem, sensitivity analysis may be used to approximate a user

equilibrium constraint, as part of a solution algorithm.

The paper will begin with a review of previowsrk on sensitivity analysis of the traffic
assignment problem. In section 3, a resultasest for a first order sensitivity approximation

for a general non-linear program, and in section 4 this result is subsequently applied to the
stochastic user equilibrium assignment problem. Section 5 provides a method for calculating
the first derivatives for the probit choice prbibdies, the most complex component of the

sensitivity expressions. The problem of lindeapendence between restis explained in
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section 6, and methods for overcoming itdstigated. Section 7 provides a case-study

application of the methods to a realistic network.

2. REVIEW OF SENSITIVITY ANALYSIS FOR TRAFFIC ASSIGNMENT

Following early investigations by Hall (1978) and Dafermos & Nagurney (1984), which
essentially established the “direction of changdlbfeing perturbations to inputs of a traffic
assignment model, a major breakthrough was made with the work of Tobin & Friesz (1988).
Exploiting recent results which formulated the deterministic user equilibrium (DUE) model as
a variational inequality (Smiti979; Dafermaos, 1980), Tobin & Friesz developed theoretical
results and computational procedures for estimating the magnitude of the sensitivities for
general networks. In particular, they examitleel derivatives of the equilibrium link flows

under perturbations to the elements of theioipstination demand matrix and/or link cost
function parameters. The primary advantage efriational inequality approach is that it
permits the travel cost on a given link to depend not only on the flow on that given link, but

also (in a restricted way) on the flows ahlinks'.

The major hurdle Tobin & Friesz faced whg well-known non-uniqueness of DUE path
flows, even in cases where the DUE link flosave unique (e.g. strictly monotone cost-flow
relationship, as in Smith, 1979). This difficultyis@s even if there is no underlying interest in
the perturbed path flows, since it is not pbksto write the DUE feasibility constraints in

terms of link flows only, without reference to path flows. They overcame this difficulty by

! As noted by Tobin & Friesz, a parallel derivation of their results is possible in the special cases where DUE may
be formulated as an equivalent optimization problem, such as cases where the link travel cost/flow Jacobian is

diagonal or symmetric.



demonstrating that a restricted formulation of the DUE problem did possess the required

uniqueness property. The solution they adopt is as follows:

1. Choose an arbitrary DUE path flow solution, satisfying two conditions, namely that the
solution is:
(a) an extreme point of the path flow feasible region; and

(b) non-degenerate, namely tha¢ thumber of paths with positive flow must be equal to

the rank of[AT| AT] , whereAT is the transpose of the path-link incidence matrix, and

AT is the transpose of the origin/destination-path incidence matrix.

2. Compute the sensitivities of the path flomssuming that in the perturbed state the only
used paths are those that had positive flow in the unperturbed state selected in 1. (the
“active paths”).

3. Hence, by transformation, deduce the sensitivities in terms of link flows.

Tobin & Friesz go on to show that the link sensitivities resulting in 3 are independent of the

arbitrary path flow solution selected in 1, louly for a ‘restricted problem’ where additional

conditions hold. These conditions are namely that the perturbed variational inequality is
strictly monotone, and that a strict complementarity condition holds (implying that only links
with positive flow in the unperturbed solution need be considered). They do not, however,
examine under what conditions it is reasonéblassume these additional assumptions to be
valid. The technique was illustrated with a #reaample network, but the feasibility of the

method for large realistic networks was not examined.

The approach of Tobin & Friesz has subsequently been extended to examine the sensitivity
analysis of a number of generalisationshaf DUE model, including a steady state queuing
version of DUE (Yang, 1995), the elastic demand DUE model (Yang, 1997), and a DUE

model with randomly distributed values of @rfLeurent, 1998). In addition, Bell & lida



(1997) considered the logit-based stochastier equilibrium (SUE) assignment model, and
showed how sensitivity expressions may be ddrfvem an equivalent optimization problem,

or by the Tobin & Friesz approach.

In conclusion, existing work in the literatusa traffic assignment sensitivity analysis derives
almost exclusively from applications and exfens of Tobin & Friesz’s results. In any such
DUE-style model, a major hurdle is the nonqueness of the equilibrium path flows,
meaning that a restricted problem needs to be defined, and additional assumptions made, in
order to derive sensitivity expressions. A majdvantage of the SUE model, however, is that
it is known to give rise to unique path flowsder mild conditions (Sheffi, 1985). It also has
an advantage over DUE of greater behaviowgalism, in that DUE assumes the utilities of
each available path to be known and idelitiqgzerceived across the population. In reality,
taste variation means that this premiseriskely to be true, and a more appropriate
assumption is that the utilities contain a random element. Moreover, a limiting case of
SUE—as the perceptual dispersion in the population approaches-zettee DUE model,

and so the former model may be regarded as more general, with DUE a special case.
Effectively, if our underlying interest were in DUE, we could even regard SUE with a small
perceptual variance as an alternative meauefifing a “restricted problem” with unique

path flows.

There is therefore a good case for considering sensitivity analysis of the SUE problem. As
demonstrated by Bell & lida (1997), this is relatively straightforward for the case where
choice fractions are assumed to follow a multinomial logit model, yet there are well-known
deficiencies with using such a model in a ragtacontext. In particular, by assuming path
utilities to be statistically independent, the model neglects what could be claimed to be the
most important structural element of a network: namely that paths are formed from links. For

example, two paths that overlap for virtually their whole length are likely to be perceived very
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similarly by an individual since they have madmks in common, but this cannot be captured

by a logit model. The probit SUE model (e.g. Sheffi, 1985) is able to overcome these
drawbacks, by supposing path utilities (cost) are formed from a sum of link utilities (costs),
with the error distribution specified for the latter. The disadvantage of the probit model is its
computational complexity: there is no closed form expression for probit choice fractions, and
evaluating them directly involves the evaloa of a multivariate normal integral, of

dimension equal to the number of feasible pdtar a given origin-destination movement).

This appears to have precluded a previous consideration of probit SUE sensitivities.

The purpose of the remainder of the paper wéréiore be to deduce an efficient procedure
for such a sensitivity analysis of the probit SURd®l. A particular goal is that this procedure
is feasible for large realistic networks, aulsome attention is paid to selecting a
computationally efficient method. It is notaltkeat the previous sensitivity work reviewed in
this section has largely been reported in @agibns to small illustrative examples, with little

direct evidence of the computational efficiency of the methods for larger networks.

3. METHODS OF DERIVING SENSITIVITY EXPRESSIONS

For the DUE model, there are two main wayslefiving the sensitivity expressions: either
through an equivalent optimization (EO)awariational inequality (V1) problem. The main
distinction is that the VI approach can beddai be more general in that it permits mild
interactions between links in the cost-flow telaships. The benefit dhis generalisation is,
however, somewhat diminished by the fact thet rather difficult to test for in practice
(Heydecker, 1983), with the possibility of multigiek flow equilibria existing if it is just
violated (Watling, 1996). Therefore, in mosagtical situations, regardless of whether the EO
or VI approach is applied, one commonly hamind the same class of problem, namely that

with separable, increasing cost-flow functions.



For the SUE model, in addition to an EO and VI formulation, one also has the third possibility
of a fixed point (FP) formulation. Agaithere are no great computational differences

between the three approaches, the FP foitionl&aving the claim to admitting the greatest
generality of problems, requiring only diffetebility of the involved functions to provide
sensitivity estimates. This could, howevershél to be a little misleading, since there are
implicit smoothness properties assumed whenyampkensitivity analysis to any kind of
formulation. For this reason, in our subsequetuty of SUE, we have chosen to use the EO
formulation. Desirable properties of the objective function involved have been established by
Sheffi (1985), such as convexity in the neightbmad of an SUE solution, which we believe
means that a Taylor series expansion may bewghdjyreater confidence. In contrast, the VI
approach proposed by Ran and Boyce (1993fhadgelatively little attention paid to it. In

any case, we believe it is supersedadykneral non-separable problems by the FP

formulation. For completeness, in Appendialderivation of the sensitivity expressions for

the FP formulation is presented. It is shawat in the special case where link cost-flow
functions are separable and increasing (requireth&EO formulation to be valid), then the

EO and FP formulations providguivalent sensitivity expressions.

Henceforth, we shall therefore restrict atim to problems expressible as an equivalent
optimization. As a precursor to the application to traffic assignment, the present section
therefore summarises a result for the first-order sensitivity approximation of a general non-
linear optimization problem, applicable whether the constraints or parameters in the
objective function are perturbed. In parteylfor a given vector of perturbatioggof length
equal to the number of perturbations), consider the problem:

Minimize f(x,€) with respect tx subject to
gi(x,a)ZO (i=1,2,...,m)

hj (x,6)=0 (=1,2,...,p)



A first-order Taylor series approximation to the solution to this problems,iawaried, in the

neighbourhood of the original solution is then (Fiacco, 1983, pp 76-77):
x(&) x(0)
u(e) |=| u(0) +(M(0)_1N(0)j ¢ +ol¢])
w(e)| [w(0)
where x(g) is the solution vector (dimension ate;
u(e) is them-vector of Lagrangian non-negativity multiplierseat
w(g) is thep-vector of Lagrangian equality multipliersat

o([e[) represents a real valued functigge), such that(e)/ || — 0 ase — 0

and where the matricdd andN (as functions og) are given by:

_ _ B T
V0L -Vvg{ -+ -Vgp Vh{ - VhJ _(vng)
uvegr 0 0 ~u,V.0,
: 0 :
M) =|u,Vg, O Im NE=|-uvg,
Vhy —VghI
: 0 0 :
| vh, | -V, h}

where L is the Lagrangian function for the problem.

4. SENSITIVITY ANALYSIS OF STOCHASTIC USER EQUILIBRIUM

An equivalent optimization formulation ofé¢lgeneral SUE traffic assignment problem was

established by Sheffi and Powell (1982):

Min Z(X) = _qus E|: min {Crks}
X P kek (rs)

ch(X):| + Zxata(xa) - Z fta (w) dow
a a o

where ¢ is the total O-D flow between origin r and destination s;

C!® s the perceived travel cost on route k between O-D pairr - s;

(]

(o is the actual travel cost on route k between O-D pair r-s;

Xa is the flow on link a;



tfXs) is the travel cost on link a, assumed an increasing functioyoofyx

and «(r,s) is the set of routes connecting O-D pair r-s.

A notable feature of this formulation is thiais unconstrained, éhsolution automatically
satisfying the flow conservation and non-negativity of path flows constraints. Thus, when
applying the Fiacco sensitivity results to this problemMhandN matrices defined in
section 3 require only a consideratiorM3&(x) (i.e. V’L) andVZ, z(x) (i.e.VZ«L). An
expression foWz(x), and thenc&?z(x), is readily deduced as (Sheffi, 1985, pp 318-319):

Vz(x) =[-Zsqs PTAS + X ] Vit

VZZ(X) =26 s [(Vat . A®) (-VP®) (Vit . AT ]+ V,t + V,2t . R
where Vit is the Jacobian of the link travel cost vector;

A® is the link-path incidence matrix for O-D pair r-s;

V.P® is the Jacobian of the route choice probability vector for O-D pair r-s;

R is a diagonal matrix, thé"alement of which is ErskOrsP8ak° + %)

P° is the probability of using path k for O-D pair r-s;

s

and  Jax is 1 if link a is on path k between O-D pair r-s and O otherwise.

The expressions above yield Fiacchlsmatrix. The form of Fiacco'®™ matrix depends on
the particular form of perturbatiomensidered, and two cases are presented here:
Case (i) Changes in the O-D demand elements

VyeZ(x) = [ -Zs Ve Gs(e) PPAST] Vit
Case (ii) Changes in the link cost function parameters

VxeZ(X) = Zes s [(Vt - A%) (-VP™) V. C%(e)]
where ¢(e) is the relationship between the O-Dhtlnd and the vector of perturbations;
and &(e) s the relationship between the vector of route costs and the vector of

perturbations.
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Since the Jacobian of the link travel costtor is relatively easily computed for common

forms of performance function, the only challenging component of these expressions is the
Jacobian of the choice probability vect®R"™). For the logit model, this can readily be
obtained in analytic form, but since no closed form expressions for probit choice probabilities

exist, alternative methods are required.

5. COMPUTATION OF THE PROBIT ROUTE CHOICE JACOBIAN

As described in Daganzo (1979), an efficient method for approximating probit route choice
probabilities is by Monte Carlo simulation. That is to say, one performs repeated pseudo-
random simulations from the given multivariatemat error structure. By the law of large
numbers, as the number of regliions approaches infinity, the fraction of times that an
alternative has maximum utility will approach its choice probability. Such a method underlies
the stochastic network loading stephie method of successive averages equilibrium
algorithm, commonly used to implement prdbéffic assignment (Sheffi, 1985). This method
has been seen to be particularly attractivestah problems, where there are typically a large

number of alternatives.

The simulation method above may be impletedrior arbitrary multivariate normal error
structures using only univariate normal pseudo-random numbers (Daganzo, 1979, p 49). In a
traffic assignment context, the procedure becomes still more attractive when the correlations
between alternative routes are assumed to be formed wholly due to the network overlap of
independently-distributed normiahk error distributions. In such a case, one can avoid
enumerating all possible routes in advanceheag can be generated as needed during the

simulation process.
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It is therefore natural to consider the usdainte Carlo techniques for the estimation of the
probit route choice Jacobian, i.e. the derivatives of the route choice probabilities with respect
to the route costs. A simple method of numerically evaluating these derivatives at a given
point is finite difference approximation: eactrstoomponent is perturbed by a small amount

in turn, and the effect on the choice probabilitemputed. An estimate of any derivative is
then the ratio of the change in the choice pbdlig to the size of the cost perturbation. This
approach is, however, potentially unreliaiieen the choice probabilities are estimated by
simulation. In particular, the error in estitimg a choice probability is a decreasing function

of the number of times it is selected in thagiation (Daganzo, 1979, p 49-51). This implies
that the difference in thestimated choice probability of such an alternative, between two
independent simulation runs, is rather varialgl iais just such a difference which is used in
the finite difference approximation of the derivative. A further undesirable property of the
finite difference approach is that the signshef estimated derivatives are not guaranteed to
be logical. Although the impact of these problems might be lessened by the use of variance
reduction techniques, the serious possibility reséhat the error in the derivative estimates

may be rather larger than that in the estimated choice probabilities.

Instead we adopt an approximation methocdekiimating the off-diagonal terms of the probit
route choice JacobiaWP"™, which Daganzo (1979) attributes to McFadden. An outline
derivation of this result is provided in AppendxSince this Jacobian is symmetric, it is only
necessary to compute the upper triangular terms. For route k the derivative approximation
with respect to the cost on an alternative route j, at a given route cost paiinta variance-

covariance matriZx, is of the form:
0P (k, 1) Ak, j , , L
0P PO o ADy e, et B ki) (k< ki < x5
ilC=c T IZ| 2

J
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wherex(r,s)is the subset of routes relating to O-D movement r-s, Ni{R)), Z(k,))) is the

multinomial probit (MNP) choice probability for alternativek(r,s) corresponding to a
model with Ns— 1 alternatives (where the original model hagjﬂlc (r,s)| alternatives),
mean cost vectar(k,j) and covariance matrix(k,j); and where the matrix(k,j), row-vector

c(k,j), and scalar A(k,j) are computed from the following scheme (svétbsumed to be in

row-vector notation):

1. Compute the inverse covariance ma@ixand the row vectarZ ™.
2. Form the (N — 1)-square matriB(k,j) from =™ by:
(a) adding row j af™ to row k;
(b) adding column j of the resultant matrix from (a) to its column k;
(©) deleting row j and column j of the resultant matrix from (b).
3. Similarly, form the (N — 1) dimensional row vectak(k,j) from ¢=?, by adding the"]

element to the'k and then deleting th& glement.
4, Finallycompute: 2(k,j) = (D(k,j)™ c(k,j) =d(k,)) Z(k,j)
Akj) =d(k,j) Z(k,j) (d(k,]))" - ez
In view of the symmetry of the Jacobian ane thct that the choice probabilities must sum to
1, then once all the off-diagonal terms haeen determined, the diagonal terms may be

found from:

0P, o P,

0C, J'EK(rZS):, j# 0 C;
The advantage of this approximation method in the present context is its feasibility for large
networks, where the choice probability, MN&k,j), Z(k,j)), may be computed by Monte

Carlo methods. (Note that the procedure is carried out independently for each origin-

destination movement.)
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In practice, this Jacobian is not computed fbawailable routes, but rather for the subset of
used routes arising at the end of some equilibrium solution algorithm. This is a similar
restriction to “active paths” as adopted by Tobin and Friesz (1988), as discussed in section 2,
although here the level of the restriction is under the control of the modeller. That is to say,
the restriction is simply due to the fact thdinite computation will be carried out in which,
during the Monte Carlo process, there will stilldmme paths that have not been selected by

the time the algorithm is terminated. By choogimg@erform more iterations in computing the
unperturbed SUE solution, more active paths wilkemto the sensitivity analysis, and so the

restriction is entirely under the control of the modeller.

It is worth noting here that although this apgmi ultimately requires path information, it is
not specific to any equilibrium solution methdor, example being applicable to solutions
obtained by the method of successive averagdbe more recent step-length optimization
methods (Maher and Huges, 1997). Indeed, @vélme case of a link-based algorithm, the
necessary path information may be obtaineddiyig the converged SUE link costs, through
the use of replicated Monte Carlo stochasétwork loadings, carried out at the fixed SUE

link costs.

Applications of this approach are reported in Clark and Watling (2000), where a close
agreement is seen between the approxitiregar solution and the “exact” (re-estimated)
SUE solution. The method is also shown todmesible for larger realistic networks (notably,
the Sioux Falls network). However, while thawerk size is not a limitation, the network
topology may be. The particular problem thases, and its solution, is described in the

following section.

14



6. THE LINEAR DEPENDENCE PROBLEM

Let us now consider the application of the hoels described in section 5 in the context of the
SUE sensitivity results described in section 4wy of illustration, consider the figure of
eight network (see Figure 1), where the O-D demand q = 1, and the link cost functions are:
ti=1+x b=2+% 3= 4+x% th=8+x

[FIGURE 1 HERE]
The routes may be numbered (for reference) as follows:

Route 1 = Links 1,3 ; Route 2 = Links 1,4 ; Route 3 = Links 2,4 ; Rostkidks 2,3 .
Supposing further that the link errors follow independent normal distributions with variance
equal to the free flow travel time, then wey write down both the link-path incidence

matrix, and the implied route error variance co-variance matrix:

1100 51 0 4

0011 19 8 0
A: Z:

1001 0 8 10 2

0110 4 0 2 6

Now it is evident from figure 1, the link-patiicidence matrix and the variance co-variance
matrix that there are linear dependencies betweenoutes within this network. Specifically,

if cx denotes the travel cost on route k, theihag = 6+ ¢, . The effect is that the determinant

|Z|=0, and so computing sensitivities by considering path choice probabilities as a function of
path costs, by the method of section 5, is not then feasible. (It is noted in passing that Tobin &
Friesz, 1988, too faced a linear dependencylprofthough subtly different in nature:

namely how to select from a convex set of possible DUE route flow solutions corresponding

to a given DUE link flow solution.)

It should be emphasised that this linear depeceléssue is not a fundamental problem of the
general probit model, but is directly relatedhe way in which (a) route cost errors are

assumed to be formed purely from link cost eammponents; and (b) the choice Jacobian is
15



examined with respect to the implied roatsts, rather than the link components. One
“solution” to problem (a) would therefore be tauére that the route cost errors are directly
specified (as they are for the logit modehere such problems do not arise), with the
requirement that the covariance matrix be of sufficient rank. This seems a rather
unsatisfactory strategy however, since onthefmain appeals of the probit model in the
context of route choice is the manner in which the covariances may be naturally inferred from
a combination of specified link cost error components and the network structure. An
alternative approach is presented in 8tal (1997), where the variance co-variance matrix
contains an additional route specific error tavhiich could, in principle, remove this non-
invertibility problem. A pragmatic approach (whihas not been investigated) would be to

use Yaiet al's approach to approximate pure link component models, by adding a very small
route-specific component, though it might bgected that in practice an ill-conditioned
numerical problem may still arise. An alternative which addresses problem (b) would be to
instead work in terms of the Jacobiarradite choice probabilities with respectitak costs.

This is a rather natural way to address the j@mbf the error terms are indeed specified as
link components. The disadvantage is thataggealing computational method, described in

section 5, does not appear naturally to extend to estimate such a Jacobian.

The approach proposed, therefore, is tieran approximation that allows the method

described in section 5 still to be appliede Hpproximation effectively removes the linear
dependencies. Having first computed the unperturbed SUE solution with related path flows,
the basic method involves selecting, for eadhilmdestination movement, the subset of

linearly independent paths that in combination explains the greatest proportion of the origin-
destination flow. In the figure-of-eight network, this might seem a rather crude

approximation: as a pessimistic case, if irEStle demand were approximately evenly split
between the four routes, then the three linearly independent paths chosen would only explain

around 75% of the origin-destination demandefBhare, however, strong reasons to believe
16



that this poor approximation is a particulacet of small networks, which would not be
exhibited in large realistic networks. In such large networks, where there are a great many
alternative routes, the linear dependencies gftayhunlikely to arise in such a small subset

of routes. In that case, then, the maximal linearly independent set is likely to involve a much
greater number of routes and cover a much greater proportion of the origin-destination flow.
This assertion has been investigated numerigalynumber of networks, and particular

results to justify it are given below.

The general procedure proposed is therefore as follows. Firstly, an SUE solution is computed
for the unperturbed state, and the resultirigreged path flows are saved (if a path-based

algorithm was used) or generated at equilitori(if a link-based algorithm used). Then:

1. If, for any origin-destination movement, thethmcontain linear dependencies, then select
a subset of linearly independent paths that maximises the total flow on the selected routes

(i.e. that explains the most origin-destination flow).

2. From step 1, a set of selected paths aget ®f unselected paths will arise. For the
unselected paths, fix the flow at the unperturbed SUE value, and load this as a fixed flow
onto the links. (Such flows will be fixed during the sensitivity analysis). The selected
paths are then assumed to be the active patlgiich the sensitivity analysis is then

applied.

It cannot be guaranteed that there is a uniigqearly independent set of paths for any given
set of SUE paths, that is optimal in the sens&ay 1. This is not, however, considered to be
an important issue, since (as we shall ilatg in section 7) our numerical experience
suggests that the magnitude of the unselectedsfiovolved is sufficiently small to mean that

this is unlikely to be significant.
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In order to implement step 1, three sauatimethods were tested: enumeration, a greedy
method and linear programming. Térimeration (exhaustive search) method works by

firstly establishing, for the origin-destinatiororement under consideration, the rank, R, of
the relevant variance co-variance matrix, and then generating all the possible subsets of R
routes from the N available. Special-purpogmethms are used to generate the required

subsets in an efficient sequence (Nijenhuis & Wilf, 1975).

The second approach, namely gneedy method, works by starting with an empty set of
selected routes, and then considers each notten, in descending order of flow. At each

step, a route is added to the selected setiticlusion would not create linear dependencies
between the selected routes, otherwise it is digchrThis method is clearly not guaranteed to
find an optimal solution, but its advantage ilests computational simplicity. In cases where

the first R routes considered turn out to be linearly independent, then the selected set will be

optimal.

The third approach uses zero-one intégear programming to maximise the total demand
flow in the chosen sub-set. An indicator vecstas defined with a value of 1 at position K if
route k is to be included and O otherwise .vigay of example, consider the figure of eight
network where SUE route proportions in the unperturbed state are estimpt€0.889,
0.236, 0.081, 0.175}. The linear program formulation is:

Maximise SPpLt S P+t P+ S ps With respect te

subject to S +s+5<4.
In this case the solution $s{1,1,0,1} which explains 91.9% of the demand flow. The method
of singular value decomposition (Pressl, 1992) is used to provide information on whether
linear combinations exist, and to determineatnose linear combinations are. The general

method used for solving the linear program was a branch and bound approach (Park, 1996).
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Both the enumeration and linear programmeghhiques are guaranteed to yield an optimal
solution, but the computational effort required is potentially great, especially for O-D pairs
with a large number of routes. This is esplciaue for the enumeration method, which in
order to select (say) 20 routes from 30 would require the enumeration of 30,045,015 subsets.
If each enumeration took only 0.001 seconds teegate then it would take over 8 hours to
generate all these subsets. It is unlikely @matmeration will ever be a practical option; for

the purposes of the research study, it wasastluseful in verifying the linear programming
solution. The greedy method will, it is proposed, produce a good solution in a fraction of the
time required for the other two methods, bwtilt not necessarily be optimal. In empirical
experiments conducted with real-world netkgyrwhen the optimal solution has been known
(through using the enumeration or linear pemgming method) the greedy method has always

produced the same optimal solution.

To explore the practical implications of this exercise in sub-setting the total routes, the impact
of an increase in the O-D flow computed using the approximation technique (greedy method)
is compared with the re-estimated soluti¢irss obtained from multiple runs of an SUE

solution algorithm) for the figure of eight netwoilkie re-estimated SUE solutions were
obtained using the method of successive averages (Sheffi, 1985) with assigement

iteration per outer iteration, and 10 million ougquilibrium iteration$. The solution vector,

the reduced route-link incidence matrix (fbe linearly independent paths), the variance-

covariance matrix and route choice Jacobian are given below:

2 n this algorithm, the inner iterations are the nemiif Monte Carlo simulations used to estimate the
probit choice fractions at fixed flows/mean costs, and the outer iterations handle the equilibrium
feedback (the dependence of mean costs on fl&tsffi (1985) illustrated that it is typically not
efficient to perform more than one inner iteration per outer iteration.
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03168/ .. [0 10 <
X = A®= Ts=|4 6 0] V.P®=| 0.1909 —0.2042 0.0133].
0.7451 110
1009 0.0363 0.0133 —0.0497
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The Jacobian of the link travel timégg, is the identity matrix. The calculated values for the

M andN and the produd¥I*N matrix are:

18552 0.1448 0.0086 —0.0086 0.3416 0.6344

01448 1.8552 —0.0086 0.0086 N = 0.1584 MN = 0.3656 .

0.0086 —0.0086 1.9550 0.0450 0.3725 0.7262
—0.0086 0.0086 0.0450 1.9550 0.1275 0.2738

Figure 2 illustrates the correspondence between the solutions calculated from the linear
approximations and the re-estimated exakitgms. The correspondence is good, even on
those links which are part of the “neglected” route, namely links 2 and 4.

[FIGURE 2 HERE]

7. APPLICATION TO A LARGER NETWORK

The full sensitivity method has been applie@ toumber of hypothetical grid networks and
the Sioux Falls network (see Clark & Watling, 2000), but for illustration we consider only a
network representing the north-east of Leedsgoned from a network maintained by Leeds
City Council, and containing som3 links and 29 zones. Cost is assumed to be equal to
time, with link travel time functions of the BPR form (Bureau of Public Roads, 1964).
Perceived link travel times are assumed tmbdependent and normally distributed, with

standard deviation equal to 0.3 of the free-flow travel time.

The first test involved a 10% (20 unit) increas a single O-D flow. The calculation of the
base probit SUE from 1,000 iterations by the method of successive averages took 1 minute on
a 450MHz Pentium Il PC. The calculation of ematrix from the 230 non-zero O-D flows

took a further 14 minutes, while the calculation time forNhmatrix is negligible. The
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greedy method was used to select linearly independent subsets. For O-D pairs involving
modest selection tasks (less than 13,360 possible combinations) the linear programming

method was used to verify the optimality of the greedy solution.

Comparing the re-estimated equilbriunidaving the demand change with the linear

sensitivity approximation, the average percgatabsolute difference in link flows was

0.19%, with the largest error 2.41%; the wlsition of these differences is illustrated in

Figure 3. Figure 3 demonstrates that the droon using the approximation is small for the

vast majority of links. Additionally, the averagercentage difference in link travel times was
only 0.01% with a maximum difference of 0.34%. On a network level, the modest 0.32% rise
in total demand gave an increase in network travel time of 1.22% (approximation) against
1.12% (re-estimated).

[FIGURE 3 HERE]

Figure 4 illustrates the impact of the linear subsetting method, by showing the proportion of
O-D flow explained by the selected routes, across the relevant O-D movements. The lowest
proportion explained is 83%, whereas for 168 O-D pairs 100% is explained.

[FIGURE 4 HERE]

A second example involved changing the capacity on a link on a main arterial from 1,680
vehicles per hour to 2,280. The total network travel time for the unperturbed solution was
19,655 vehicle-minutes, for the approximate solution 19,405 minutes (1.27% less than the
base), and for the re-estimatamution 19,395 minutes (1.32R4ss). The average absolute
percentage difference between the approximadere-estimated solutions for link flows was
1.08% and for link travel times was 0.10%, the maximum difference for link flows being

8.31% and for link travel times 5.14%.
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In this example, the time noted above to calculate the sensitivity expressions may appear
large, compared to the time to calculate a siGj)&. However, this allows the impact to be
estimated of any change to the 230 non-zero O-D flows, or any of the 4 link parameters on the
123 links, a total of 230 + 1234 = 722 possible input data items to change. The sensitivity
information is therefore obtained at a “rate” of one item every 1.16 seconds. In this respect,
we would claim that the method is highly efficient, since to obtain a similar amount of
information would otherwise require a consatge number of equilibrium algorithms to be

solved.

8. CONCLUSION

This paper has outlined a technique for degva linear sensitivity result for the SUE model.
The method is not limited to any particularrfoof random utility error structure, and in
particular has been shown to be practicakfprobit formulation. The technique described
forms part of a study which is developing methods for estimating confidence intervals for the
outputs from traffic assignment models. A coniparpart of the study is investigating the
characteristics of the sampling and systemadi@ations of the input parameters to these
traffic assignment models, in order to deduce sensible sampling distributions for the model
inputs (O-D matrix, capacities, etc.). The sengitivelationships may then be used to map
the input sampling distributions to distributions for the output measures, such as link flows
and travel times. There are clearly many ptreas in which the SUE sensitivity analysis
described here may be further developedo pwtential areas are the issue of link flow
interactions, which in principle may be adsglsed by the fixed point sensitivity expressions

derived in Appendix 1, and the use of improved (second order) sensitivity expressions.
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APPENDIX 1: SENSITIVITY ANALYSIS OF SUE BY
FIXED POINT FORMULATION

It is convenient to adapt the notation slightly:

X column vector of link flows;

l;(t) matrix of link choice proportions as a function of the vettirlink costs;

E’an (t) typical element oﬂ;(t), the proportion of flow for origin-destination

movement n that uses link a when the link costs;are

q column vector of origin-destination demand levels.

We consider the impact of perturbations to the link cost functions (demand perturbations can
be handled in a similar way). L&k,s) denote the vector of link cost functions, dependent on

some vectos of link attributes (e.g. capacities).

Consider the function:
f(x,s)=x — P (t(x,s)) q .
Let x (s) denote the SUE solution at a given valus the parameter vector, so that:
f(x (s),s)=0 for any givers.
Assuming differentiability of the wolved functions, and regardisghow as a variable, a first

order Taylor series expansionféf,s) in the neighbourhood dfx,s) = (x (s,),S,) is:

of . of
f(x,s) ~ f(x*(sq),80) + — (x—x (sg)) + — (s—sg)
X| x*@)50) ST x*(%)s0)

where the derivative terms are the Jacobian matrickwith respect tx ands respectively,

evaluated a(x’ (S0),8o) » Which we shall henceforth dendtgandJ,.
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The logic is that sinc&x*(sg),s0)) =0 (as an SUE ak), and knowingso, x*(so), J; andJ,,
then for some other givenz s, we can approximately solve the equilibrium condition
f(x(s),s) = 0 for x(s) by substitution in the linear approximation above:
0~0+J;(x(s) —x*(s0) +J2(s —s0) = X(5) = x*(s0) —J1 Jo(s —0) .
Expressions fod; andJ; in terms of the link cost Jacobian and choice Jacobian are readily

derived (see Bell and lida, 1997, pp 198-199).

Example

Consider a network consisting of two parallel links/routes serving a single origin-destination
movement with demand 1 unit. Let the link cost functiong@et= 1 + x2and b(xx) =2 +

X, . Suppose that the link choice probabilities are derived from the logit form

‘F~>1(t) = (1+ expt, —tz))_l, E’Z (t)=1- E’l(t) . The unique SUE solution is

(X1,X2)=(0.6948,0.3052).

Now letting s denote the “capacity” parameter for link 1, and writifxg)t= 1 + sx° with

s =1, then:

a1 {0.8044 0.1407} _{ 0.1024}
, =

J 1=
' 7101956 08593 —0.1024

and therefore:
X,(8) N O.6948+ 0.0679||s-1
X, | | 03052 |-00679|| 0
Alternatively, using the equivalent optimizai method described in section 4, we obtain the

following expression for a change= s— 1:

e 0.5789 0.1407 - 0.1422
~10.1407 0.8593 "1 -0.1024

and therefore:
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x,(e)] [0.6948] [ 0.0679] ¢
X,(€)| |0.3052 00679/ 0

namely, the same as the fixed point approach.

The fact that we have chosen a logit chaimalel to illustrate this point is purely for

illustrative ease; precisely the same is true for the probit model.
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APPENDIX 2: DERIVATION OF APPROXIMATION FOR
PROBIT CHOICE JACOBIAN

Following the proof of Daganzo (1979, pp 72-73), a probit choice problem with three
alternatives is considered here (the pro@&asily generalised to an arbitrary number of

alternatives).

If U; denotes the utility perceived for alternatiy then the probit choice probability of
choosing alternative i = 3, say, is:

P(V,Z) = P{U, > max(U,,U,) | E[U] =V, var(U) =X)

:T f f¢(q,u2,u3|V,E)duldu2du3

Ugz=—00 Uy=—00 U3 =—0
where ¢ (y, ,u,,u, | V,X) denotes the density function of a multivariate normal variable with
mean vectoV and covariance matri. Note that we have to take a little care with the order

of integration, since the region of intetiom does not have constant boundaries. Then,

differentiating with respect to yfor example, yields:

op, ¢ 't ' ao(u,u,,u|V,E)
8_\/31=u3;[wuj I 2173 du,du,du, .

v,

2=—00 Uy=—00

Now since by definition of the multivariate normal densityakd y appear in the same way

in ¢ but with opposite signé%l) = _85_4)_ But then by the Fundamental Theorem of Calculus
1 ul

“f o9(u U, | V.2)

o, du, = (U, U, U | V.E) . ()

U;=-o0
The right hand side of expression (*) shouldcheefully noted, with the (dummy) variable u

appearing twice as an argument.

Now, the general form of an n-dimeosal multivariate normal density function is:

29



o V.2)=(@n)"[2]) " exd- 2 - V)= -V)7)

and the key term in the exponent may be expanded as

W-V)Z (u-V) =(u-V)Z(u' -VT")
SERT T EPET) Y VAL Vo You VRINER V4 i VA
—uZu' -2vZ T + VIV

where the last equality exploits the symmetrgof Based on (*) above, we now write
U, = U,, and aim for an equivalent representatiothef matrix expansion above, in terms of
u= (u2 u3) only. By expanding the relevant matrinltiplications, it can be shown that
just such an alternative representation is

wlu'-2vEu  +VEVT =uQu’ —2uR + V2 VT (**)
whereQ is obtained fronZ™ by adding row 1 to row 3, adding column 1 to column 3 of the
resultant matrix, and then deleting row 1 and column 1; and vih&rebtained fromvz?t

by deleting the first element and adding it te third. Now, expression (**) may alternatively

be written in the form:

Qi —20R+VEZ 'V =(u-RQMDQ@-RQ™") -RQ 'R +VZ VT
=(@-V)2Ma-V)" -A

where
V=RQ™ >1=Q A=RQR"-VZ VT,

Tying this rearrangement together with result (*), we have:

0y Uy U | V,Z) = ((20)°[2])  exp@ A) exd—1(@-V)E@-V)T)

(| EPRVATSIRTS B ) VAP
) 85 g e i3

where we have introduced an additional lead@rg in order to write the expression in the

form of a multivariate normal density far. Hence,
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1
2

ap B i 2 Us A A
v aam | 00N [ [oloff b,
=— F|Z| expGA) p;(V,2).

That is to say, in order to determine the reggliiderivative, we need to determine the choice
probability ps({f,i) for a problem with alternative 1 deldt@he 1 arising from the fact that

we are differentiating with respect to alteima 1's utility). This approach is valid for

determining any off-diagonal entry of the choice Jacobian.

The expression above is exact, no approximatigmvidlved. In practice, however, the choice
probability for the modified problem must itséké estimated, say by Monte Carlo simulation.
Nevertheless, there is an advantage relatifimite difference approximation that the error in
estimating the derivative is of the same order as the error in estimating the choice probability.
If, as in the current application, one aiseds to estimate choice probabilities for the full
problem via Monte Carlo techniques, then the choice probabilities for the modified problems
are readily computed during this processaming that the derivatives may be rather

efficiently computed.
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Figure Captions:

Figure 1 : Figure-of-eight network
Figure 2 : Comparison between exact and nerastd solutions (figure-of-eight network)
Figure 3 : Distribution of percentage differences in link flows for approximate and re-estimated solutions (Headingleypeieuanbation)

Figure 4 : Distribution of the percentage of O-D flow incldide the senstivity analysis, across OD movements (Headingley)
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