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Revised and resubmitted October 8th 2003 

 

Abstract – A technique is proposed for estimating the probability distribution of total 

network travel time, in the light of normal day-to-day variations in the travel demand 

matrix over a road traffic network.  A solution method is proposed, based on a single 

run of a standard traffic assignment model, which operates in two stages. In stage one, 

moments of the total travel time distribution are computed by an analytic method, 

based on the multivariate moments of the link flow vector. In stage two, a flexible 

family of density functions is fitted to these moments. It is discussed how the 

resulting distribution may in practice be used to characterise unreliability. Illustrative 

numerical tests are reported on a simple network, where the method is seen to provide 

a means for identifying sensitive or vulnerable links, and for examining the impact on 

network reliability of changes to link capacities. Computational considerations for 

large networks, and directions for further research, are discussed. 
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1. INTRODUCTION 

 

Transport planning has been historically concerned with travel behaviour and the 

transport system in some nominally �typical� conditions. The emerging topic of 

transport network reliability has begun to challenge this ideology. While the initial 

impetus appears to have derived from the study of major natural events � such as 

earthquakes (Bell & Iida, 1997) � affecting the �connectivity� of a road network, it has 

had a wider impact on the thinking of the way in which less severe, but more 

frequently-occurring, events may affect the operation of a network. These events 

include minor accidents, on-street parking violations, snow, flooding, road 

maintenance and traffic signal failures, all of which would lead to variations in link 

capacities or free-run speeds. In addition, daily variations in activity patterns, 

manifested in the Origin-Destination (O-D) trip matrix, mean that the flows on the 

roads also have a major part to play in explaining variations in network performance. 

 

If planners were able to quantify the impact on variable network performance of such 

elements, then it would open the possibility of directing both the design (Asakura et 

al, 2001) and economic appraisal (Du & Nicholson, 1997) of transport policy 

measures toward an improved treatment of such uncertainty. A practical need 

therefore arises for the development of modelling techniques that are able to quantify 

such impacts. In response to this need, there has been considerable activity in 

developing a diverse range of techniques, with five broad classes that may be 

identified.  

 

The first class comprises connectivity reliability methods (Bell & Iida, 1997; Asakura 

et al, 2001), whereby each link of a network is assumed to have an independent, 

probabilistic, binary mode of operation. This binary mode may be open/closed, or 

may more generally reflect some subjective definition of the successful function of a 

link, such as the flow to capacity ratio being less than some given value. The 

objective is to compute the probability that a particular path or O-D movement will be 

�connected�, or more generally will �function� as desired.  

 

The second class consists of travel time reliability methods (Asakura & Kashiwadani, 

1991; Asakura, 1996; Du & Nicholson, 1997; Bell et al, 1999; Yang et al, 2000), 
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whereby a continuous probabilistic treatment is made of link, and hence path, travel 

times. For example, Asakura & Kashiwadani propose a simulation-based method for 

examining the impact of variability in O-D demand levels, whereby an O-D demand 

matrix is sampled and an equilibrium assignment performed for each sampled 

demand. Bell et al (1999) used a similar philosophical approach, but used equilibrium 

sensitivity analysis to overcome some of the computational overheads. The 

philosophy underlying the methods of Du & Nicholson (1997) is again broadly 

similar, but with a specific focus on network degradations in a multi-modal context. 

Like Bell et al, Du & Nicholson employ differential sensitivity analysis to their 

(multi-modal) equilibrium model, in this instance to examine the sensitivity of 

equilibrium �system surplus� (a measure of performance of a multi-modal system) to 

various unreliable events, such as capacity degradation.  

 

The third class encompasses methods to study capacity reliability (Chen et al, 2000, 

2002; see Yang et al, 2000, for a comparison with travel time reliability methods). For 

example, in Chen et al (2000) the problem is to determine the maximum global O-D 

matrix multiplier such that the resulting link flows when assigned are within their 

respective link capacities. They also discuss how in the lower level (route choice) 

problem, an allowance may also be made for the risk-taking approach of drivers in the 

assignment model. In Chen et al (2002), alternative notions of reliability are examined 

in the context of variations in link capacities, using sensitivity analysis to estimate the 

impact of a perturbation on equilibrium flows. They also extend this approach by 

mixing it with Monte Carlo simulation, in order to estimate sensitivities under more 

complex model assumptions such as correlated link capacities.  

 

The fourth class consists of behavioural reliability methods, whereby an effect on 

mean network performance is presumed to arise from the modified, mean behaviour 

of drivers in their attitude to the unpredictable variation and/or the �risks� perceived. 

The issue is then how to represent, in an equilibrium framework, the impact on the 

�typical� route choice pattern (Mirchandani & Soroush, 1987; Lo & Tung, 2000; Yin 

& Ieda 2001; Gordon et al, 2001; Liu et al, 2002; Watling, 2002a), or on other 

responses such as departure time choice (Uchida & Iida, 1993; Noland et al, 1998; 

Noland & Polak, 2002).  
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The fifth and final class consists of methods to examine the potential reliability of a 

network; rather than aiming to model performance based on some defined 

probabilistic model, these are �pessimistic� methods that aim more to identify 

potential weak points/problems and their effect. In this context, Berdica (2001, 2002) 

proposed various simple tests of network vulnerability, to examine the impact on 

various output measures (in equilibrium) to changes in the input variables to a 

network model. D�Este & Taylor (2001) likewise considered notions of vulnerability, 

with a network node considered vulnerable if the loss of a small number of links 

significantly diminishes the �accessibility� of the node. Bell (2000) and Bell & Cassir 

(2002) avoided the difficult issue of defining performance probabilities by supposing 

that they arose from a �game� between the drivers and an evil entity, suggesting they 

could be used as a cautious basis for network design when users are pessimistic about 

the performance. 

 

The technique to be proposed in the present paper falls within the class of travel time 

reliability methods, specifically examining the impact of variable O-D demand flows 

on network performance. As we shall see, however, the approach differs in 

philosophical foundation to previous studies of reliability⎯specifically in its use of 

the equilibrium paradigm⎯as well as in its solution technique, relying neither on 

sensitivity analysis nor Monte Carlo simulation, and in aiming to reconstruct a full 

probability distribution for the network performance measure. 

 

2. FRAMEWORK FOR NETWORK RELIABILITY ASSESSMENT 

The proposed method is based on an original modelling approach for representing 

variable network performance under stochastic O-D demands (to be described in §3), 

placed within a framework for reliability assessment. The purpose of the present 

section is to describe this latter framework, which is supposed to have a number of 

elements: 

1. Planning state. The planning state is a representative set of assumptions concerning 

the state of the road network and demand data that is chosen subjectively by the 

planner, for the purpose of devising transport policy and traffic control measures. For 

example, the planning state may involve assuming O-D flow levels for a �typical� 
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weekday peak-hour when there are no public holidays or special events, and assuming 

a network where all links have the potential to operate at their full capacity.   

2. Performance measure. This is a scalar measure used to describe the operation of 

the complete network or of prescribed elements of the network. Without loss of 

generality, to simplify later discussions, we suppose the measure is defined so that 

larger values of the measure are generally undesirable. For example, on a network-

wide level, we might use proxies for congestion, such as total network travel time of 

all drivers or the negative of average network speed, or measures of total fuel 

consumption or pollution. 

3. Critical value. Recall that we assume the performance measure to be defined such 

that large values are undesirable. The critical value is a pre-specified value of the 

performance level, above which the network would be considered to be performing 

�unreliably�, relative to the planning state. A special case is where the critical value is 

exactly equal to the value of the performance measure in the planning state: any 

performance poorer than the planned situation is then considered subjectively 

unreliable. More generally we may define the critical value as some percentage excess 

of the value of the performance measure in the planning state.  

 

4. State distribution.  The state distribution is a joint density / probability distribution, 

describing the possible O-D demand and road network states that may actually 

prevail. In particular, this distribution can be used to infer the probability distribution 

for link flows and travel times across the network, and thereby the probability 

distribution of the performance measure. 

 

Combining elements 1 and 2, we then suppose that we have a network model that is 

able to estimate the value of the performance measure in the planning state2. From 

this value, we define the critical value in 3 as an absolute or percentage excess of the 

value in the planning state. In parallel, combining elements 2 and 4 with the network 

model yields a probability distribution for the actual values of the performance 

measure. This distribution may then be compared with the critical value, and 

                                                 
2One key reason for defining a performance measure is typically to examine how it changes when 
applying certain hypothetical policy measures. That is to say, the performance measure to which we 
refer above is implicitly conditional on the values of the policy variables. 
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summary measures relating to the critical value produced, e.g. probability of 

exceeding critical value, mean performance value when critical value exceeded.  

 

[FIGURE 1 HERE] 

 

In Figure 1 we illustrate such a case, for an example where the performance measure 

is a network-wide, continuous attribute. The probability distribution of the actual 

values of the performance measure is illustrated. The planning state occurs when the 

performance measure equals the mode of around 1; the critical value is defined as a 

tolerance of 400% above the performance measure value in the planning state, 

yielding a critical value of 5. Then we could define unreliability, for example, in 

terms of the probability of exceeding the critical value , i.e. the area under 

the curve in the range labelled �degraded performance�. So in percentage terms we 

might say the reliability is 

)5Pr( >M

( )%)5Pr(1100ȡ >−= M .   

 

Clearly, the critical value has an important role to play in this measure, yet it will 

typically be difficult to justify objectively testing against a single such value. More 

usefully, then, the reliability could be assessed by reporting such a probability ȡ  

corresponding to a number of critical values, or by reporting standard upper quantiles 

of the distribution, or ultimately by reference to the complete upper tail of the 

performance measure distribution. Thus, the motivation in the present paper will be to 

reconstruct the full distribution, to provide the maximum information for such an 

assessment. This may be contrasted with methods in which the objective is to 

compute a single reliability value, in which case more efficient computational 

techniques may be available. 

 

For any specific reliability analysis, a first step is therefore to define the performance 

measure to be used. Looking to the literature, Bell & Iida (1997) define it from the 

road user�s perspective as �the probability that a trip can reach its destination within a 

given period�. Such a definition may be applied at the path or O-D level. Asakura & 

Kashiwadani (1991) suggest an alternative definition to be �the upper limit of travel 

time by which one can travel � for given probability�. The focus of Nicholson & Du 
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(1997), on the other hand, was the complete socio-economic impact of unreliability, 

gained by examining the effect on �system surplus�, an economic benefit measure 

appropriate for multi-modal networks. Chen et al (2002) distinguish between 

unreliability due to normal variations in daily demand, and that due to capacity 

variations arising from network degradation. Focusing on the latter case, they 

consider for each O-D movement the ratio of travel time in a degraded state to the 

travel time in a non-degraded state. Travel time reliability is then defined as the 

probability that this ratio will be less than some pre-defined acceptable level. For a 

whole network, they note the difficulty in rigorously extending this definition, while 

allowing for the inter-dependencies between O-D travel times. Thus, at the network 

level various pragmatic measures are defined, based on either the weighted average or 

worst reliability across all O-D movements. 

 

The measure to be adopted in the present paper follows a similar philosophy to that of 

Nicholson & Du (1997), in the sense that we aim to examine reliability at the network 

level. In the case of a single mode, fixed demand traffic assignment model, Nicholson 

& Du�s �system surplus� simplifies to be total travel cost. In fact, in this paper we 

shall treat cost purely as time (it is straightforward to include other flow-independent 

attributes in the definition of cost, but as this is not a central issue the possibility is not 

explicitly considered here). Therefore, the measure considered is total travel time, a 

measure commonly used as an indicator of network performance/congestion.    

 

 

3. ESTIMATING THE TOTAL TRAV EL TIME DENSITY FUNCTION 

 

Following the framework of §2, the key to estimating reliability is the computation of 

a probability density function for the performance measure in question; here, we focus 

on total travel time as the performance measure. This will be approached in three 

steps, by: proposing a statistical model for the underlying variability (§3.1), whereby 

moments of the total travel time distribution may be computed (§3.2), which are in 

turn used to �fit� an approximating distribution (§3.3). Two key elements of the 

proposed approach are that: i) maximum use is made of the information that exists in 

a conventional traffic assignment application, ii) extensive Monte Carlo simulation is 

avoided by use of an �analytic� approach. 
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3.1 Notation and assumptions 

 

Define: 

  =  flow on link av ),...,2,1( Aaa = , v the vector of flows across all links 

  =  mean demand on O-D movement w  wq ),...,2,1( Ww =  

 q =  W-vector of mean demands 

  =  index set of acyclic paths serving O-D movement w wR

  =  indicator variable, equal to 1 if path r contains link a, 0 otherwise arδ

)( aa vt  = travel time on link a as a function of  av ),...,2,1( Aa =  

  = vector of functions )(vt ),...,2,1()( Aavt aa = . 

The key statistical model assumptions are then: 

1. The actual O-D demand on any day is independently distributed across inter-

zonal movements, and for each movement w is distributed as a stationary 

Poisson random variable with constant mean . 0>q

Rr ∈

w

2. Conditional on the O-D movement w demand realised on any one day, drivers 

are assumed to choose independently between the alternative routes  

with constant probabilities  

w

rp )( wRr ∈  for each Ww ,...,2,1= .  

Assumptions 1 and 2 together imply that for each Ww ,...,2,1= , the route flows  

 are random samples of a Poisson process with mean  and sampling rate 

. It follows that the route flows 

rF

)( Rr ∈ q

p )( RrF

w w

r wr ∈  are independent Poisson random 

variables with means  , for each wrqp )( wRr ∈ Ww ,....,2,1=  (a proof of this result 

can be found in many standard texts, for example: Karlin & Taylor, 1981; Stuart & 

Ord, 1987, p 207 (5.20)).  

Before proceeding, it is worth clarifying two potential misunderstandings: 

• These assumptions are not equivalent to wrr QpF = , where  is a constant and 

 is the stochastic O-D demand for movement w. If such an assumption had 

been adopted, then we would have: 

rp

wQ
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 Poisson) (assuming
][E

]var[

][E

]var[
2

wr
wr

wr

r

r Qp
Qp

Qp

F

F
==  

and since 1≤rp  we would generally have less-than-Poisson variation for the 

route flows (ratio of variance to mean less than one). On the contrary, above we 

assume there are two sources of random variation: the Poisson O-D demands and 

the route choice fractions:  are constant probabilities, not constant proportions.  rp

• The conditional route flow random variables wr QF )( wRr ∈  are multinomially 

distributed and therefore definitely not independent, since they must satisfy 

conservation-of-flow conditions: given the realised value of , one of the route 

flows is entirely determined once values are selected for all other route flows in 

. However our interest is in the unconditional route flow random variables  

: still they must sum to Q , but this itself is a random variable. Hence, it 

does not violate conservation-of-flow to claim that the unconditional route flows 

are independent. 

wQ

R F

Rr ∈

w r

)( w w

 

Now, since the link flow random variables are related to the route flow random 

variables via the identities: 

∑ ∑
= ∈

=
W

w Rr
rara

w

FV
1

į           ),...,2,1( Aa =          (1) 

then assumptions 1 and 2 imply that the means of the link flows (1) are: 

            [ ] ∑ ∑
= ∈

=
W

w Rr
wrara

w

qpV
1

įE ),...,2,1( Aa =        (2) 

and the covariances: 

          ∑∑
= ∈

=
W

w Rr
wrbrarba

w

qpVV
1

],cov[ δδ ),...,2,1;,...,2,1( AbAa ==  .        

(3) 

 

We then make the additional assumption:  

 

3. The variation in link flows across the network may be approximated by a 

multivariate Normal distribution (with means and covariances as given above). 
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The assumption of approximate multivariate Normal link flows is partially supported 

by the assumption of Poisson demands for movements with �large� mean , since 

the path flows   are (as noted above) also independent Poisson random 

variables with means  . Then, for the (dominant) paths with large mean 

 (say, greater than 10), independent Normal approximations are supported for 

their flows, which clearly mix into multivariate Normal link flows. See Hazelton 

(2001) for a more detailed discussion of the validity of this assumption. 

wq

rF )( wRr ∈

wrqp )( wRr ∈

wrqp

 

The assumptions above require knowledge of the route choice probabilities  

. It is important to note that the specification of these 

probabilities is external to the present paper, in the sense that the methods to be 

subsequently described make no assumptions as to how these probabilities are 

derived. However, we propose that one sensible approach would be to estimate them 

by applying a standard network equilibrium model to the mean demands q. The 

output of the equilibrium model may be viewed as a set of equilibrium route choice 

fractions⎯route flows divided by corresponding mean O-D demand⎯and it is these 

fractions that may then be used to estimate the required route choice probabilities.  

rp

),...,2,1;( WwRr w =∈

 

Any kind of network equilibrium model will serve the purpose above (including the 

various �behavioural reliability� methods in §1), but in the later example we favour 

use of a stochastic user equilibrium (SUE) model (Sheffi, 1985). There are a number 

of reasons in support of this choice of model. Firstly, since we require outputs at the 

level of route flows, rather than link flows, it seems sensible to select an equilibrium 

model that is able to provide unique outputs at this level. It is well known that 

generally the deterministic user equilibrium model is non-unique at the route flow 

level, but that relatively mild conditions exist to ensure unique SUE route flows (see, 

for example, Cantarella & Cascetta, 1995). Secondly, there are theoretical results in 

support of SUE as a large-demand approximation to the mean of more general 

stochastic models that explicitly represent drivers� information acquisition in a 

stochastic environment (Davis & Nihan, 1993; Cantarella & Cascetta, 1995; Hazelton, 

1998; Watling, 2002b; Hazelton & Watling, 2003), also supporting the interpretation 
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of SUE route flow fractions as choice probabilities. Finally, it is noted that this 

approximation may be improved by a further simple refinement (see Appendix A).  

 

In addition to the statistical and model assumptions above, we shall focus specifically 

on link travel time functions of a polynomial form: 

  .                                                                   (4) ∑
=

=
m

j

j
ajaaa vbvt

0

)(

The power-law form of the commonly used Bureau of Public Roads functions are a 

special case of (4); for other functional forms, a polynomial Taylor series 

approximation may be used to obtain a form (4).  

 

3.2 Computing moments for total travel time 

 

Based on (4), we introduce the following random variables, a transformation of the 

link flow random variables: 

           (5) ∑
=

+==
m

j

j
ajaaaaa VbVtVW

0

1
)(

where  is a random variable representing the flow on link a, and  is the total 

travel time on link a (throughout the paper the convention is used that a random 

variable is denoted by a capital letter). Our interest will be in the total travel time 

random variable T given by 

aV aW

  .                                                    (6) ∑ ∑
= =

==
A

a

A

a
aaaa WVtVT

1 1

)(

 

In particular, we shall aim to deduce moments of T, namely the mean  and 

the expectations of the form  

][Eµ TT =

])µ(E[ n
TT − ,...)3,2( =n , the order n moments of T 

about the mean. Now, by a Binomial expansion, it follows that 

 ∑
=

−−
−

=−
n

k

kkn
T

n
T T

knk

n
T

0

][E)(
)!(!

!
])[(E µµ          ,...)3,2( =n   (7) 

and so the problem is equivalently to determine the moments of T about the origin, 

namely .  ,...)2,1(  ][E =nT n
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Now, for positive integers m and n, define the subset of m-dimensional integers: 

  .  (8) 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== ∑
=

m

j
jjm niiiiinmI

1
21  andinteger  negativenon  a :),...,,(),(

Then by (6), and a second (multinomial) expansion: 

 ∑ ∏
∏

∑
∈ =

=

=
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),(),...,,( 1

1

1 21

E  

!

!
E][E

nAIiii

A

a

i
aA

a
a

nA

a
a

n

A

aW

i

n
WT  .             (9) 

Let us now turn attention to , and from its definition (5) write it in the form: aW

  .               (10) ( )∑
=

++−=
m

j

j
aaajaa VbW

0

1
)( µµ

Performing a further Binomial expansion yields: 

(11)                          )(
)!1(!

)!1(
     

)(
)!1(!

)!1(

0

1

1

1

0

1

0

1

0

1

∑∑∑

∑ ∑

=

+

=

−+

=

+

=

+

=

−+

−
−+

+
+=

−
−+

+
=

m

j

j

i

ij
a

i
aaja

m

j

j
aja

m

j

j

i

ij
a

i
aajaa

V
iji

j
bb

V
iji

j
bW

µµµ

µµ

 

where on the second line the (constant) terms relating to each i = 0 have been 

separated. The order of summation in the second term of (11) may then be reversed:  

∑ ∑∑
+ +1 )!1(m mm j

= −=

−+

=

+ −
−+

+=
1 1

1

0

1
)(

)!1(!i ij

ij
a

i
aaja

j

j
ajaa V

iji
bbW µµµ                       (12) 

which may then be written in the form 

=

−=−+=
1

01
0 )(

~
)(

i

i
aaia

i

i
aaiaaa VbVbbW µµ                          (13) 

where the coefficients 

∑∑
+

=

+1~~ mm

)1,...,1,0(
~

+= mibia  are given by: 

∑∑
−=

−+

=

+ +=
−+

+
==

m

ij

ij
aja

m

j
ia

j
ajaa mi

iji

j
bbbb

1

1

0

1
0 )1,...,2,1(  

)!1(!

)!1(~
   ; 

~ µµ .     (14) 

 

hen (13) is substituted into (9), the latter becomes a sum of multivariate moments W

about the mean of the (assumed multivariate Normal) vector link flow random 

variable V. Therefore, combining (7), (9), (13) and (14), we have shown how 

moments of the total travel time random variable T may be written as a sum of 

multivariate moments of V. In order to compute the moments of V, results due to 

Isserlis (1918) are applied, which allow the computation of appropriate multivariate 
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Normal moments for any powers of any number of variables. See Appendix B for a 

description of the key elements of this work, and the computational methods adopted. 

 

In this paper, we shall only aim to compute moments of T up to order , and so 

   

 4 3][E6][E[E])[(E TTTT TTTT µµµµ −+=−  

 then on . In particular, (9) then yields: 

a
aWT

1

][E][E ;          
a ab

ba

A

a
a WWWT

1 11

2 ][E2][E][E  

   

   

and all the right-hand side expectations may be computed (using (13)) from: 

aa
i

iaa

4=n

for such cases we present the explicit formulae for the expressions deduced above. 

Now, from (7), after simplification: 

 
222 ][E])[(E TT TT µµ −=−  ;  

3233 2][E3][E])[(E TTT TTT µµµ +−=−  

 4 4]− 4223

and so we focus  ][E],[E],[E, 432 TTTTµ

∑
=

=
A A A

2 ∑ ∑∑
= +==

+=

∑ ∑ ∑∑ ∑∑
= += +==

≠
==

++=
A

a

A

ab

A

bc
cba

A

a

A

ab
b

ba

A

a
a WWWWWWT

1 1 11
)(

1  

2

1

33 ][E6][E3][E][E

∑ ∑ ∑ ∑∑∑ ∑

∑ ∑∑ ∑∑

= += += +==
≠
=

≠
+=

= +==
≠
==

++

++=

A

a

A

ab

A

bc

A

cd
dcba

A

a

A

ab
b

A

ac
bc

cba

A

a

A

ab
ba

A

a

A

ab
b

ba

A

a
a

WWWWWWW

WWWWWT

1 1 1 11 1 
  

1 

1 1

22

1
)(

1  

3

1

44

][E24][E12                     

][E6][E4][E][E

])[(E
~

][E
1

i
m

VbW µ−=∑
0

+

=

            (15b) 
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The only remaining task in applying the expressions derived is then to compute the 

coefficients in (14); for example, in the case 2=m  in (4) (travel time functions of 

quadratic form), they simplify to 
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.3 Curve fitting 

aving computed from §3.2 the first four moments about the mean of the total travel 

 Mean:  

3

 

H

time T, the customary moment-based summary measures may be defined: 

][E T=µ  

 Variance: ])[(E 22 µσ −= T  

 Skewness: 
3

3

1

])[(E

σ
µβ −

=
T

 

 Kurtosis: 
4

4

2

])[(E

σ
µβ −

=
T

. 

The approach then is to fit the computed values of these four measures to a flexible 

 SL, where 

family of probability densities known as Johnson curves (Johnson, 1949), according 

to the techniques described in Hill et al (1976) and Hill (1976). This family consists 

of distributions obtained by monotonic transformations of a Normal variate, with 

additional parameters incorporated to permit a flexible fit to observed data. Hill et al 

(1976) focus on three special cases studied at some length by Johnson, for the random 

variable X: 

i) the lognormal system )ln( ξδγ −+ X  ~ Nor(0,1)  (for )ξ>X ; 

ii) the unbounded system SU, where ⎟
⎠
⎞−ξ

⎜
⎝
⎛+ −

λ
δγ X1sinh  ~ Nor(0,1); 

iii) the bounded system SB, where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
−

+
X

X

λξ
ξδγ ln  ~ Nor(0,1)  (for 

λξξ +<< X )  

where Nor (0,1) denotes a Normal distribution with mean 0 and variance 1. Thus, SL 

is a three-parameter system, whereas SU and SB each depend on four parameters. Hill 

et al supplement these three systems with a special case family (ST) on the boundary 

of validity of the SB system. The approach adopted by Hill et al (1976) is to use the 

third and fourth moments 1ȕ  and 2ȕ  to select an appropriate system from the Johnson 
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family, and then combine his inf mation with the remaining moments to estimate 

the parameters of the chosen system. 

 

t or

 outline, the approach is to first (by the method of moments) estimate the parameter 

enoting the solution as > , the implied SL fourth moment is compared with 

3 ++

−  then SU is appropriate. The S

boundary of this inequ

 our tests, SU and ST were never selected, and so are not described further here. The 

s will be discussed in §5, the SL system is particularly attractive for larger networks. 

In

į  as if the data were explained by an SL system. In fact, rather than į , some 

mplification is possible if instead we estimate )įexp(Ȧ 2−= , by solving for Ȧ : 

 1
2 ȕ)2Ȧ)(1Ȧ( =+−  . 

si

D  ( Ȧ� )1Ȧ�

the desired 2ȕ : if 3Ȧ�3ȕ 24
2 −<  then SȦ�2Ȧ� B (or ST) is appropriate, but if 

�3�2� 24
2 ω+ω+ω>β 33

L distribution itself lies on the 

ality; in practice, if the equality is satisfied within some 

tolerance, then SL is selected. 

 

In

details of the estimation procedure for an SB curve are somewhat lengthy but are 

eloquently described by Hill et al (1976), with corresponding program code, and so 

are not repeated here. It should be noted, however, that fitting an SB curve is 

potentially problematic, especially in view of the limited range of validity of the 

parameters, and it is possible that the algorithm may fail to converge. In such cases, 

Hill et al�s algorithm resorts to fitting SL or ST as appropriate. It is noted in passing 

that in our tests reported in §4, SL was selected on occasion as the most appropriate 

curve (difference between desired and implied SL kurtosis within tolerance of 0.01), 

and on occasion due to failure to converge of the SB algorithm. 

 

A

For this system, the model fit is the most straightforward; having evaluated Ȧ�  

according to the method above, the parameters are then estimated from: 

       }į�/)Ȗ�)į�2/(1exp{(µȟ�}ı/)1Ȧ�(Ȧ�ln{į�Ȗ�)Ȧ�(lnį� 2
2
12

1

−−=−==
−

 .    (16) 
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4. ILLUSTRATIVE EXAMPLE 

ork will be considered, previously studied in the literature (e.g. 

[FIGURE 2 HERE] 

A five-link test netw

Suwansirikul et al, 1987; Cho & Lo, 1999), and illustrated in Figure 2. It will later 

prove useful to label the routes available, with route A consisting of links 1 and 4, 

route B comprising links 2 and 5, and route C comprising links 1, 3 and 5. To define 

the base route choice probabilities, a probit-based SUE model is adopted, based on the 

original (rather than Poisson-corrected) travel time functions, and using independent 

link perception errors, distributed for link a as ( )2))0((0,Nor atφ , with 3.0=φ  used in 

the tests below. This SUE was estimated using 32,000 iterations of a route-based 

Method of Successive Averages (MSA) algorithm, with one stochastic network load 

sampled per MSA iteration. The resulting SUE link flows are provided in Table 1, 

inferring route choice probabilities of pA = 0.4310, pB = 0.4452 and pC = 0.1239. 

[TABLE 1 HERE] 

Mindful that direct use of the quartic travel time functions in the subsequent reliability 

analysis could lead to a high computational cost in larger networks, a local quadratic 

(second order Taylor series) approximation about the SUE solution was therefore 

adopted, and the resulting error later investigated. The Taylor series coefficients ( iab ) 

and the transformed coefficients ( iab
~

) are also provided in Table 1.  

 

The link flow covariance matrix (3), and thence the link-based total travel time 

61,951.13 

,961.  

It is the

 3.9755.  

 

or comparison, these summary measures were also estimated using Monte Carlo 

moments (15a)−(15d), may then be estimated, whereby the total network travel time 

moments about the origin can be computed as: 

E[T] = 1298.39   E[T2] = 1,7

E[T3] = 2,501,598,503  E[T4] = 3,719,186,185

n straightforward to obtain the summary measures: 

µ = 1298.39   σ = 275.95  √β1 = 0.7696       β2 =

F

simulation, with each of 1000 pseudo-random draws of the Poisson O-D matrix 

assigned probabilistically to the routes according to the base SUE route probabilities. 
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For each simulation draw, link travel times⎯and hence total network travel time⎯are 

computed, using either the exact quartic functions or quadratic approximations.  

[FIGURE 3 HERE] 

[TABLE 2 HERE] 

The empirical frequency distributions obtained from four replications of this Monte 

cal moments, the algorithm of §3.3 selected a Johnson SL curve 

54   δ = 4.04184    ξ = 200.067  

which is rve represents a comparison with 

Carlo procedure are illustrated in Figure 3. Even with as many as 1000 Monte Carlo 

draws per replication (a large number for a realistic scale network), considerable 

between-replication variability in the shape of the distribution may be observed. Table 

2 compares the resulting summary statistics between the (exact) analytical, empirical 

BPR (Monte Carlo, exact quartic functions) and empirical Taylor approximation 

(Monte Carlo, approximate quadratic functions) methods. For both empirical methods 

25 replications were performed, with both the mean and standard deviation across the 

replications presented. Although the Monte Carlo estimates have a bias no greater 

than 5%, their standard errors are as much as 15%�20% of their mean value for the 

third and fourth moments. While this error may be reduced (at a computational cost) 

by increasing the number of simulated draws, the potential unreliability of Monte 

Carlo methods for estimating shape parameters is evident, an especially significant 

factor in the study of an asymmetric/tail feature such as travel time unreliability. 

[FIGURE 4 HERE] 

Based on the analyti

with parameters 

γ = −28.17

 labelled �Fixed� in Figure 4. The second cu

the equilibrium philosophy behind most existing reliability analyses reviewed in §1, 

whereby equilibrium is reached for each realisation of the system state (in this case, 

the realised O-D flows). This is achieved by approximating the equilibrium response 

by sensitivity analysis (Clark & Watling, 2002), obtaining equilibrium link flows 

Bqdqv +≈)(* , with q the vector of O-D demands, d a constant A-vector and B a 

constant AA×  matrix. As a linear model for the random O-D demand vector Q, the 

link flow covariance matrix of the induced random link flows is then: 

T* ]var[]var[)](var[ BQBBQdQv =+≈                           (17) 

with (17) then used in place of (3) before applying §3.2 and §3.3. 
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[TABLE 3 HERE] 

ty probabilities� (as 

able 3, that the impact of the equilibrium response is a more 

rimary method proposed in §3.1�§3.3, the impact is 

onsidered of adjusting the capacity of each link in turn (base values are given in the 

apacity of link 1 was gradually 

to the anticipated location shift, which could be predicted by an 

It is clear from Figure 4, coupled with the corresponding �reliabili

defined in §2) in T

optimistic evaluation of reliability than the �fixed� response (curve shifted to left), 

whereby drivers have sufficient knowledge of prevailing conditions to mitigate the 

impacts of system variation by adjusting their choice of route. Thus, we are able to 

contrast the impacts of variability that is not predictable by the drivers (�fixed�, the 

primary approach of the present paper) and of predictable variation (�equilibrium� 

response), the latter perhaps more closely achievable with some kind of intelligent 

driver information system. 

 

Focusing again on the p

c

quartic term denominators of the travel time functions in Figure 2). In each case, a 

new probit SUE is first computed to obtain the route choice probabilities, and a new 

quadratic Taylor series approximation subsequently estimated. Figure 5 illustrates the 

resultant Johnson curves, with SL(0) denoting the base case, and SL(a)/SB(a) denoting 

the case in which the capacity of link a alone was reduced by 10 units )5,...,2,1( =a . 

Links 1 and 5 may be identified as the most �sensitive� links, with the capacity 

reductions here having the most pronounced effect. 

[FIGURE 5 HERE] 

Figure 6 illustrates a further experiment, as the c

reduced. In addition 

existing equilibrium model, subtle dispersion and shape impacts are also evident. 

Specifically, an increase in dispersion and skewness (longer right hand tail) may be 

seen, while the left-hand tail is apparently anchored. These results are plausible, in the 

sense that �spare capacity� allows a network to deal better with unexpected variation. 

 [FIGURE 6 HERE] 
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5. IMPLEMENTATION CONSIDERATIONS 

s dominated by the difficulty in 

omputing the highest moment, . For quadratic travel time functions (using a 

o

 

The computational load of the method in §3 i

c ][E 4T

Taylor series approximation where necessary), ][E 4T  will involve in the order of 

4))2(( +mA  terms requiring Isserlis m ments as high as )1,...,1,1(  (see Appendix 

B). In §4, with 5=A  and 2

12q

=m , around 160 )1,...,1,1(q  evaluations were 

ich was achieved in a matter of seconds, yet clearly this will increase 

rapidly with the siz the network (i.e. with A).  

 

In large networks, an attractive simplification i

,000 12

required, wh

e of 

s to restrict attention to only the 

gnormal SL system, whereby only moments up to  are required, the difficulty 

of minutes

putational savings may be required, such as in 

etworks much larger than 100 links, or as part of a method to optimise network 

parameters w ts and two

 

lo ][E 3T

then dominated by the computation of around 3))2(( +mA  Isserlis moments of the 

)1,...,1,1(q  kind. Hence both the number of terms, and the difficulty of computing 

each term, dramatically reduces. We have verified that practical run-times in the order 

 could then be achieved on current fast personal computers, for a problem 

with 100=A  links and 2=m .  

 

Still, there are cases where further com

8

n

reliability where multiple applications of this method are required. By assuming 

structural relationships between the parameters, or fixing externally estimates of some 

parameters, it is then possible that only moments up to ][E 2T  are required, the 

computational load reducing dramatically to requiring only in the order of 

2))2(( +mA  Isserlis moments of the )1,...,1,1(6q  kind. For ex , in the case of Sample B 

type curves, a method is provided in Bacon-Stone (1985) to estimate all four 

ith the first two momen  boundary values. Prior estimates of 

such boundary values might be fixed from some reasonable assumptions about the 

minimum and maximum demand, or in an optimisation context from a previous full 

estimation with three or four moments.  

 19



In a similar spirit, it is straightforward to adapt the estimation of SL curves to use a 

pre-specified value 0ȟ  of the shift parameter ξ, which effectively represents the 

inimum total trave e. By eliminating  and  from the expressions in (16) 

through substitution, and setting =  we obtain: 

m l tim Ȗ� Ȧ�

0
�

 

ȟȟ

)ȟµln(į�
į�2

1Ȗ�
ȟµ

ı
1lnį�

22

0

−−=⎟

⎠

⎞
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−

+=

−

                         (18) 0

1

⎟⎜ ⎟⎜

whereby an SL curve may be estimated with only knowledge of  and . As an 

lustration, considering the moments given in Table 2 an itted c

in Figure 5, then with the full estimation of all parameters we obtain an SL curve with 

a

 and 

µ ı

il d f urve denoted SL(0) 

07.200ȟ� = , 04.4į� =  and 18.28Ȗ� −= . If, on the other hand, we m ke a very crude 

estimate of the minimum by setting 0ȟ  = 0 and applying (18), we obtain rather similar 

parameter estimates 77.4į� = 10.34Ȗ� −= . In the last two columns of Table 3, the 

resulting favourable comparison  the reliability probabilities obtained from 

), 

imate Fixed� column). 

n approach has been proposed which departs in philosophy from previous analyses 

 element being an assumption of disequilibrium, with drivers 

ssumed to face unpredictable variation to which they are not able to re-equilibrate. 

is given of

the full estimation (�Fixed� column with those from the two parameter estimation 

with 0ȟ  = 0 (�Approx

 

 

6. CONCLUSION 

 

A

of this topic, a key

a

Although as illustrated in §4, it is possible to implement this approach with Monte 

Carlo methods, it has been shown that it is also theoretically possible to estimate 

analytically moments of the network travel time probability distribution under an 

assumption of stochastic demand (§3.1, §3.2), from which an estimate of the full 

distribution may be readily constructed (§3.3), and from which system reliability 

probabilities may be computed (§2). The analytical method presented is flexible, in 

that it may be tailored to the demands of the particular application: in large networks, 

one can restrict the computation of moments by selecting a restricted family of 

density functions for fitting or by fixing certain parameters (§5). The numerical tests 
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(§4) have demonstrated the application of the approach in understanding the impacts 

of capacity changes on the shape of the network travel time density, beyond the effect 

on mean and variance, as well as its use in identifying vulnerable or sensitive links, in 

terms of their impact on overall system performance.  

 

There are many potential avenues for further research with this technique: 

1. On a practical level, a large network case-study would clearly be valuable, 

including comparisons with any empirical data on variability. 

advantages 

bility may itself be 

3. 

sures under elastic (and stochastic) demand.  

h 

 

 

AC

e would like to thank the anonymous referees for their comments, which led us to 

s. 

2. In order to widen the opportunities for statistical fitting, there may be 

in widening the range of underlying statistical model assumptions that are 

admissible, including those in which the O-D demand varia

parameterised. One extension to the current assumptions would be to reflect 

correlations in O-D demand levels due to common underlying factors. 

The reliability measures themselves may be extended beyond overall network 

travel time, such as O-D specific total travel time, and the day-to-day distribution 

of user-average O-D travel times.  

4. There are opportunities to generalise the model itself in many ways, including 

extensions to reflect randomly varying link capacities, and the estimation of 

reliability for economic benefit mea

5. Finally, there is potential for embedding the proposed method of reliability 

evaluation within a bi-level (possibly multi-objective) optimisation framework, 

whereby network capacities, tolls or information sensors may be set wit

reliability considerations in mind. The use of an analytical approach would be 

expected to have particular advantages (over Monte Carlo methods), for devising 

efficient gradient-based or sensitivity-analysis based algorithms in such a context. 
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APPENDIX A: Modified travel time  functions under Poisson demand 

 

It is reasonable to assume drivers base their decisions on long-run expected travel 

times,  (under (4)). Consider the case m = 2. Since under the 

assumptions in §3.1,  is marginally Poisson with mean (and variance) 

∑
=

=
m

j

j
ajaaa VbVt

0

][E)]([E

aV aµ ,  

 ( )say ),(�)(]E[][E)]([E 2

2

210 aaaaaaaaaaaaa tbtVbVbbVt µµµ =+=++=  

Use of the Poisson-corrected travel time function  would therefore give greater 

model consistency than  when applied in an equilibrium framework 

approximating a stochastic flow environment. The same applies for , with 

higher order Poisson moments utilised (e.g.: ; 

: Stuart & Ord, 1987, p 112). This refinement was first 

suggested for two-link networks in an unpublished note of Bell (1991), and represents 

a statistical approximation of the multinomial path flow model in Watling (2002c).  

(.)�
at
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2>m
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APPENDIX B: Computation of multivariate normal moments 

Suppose X =  is multivariate Normal with mean vector  

and covariances 

),...,,( 21 kXXX )µ,...,µ,µ( 21 k

),...,2,1;,...,2,1(ı kjkiij == . For non-negative integers 

, denote: ),...,,( 21 knnn

  ⎥
⎦

⎤
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⎣
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=

k
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n
iikk

iXnnnp
1

21 )µ(E),...,,(

and the corresponding reduced moment by 
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21
21

ı
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),...,,( . 

Now for any even positive integer m, define a pairing of order m to be a division of 

the set {1,2,�,m} into 2
m  subsets, each consisting of a distinct pair of elements. For 

example, if m = 6 then one possible pairing of order 6 is . In 

general, denote an arbitrary pairing of order m by: 

}}6,5{},4,2{},3,1{{

⎪⎭

⎪
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m
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and denote the collection of all possible such pairings of order m by . )(ȍ m

 

Then (Isserlis, 1918): 
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where are correlation coefficients. This result can be used 

to compute an arbitrary reduced moment , simply by creating an m-

vector multivariate Normal where , consisting of  duplicate occurrences 

of each , such that 
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with the matrix of correlation coefficients of  then:
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12 ıı

ı=r  . 

Then by Isserlis�s result, 122314241334124 3~~~~~~)1,1,1,1( rrrrrrrq =++= , the required reduced 

moment  in the original system. Finally, )1,3(2q 111222

3

1122 3)1,3()1,3( σσσσ == qp  . 

On the other hand, we would immediately know from the Isserlis result that 

, since the sum of powers is 5, an odd number.  0)]()[(E 22
4

11 =−− µµ XX

 

The utility of the Isserlis result is particularly evident for moments involving a larger 

number of variables of higher powers. In the present application, the highest order 

Isserlis moment required for an nth order total travel time moment based on a kth order 

polynomial travel time function is )1( +kn . So, for example, for a 4th order moment 

based on quadratic travel time functions, we would require up to . In order 

to generate such higher order Isserlis expressions, we have found a simple recursive 

method to be efficient to code: 

)1,...,1,1(12q

 

To determine  for Y = , with m even, first denote Isserlis 

reduced moments for even subsets (marginal distributions) of as: 
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Denoting the correlation coefficients of Y by ijr~  ;,...,2,1( mi = ),...,2,1 mj = , then for 

any given m the required reduced moment (which in this new notation is 

) can be generated through reduced moments of lower order, 

according to the recursion: 
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where cA  denotes the complement of the set A. As a check, Isserlis (1918) provides 

the explicit formula for as well as special cases of higher order moments. )1,1,1,1,1,1(6q

 

a va      ab0      ab1      ab2     ab0

~
    ab1

~
    ab2

~
    ab3

~
 

1 55.48 10.6637 -0.3203 0.00433 345.32 15.114 0.4005 0.00433 

2 44.52 10.1417 -0.2481 0.00418 328.55 12.903 0.3101 0.00418 

3 12.39 2.0016 -0.0004 0.00002 24.78 2.002 0.0004 0.00002 

4 43.10 8.0320 -0.1876 0.00326 258.65 10.026 0.2339 0.00326 

5 56.90 8.5289 -0.2591 0.00342 276.50 12.263 0.3247 0.00342 

 

Table 1: Base SUE link flows and travel time function coefficients 

 

 Analytical Empirical BPR Empirical Taylor 

µ 1298.39 1265.16    (8.97) 1264.75     (7.75) 

σ 275.95 271.24    (8.14) 267.14     (7.54) 

√β1 0.7696 0.8303 (0.1300) 0.7882 (0.1322) 

β2 3.9755 4.3275 (0.7485) 4.1720 (0.8330) 

 

Table 2: Base solution total network travel time moments 

 

Critical Value for  

Total Network Travel 

Time 

 

Equilibrium 

 

Fixed 
Approximate 

Fixed 

1250 0.4757 0.5233 0.5286 

1500 0.1714 0.2108 0.2128 

1750 0.0465 0.0649 0.0628 

2000 0.0107 0.0169 0.0150 
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Table 3: Reliability probabilities for a number of notional critical values 

under �equilibrium� and �fixed� responses (see Figure 4) 

 

Figure 1: Illustrative example of performance measure distribution 
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Figure 2: Example network (Suwansirikul et al, 1987), O-D demand  
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Figure 3: Empirical distribution of total network travel time for four replications of Monte Carlo method 

(1000 simulation draws per replication; exact quartic travel time functions) 



 

Figure 4: Distribution of total network travel time under �Fixed� and �Equilibrium� model assumptions 
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Figure 5: Distribution of total network travel time for a 10 unit reduction, in turn, in the capacity of each link 
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Figure 6: Empirical distribution of total network travel time for a range of capacities on link 1 
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