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8 Abstract

9 This paper formulates a Stochastic Social Optimum (SSO) that relates to the Stochastic User Equilib-

10 rium (SUE) in the same way as the Social Optimum (SO) relates to the User Equilibrium (UE) in a deter-

11 ministic environment. At the SSO solution, the total of the users� perceived costs is minimised. The

12 formulation and analysis is carried out in a general utility-maximising framework, with the probit and logit

13 models being special cases. Conditions for the SSO flow pattern are derived, from which it can be seen that

14 the marginal social costs play the same role in the SSO as the standard costs play in SUE. In particular, it is

15 shown that the SSO solution can be obtained through the use of an algorithm for SUE, but with the mar-

16 ginal costs replacing the standard costs in the stochastic loading and that optimal tolls are the differences

17 between the marginal social costs and the standard costs. For the case of the logit model an explicit path-

18 based objective function is obtained which is of a pleasing symmetrical form when compared with the

19 objective functions for SUE, SO and UE. Additionally, a link-based objective function for the general util-

20 ity-maximising case is formulated for SSO, which is similar in form to the SUE objective function of Sheffi

21 and Powell.
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26 1. Introduction

27 In deterministic traffic assignment, there are two different solutions: the User Equilibrium (UE)

28 and the Social (or System) Optimum (SO), corresponding to Wardrop�s first and second equilib-

29 rium principles (Wardrop, 1952). The UE flow pattern is how we believe things will be, with driv-

30 ers choosing their routes selfishly, whilst the SO flow pattern is how the traffic engineer might like

31 things to be, in that the total network travel cost is minimised under SO. It is well-known that the

32 SO solution can be found by using the marginal social cost-flow functions m(x) in place of the unit

33 link cost-flow functions t(x) in an algorithm to produce the UE solution. It is also known that we

34 can make the congestion-minimising SO flow pattern into a UE solution by imposing the toll

35 (ma(xa*) � ta(xa*)) on link a, where x* is the SO solution.

36 Here, we aim to formulate the same principles but in a stochastic environment. The Stochastic

37 User Equilibrium (SUE) solution corresponds to the UE solution with drivers choosing the route

38 which minimises their personal perceived travel cost, and so we seek to define a Stochastic Social

39 Optimum (SSO) which relates to the SUE solution in the same way as the SO solution relates to

40 the UE solution. The SSO solution therefore is that flow pattern which minimises the total of the

41 travel costs perceived by drivers. Just as the SO solution generally requires some drivers travelling

42 on paths which are not the minimum cost paths for that OD pair, so the SSO solution generally

43 requires some drivers to be assigned to paths that are not their minimum perceived cost path. As

44 will be seen later, Yang (1999) has characterised the SSO solution as that which maximises con-

45 sumer surplus.

46 We also investigate whether there are similar results for (i) finding the SSO solution by use of an

47 algorithm to produce the SUE solution, and (ii) whether there is a corresponding result about the

48 tolls required to make the SSO solution into a SUE solution.

49 2. Notation and assumptions

50 For convenience, we set out here the notation for the principal variables and parameters used in

51 the analysis to follow in the rest of the paper. This notation largely follows that of Sheffi (1985).

52 xa flow on link a

53 ta ta(xa) = cost of travel along link a, a function of xa only

54 qrs demand between OD pair rs

55 hrsk flow on path k between OD pair rs

56 crsk mean perceived travel cost on path k between OD pair rs

57 ma ma(xa) = marginal social travel cost on link a ¼ ta þ xa
dta
dxa

58 drsak 1 if link a is on path k between OD pair rs, and 0 otherwise

59 Srs expected minimum perceived travel cost between OD pair rs

60 sa value of the toll charged on link a
61
62 In addition to the separability of the link performance function ta(xa), it is assumed throughout

63 the paper that this function is positive, strictly increasing, and convex. Under these conditions, as

64 Sheffi (1985) shows, the UE and SO solutions are unique. The demands qrs are assumed to be con-
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65 tinuous and therefore infinitely divisible, so that in calculating expected perceived travel costs, a

66 limiting Weak Law of Large Numbers applies.

67 3. Defining the SSO

68 In stochastic assignment different drivers have different perceptions of the costs on the links and

69 paths, and we use a distribution of perceived costs to describe these differences. Whereas the SO

70 flow pattern is that which minimises the total network travel cost, the SSO is defined as that flow

71 pattern that minimises the total of the perceived travel costs in the network.

72 To illustrate the concepts, let us first consider the case of a two-path network between a single

73 O–D pair with a fixed demand q. The flows on the paths are denoted by h1 and h2 (h1 + h2 = q), a

74 driver�s perceived values of the path costs are denoted by u1 and u2 and the probability density

75 function of the drivers� perceived costs is f(u1,u2). Firstly, given path flows of h1 and h2 we need

76 to allocate the drivers to the paths so as to minimise the total perceived cost. Generally, this will

77 require some drivers to be assigned to paths that are not their minimum perceived cost paths. See

78 Fig. 1: drivers whose perceived costs lie within the region R1 (above the line BC) will be assigned

79 to path 1; those whose perceived costs lie below BC will be assigned to path 2. The boundary be-

80 tween R1 and R2 is the line BC with equation u2 = u1 + d2 where the value of d2 is such that the

81 probability mass contained within R1 is p1 = h1/q. Note that those drivers whose perceived costs

82 fall between the lines BC and OA (the u1 = u2 line) are those who, for the benefit of the population

83 as a whole, are assigned to their non-minimum cost path.

84 Therefore, d2 must be found such that
Z

R1

f ðu1,u2Þdu1 du2 ¼ p1 ¼
h1

q
ð1Þ

u
1

u
2

R
1

O

A

B

C

R
2

d2

Fig. 1. Sample space of perceived costs u1, u2 divided into regions R1 and R2.
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88 With this assignment, the total expected perceived cost is

zðh1,h2Þ ¼ q

Z

R1

u1f ðu1,u2Þdu1 du2 þ

Z

R2

u2f ðu1,u2Þdu1 du2

� �

ð2Þ

92 Note that the value of d2 and hence the regions R1 and R2 depend on the path flows h1, h2 Also,

93 the mean perceived path costs c1 and c2 are also functions of the path flows, through the cost-flow

94 relations. However, we make the assumption throughout this paper that it is only the means c1, c2
95 that are affected by the path flows; the variances and covariances remain fixed. Therefore, the fol-

96 lowing condition holds for the bivariate density function of perceived path costs

f ðu1 þ d1,u2 þ d2; c1,c2Þ ¼ f ðu1,u2; c1 � d1,c2 � d2Þ 8 d1,d2 ð3Þ

100 The choice model is assumed to be a utility-maximising model, including both the logit and probit

101 models. In the logit model, the perception errors are independent Gumbel variates, with fixed

102 variances. In the probit model, the perception errors are multivariate Normal and we assume

103 the (co)variances to be constant (possibly at values related to the free-flow mean costs, as sug-

104 gested by Sheffi (1985)[p. 313] in connection with the Sheffi and Powell objective function for

105 SUE).

106 Hence, from (2) and (3), the total perceived network cost, for flow pattern h is

zðh1,h2Þ ¼ q

Z

u1<u2�d2

u1f ðu1,u2; c1,c2Þdu1 du2 þ

Z

u1>u2�d2

u2f ðu1,u2; c1,c2Þdu1du2

� �

¼ q

Z

u1<u2

u1f ðu1,u2; c1,c2 � d2Þdu1 du2 þ

Z

u1>u2

ðu2 þ d2Þf ðu1,u2; c1,c2 � d2Þdu1du2

� �

¼ q

Z

u1<u2

u1f ðu1,u2; c1,c2 � d2Þdu1 du2 þ

Z

u1>u2

u2f ðu1,u2; c1,c2 � d2Þdu1 du2

� �

þ qd2

Z

u1>u2

f ðu1,u2; c1,c2 � d2Þdu1 du2

109 Hence

zðh1,h2Þ ¼ q Sðc1,c2 � d2Þ þ d2p2ð Þ ¼ qSðc1,c2 � d2Þ þ h2d2 ð4Þ

113 where S denotes the ‘‘satisfaction’’ or composite travel cost, given for the logit case by the familiar

114 ‘‘logsum’’ formula

Sðc1,c2Þ ¼ �
1

h
logðexpð�hc1Þ þ expð�hc2ÞÞ

117 The SSO flow pattern is then defined as that flow pattern h1, h2 that minimises the total perceived

118 travel cost z(h1,h2). Note that the decision rule for assigning users to paths can be expressed in the

119 form: assign a user to path 1 if his perceived costs are such that u1 � d1 < u2 � d2 for any pair of

120 values of d1, d2 that satisfy the condition in (1): that is, it is only the relative values of the d�s that

121 matters.
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122 3.1. A numerical example

123 To illustrate these ideas, consider a simple example with two parallel paths between a single O–

124 D pair. We assume that the perceived path costs are independent and Gumbel distributed, with

125 means c1 and c2 and a value of the sensitivity parameter h of 0.1. The two paths have BPR-style

126 cost-flow functions so that the mean path costs are given by, c1 = 10 + 0.02h1 and

127 c2 = 15 + 0.005h2 The demand q = 1000.

128 Since u1 and u2 are Gumbel distributed with means c1 and c2 the proportion p1 of drivers for

129 whom u1 < u2 � d2 is the same as the proportion for whom u1 < u2 when the means are c1 and

130 c2 � d2; that is

p1 ¼
expð�hc1Þ

expð�hc1Þ þ expð�hðc2 � d2ÞÞ

133 so that the value of d2 required to give the correct probability mass p1 = h1/q is

d2 ¼ �
1

h
log

h1

h2

� �

� c1 þ c2

136 Hence the SSO objective function in this two-path logit case is

zðh1,h2Þ ¼ �
q

h
logðexpð�hc1ðh1ÞÞ þ expð�hðc2ðh2Þ � d2ÞÞ

�
1

h
log

h1

h2

� �

� c1ðh1Þ þ c2ðh2Þ

� �

h2

139 For this example, we can plot the value of this SSO objective function against h1. For comparison,

140 we also show in Fig. 2 the plots of the UE, SO and SUE objective functions against h1. The posi-

0
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h
1

z

Fig. 2. Plots of zSSO, zSO, zUE and zSUE against h1, the flow on path 1.

M. Maher et al. / Transportation Research Part B xxx (2004) xxx–xxx 5

TRB 478 No. of Pages 15, DTD=5.0.1

25 November 2004 Disk Used ARTICLE IN PRESS



UN
CO

RR
EC

TE
D
PR

OO
F

141 tions of the minima show that the solution for UE is h = (400,600), that for SO is h = (300,700),

142 that for SUE is h = (462,538) and that for SSO is h = (390,610) (We note in passing that it can be

143 verified that, in this case, this SSO solution is the same as the SUE solution that is obtained by

144 replacing the unit cost-flow functions by the marginal social cost-flow functions.). In Fig. 3, we

145 plot the SSO objective function for several values of the sensitivity parameter h

146 (=0.1,0.25,0.5,1 and 2) and it can be seen that as h increases, the plot of the SSO objective func-

147 tion steadily approaches that of the SO objective function, as would be expected, since the degree

148 of variation in the perceived costs is steadily reducing towards zero.

149 We now aim to extend the formulation in (4) to a more general case, with many (generally over-

150 lapping) paths between an O–D pair and, subsequently, to multiple O–D pairs. Now, whereas in

151 the SUE case, the user chooses the path for which the perceived cost is minimum, for the SSO case

152 we extend the decision rule for the two-path case to one that states that a driver should be as-

153 signed to path j if its ‘‘augmented cost’’ uj � dj is smaller than the augmented costs uk � dk for

154 all other paths k. The values of the dj must then be set such that the proportion assigned by this

155 process to path j is hj/q. To justify this form of decision rule, we consider in the next section a dis-

156 crete version of the problem, before returning to the continuous case thereafter.

157 4. A discrete version of the problem

158 We consider here a discrete version of the problem: that is, we assume that there is a (large)

159 number N of users each of which has the same J paths to choose from. The users have ran-

160 domly-drawn and independent sets of values of the perceived path costs uij which we take to

161 be set out in an N · J matrix. These costs can be thought of being made up a mean value lj which

162 depends on the flow(s) on that path and a perception error eij that is drawn from some distribution

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500 600 700 800 900 1000

h
1

z

Fig. 3. Plots of zSSO for values of h = 0.1, 0.25, 0.5, 1 and 2, and zSO against h1 the flow on path 1 (from bottom to top).
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163 (Gumbel or Normal) with zero mean and constant variances (so that as the mean of any path

164 changes through congestion effects so the perceived costs for all users on that path change by

165 the same amount).

166 The problem is how to assign users to paths so as to minimise the total perceived cost, whilst

167 ensuring that the numbers assigned to each path are as given. That is, given that we are to assign a

168 total of nj (j = 1, . . . ,J) users to path j (n1 + n2 + � � � + nJ = N), we are to find the optimal values of

169 the variables yij (where yij = 1 if user i is to be assigned to path j, and zero otherwise) so as to min-

170 imise the total perceived cost z ¼
P

ijyijuij. As each user is to be assigned to just one path we must

171 have
P

jyij ¼ 1 and since we must satisfy the constraint on the numbers assigned to each path, we

172 must have
P

iyij ¼ nj. This is a special case of the ‘‘classical transportation problem’’ (special in

173 that the row totals are all 1).

174 It is well-known (see, for example, Taha, 1976) that, for such a problem, a basic solution con-

175 sists of exactly (N + J � 1) of the NJ cells being used. Of these it is clear that exactly N will take

176 the value 1 (one per row). The other J � 1 must be zeroes (but still be basic). These zero-valued

177 basic cells must therefore appear in at most (J � 1) rows (they could all be in a single row, or at

178 the other extreme could each be in a different row). The optimal solution is a basic solution and

179 the standard solution algorithm iterates through a sequence of basic solutions until the optimum

180 is reached, with the value of the objective function z reducing at each iteration.

181 It is known that the following conditions hold for any basic solution at any iteration. For each

182 basic cell (whether its yij value is 0 or 1)

uij ¼ ai þ bj

185 and for each non-basic cell a negative value of

vij ¼ uij � ai � bj

188 indicates that if this cell were to be brought into the basis (in exchange for one of the current

189 basics) the z value would reduce. The condition for a basic solution to be optimal is that, for

190 all the non-basic cells, the vij are P0 (an equality indicates the existence of an equally-optimal

191 solution). The values of the bj are determined from the (at most) (J � 1) rows that contain the

192 zero-valued basics. Once they have been found, it is trivial to determine the values of the ai for

193 all other rows.

194 With an optimal assignment of users to paths, then, a user i is assigned to that path j for which

195 yij = 1. Therefore ai = uij � bj and for any other path k, vik P 0 so that uik � ai � bk P 0. Hence

196 uik � bk P uij � bj for all other paths k in that row. That is, at the optimal solution, the bj values

197 are such that each user i is assigned to that path that has minimal value of (uij � bj) and the total

198 number assigned to path j is the required value nj (j = 1, . . . ,J).

199 The bj play the role, then, of the dj in the continuous case (where the form of the decision rule

200 was previously assumed by extrapolation from the two-path case). Since we can make the discrete

201 case as close as we like to the underlying continuous case, by making the number of rows (users) N

202 as large as we like, we deduce that the same result applies in the continuous case: that is, to find

203 the optimal assignment of users to paths such that the proportions so assigned should be con-

204 strained to take the values hj/q, we need to determine values dj such that each user is assigned

205 to that path j for which his value of (uj � dj) is minimum.
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206 5. The general case

207 For a single O–D pair, then, with a demand q and with given path flows hj, we must assign users

208 to paths so as to minimise their total perceived travel cost, by seeking to partition the whole space

209 of perceived costs u into mutually exclusive and exhaustive regions {Rj} in an optimal manner.

210 From the previous section we have seen that the region Rj is that within which uj � dj < uk � dk
211 for all other k. Therefore,

Z

Rj

f ðu1,u2, . . .Þdu1 du2 . . . ¼ pj ¼
hj

q
ð5Þ

214 With this assignment, by extension of the expression in (2) the total perceived cost is

zðh1,h2, . . .Þ ¼ q
X

j

Z

Rj

ujf ðu1,u2 . . .Þdu1 du2 . . .

217 which, setting wj = uj � dj and denoting by Cj the set of perceived path costs for which path j is the

218 optimum

zðh1,h2, . . .Þ ¼ q
X

j

Z

Cj

ðwj þ d jÞf ðw1,w2 . . . ; c1 � d1,c2 � d2, . . .Þdw1 dw2

¼ q
X

j

Z

Cj

wjf ðw1,w2, . . . ; c1 � d1,c2 � d2, . . .Þdw1 dw2 . . .þ q
X

j

d jpj

¼ qSðc1 � d1,c2 � d2, . . .Þ þ
X

j

djhj

221 This is for a single O–D pair. Suppose we now have multiple O–D pairs, identified by rs, and with

222 path flows denoted by hrsj . The mean travel cost on path j between O–D pairs rs is denoted by crsj .

223 Then the objective function is the total perceived travel cost, taken over all rs

zSSOðhÞ ¼
X

rs

qrsS
rsðcrs � drsÞ þ

X

rs

X

j

drs
j h

rs
j ð6Þ

226 which is to be minimised w.r.t. the hrsj subject to qrs ¼
P

jh
rs
j 8 rs. The path travel costs crsj are

227 potentially functions of all path flows (that is, from other O–D pairs as well as from rs), whilst

228 the drs
j that are required to satisfy the constraints on the proportions assigned to each path are

229 functions of the path flows for that rs pair only. Hence the Lagrangian is

LðhÞ ¼
X

rs

qrsS
rsðcrsðhÞ � drsðhrsÞÞ þ

X

rs

X

j

drs
j h

rs
j þ

X

rs

krsðqrs �
X

j

hrsj Þ ð7Þ

233 Then, differentiating (7) partially w.r.t. a typical path flow, and using the well-known result (see,

234 for example, Sheffi, 1985) that oSrs

olrs
j

¼ prsj , we get

oL

ohrsj
¼
X

od

qod

X

k

prsk
ocodk
ohrsj

� qrs

X

k

prsk
odrs

k

ohrsj
þ drs

j þ
X

k

odrs
k

ohrsj
hrsk � krs ð8Þ
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237 Since for all feasible flow patterns hrsj , the choice of the d
rs
j ensures that qrsp

rs
k ¼ hrsk , the second and

238 fourth terms in the above expression cancel, and by setting the derivative above to zero, we obtain

239 the following condition at the SSO solution

drs
j ¼ �

X

od

qod

X

k

prsk
ocodk
ohrsj

þ krs ð9Þ

242 Now the travel cost on a path is the sum of the costs on the links that make up that path. Hence

243 codk ¼
P

ad
od
ak ta where d

od
ak ¼ 1 if link a is part of path k between O–D pair od, and zero otherwise.

244 Also, we note that it is only the relative values of the drs
j for any rs pair that matter, so that the

245 term krs on the right hand side can be dropped. Therefore, at the SSO solution

drs
j ¼ �

X

od

qod

X

k

podk

X

a

dodak
dta

dxa
drsaj ¼ �

X

a

X

k

X

od

dodakqodp
od
k

 !

drsaj
dta

dxa
¼ �

X

a

xad
rs
aj

dta

dxa

248 Hence, the condition at the SSO solution is that the mean augmented travel cost on path j between

249 O–D pair rs is given by

crsj � drs
j ¼ crsj þ

X

a

xad
rs
aj

dta

dxa
ð10Þ

253 which is the marginal social cost for that path.

254 This condition in (10), taken together with the conditions qrsp
rs
j ¼ hrsj (for all j, r, s), implies that,

255 at the SSO solution h�SSO when the marginal social path costs are used as the mean path costs in a

256 stochastic loading to provide the path choice proportions fprsj g and hence the auxiliary flow pat-

257 tern, this auxiliary flow pattern is h�SSO.

258 By comparison, we note that at the SUE flow pattern h�SUE when the standard path costs crsj are

259 used as the mean path costs in a stochastic loading to provide the path choice proportions and the

260 auxiliary flow pattern, this auxiliary flow pattern is h�SUE.

261 This suggests that whereas in finding the SUE solution by an iterative process such as the Meth-

262 od of Successive Averages (MSA), it is the standard path costs crsj that are used to calculate the

263 auxiliary flow pattern at each iteration, it is the marginal social costs that should be used instead to

264 find the SSO solution.

265 The finding in (10) shows that there is the same relationship between the SSO and SUE solu-

266 tions as there is between the SO and UE solutions. Just as an algorithm for solving the UE prob-

267 lem can be used to find the SO problem, by replacing the standard costs by the marginal social

268 costs, so an algorithm for solving the SUE problem can be used to find the SSO solution by

269 replacing the standard path costs by the marginal social costs.

270 Furthermore, it should be noted that at the SSO solution the difference between the marginal

271 social path cost and standard path cost consists of a sum over the links a that make up that path,

272 and that the contribution from a link is the same for all O–D pairs. Therefore, the result for the

273 deterministic case about optimal tolls holds also for the stochastic case; that is, if the tolls

274 sa ¼ xa
dta
dxa

are applied (with values of the xa taken at the SSO solution), the resulting SUE solution

275 is the SSO flow pattern. Of course, this marginal social cost (MSC) toll set is not the only toll set
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276 capable of making the SSO solution into a SUE solution. Any (non-negative) toll set {sa � Da}

277 that satisfies the constraints
X

a

drsakDa � crs ¼ 0 8k,r,s and Da 6 sa 8a ð11Þ

281 will maintain the same relative values of the mean path costs between any O–D pair rs, and pro-

282 vide non-negative tolls. The values of the Da and the crs can then be found according to any chosen

283 criterion, such as that of minimum revenue, by solving the linear programming problem

Maximise z ¼
X

x�aDa ð12Þ

287 (where the x�a are the SSO link flows) subject to the constraints in (11).

288 6. The logit case

289 In the logit case, we can additionally derive a closed-form expression for the SSO objective

290 function zSSO(h), for a given set of path flows fhrsj g.

prsj ¼
expð�hðcrsj � drs

j ÞÞ
P

k expð�hðcrsk � drs
k ÞÞ

293 so that the values of any pair of drs
j and drs

k can be found from

log
hrsj

hrsk

� �

¼ �hðcrsj � drs
j � crsk þ drs

k Þ

296 so that

drs
j � drs

k ¼ crsj � crsk þ
1

h
log

hrsj

hrsk

� �

299 Without any loss of generality, any one of the drs
j may be set to zero. Here we shall set drs

1 ¼ 0 so

300 that for all other j (51) the necessary value of drs
j is given by

drs
j ¼ crsj � crs1 þ

1

h
log

hrsj

hrs1

� �

303 so that the objective function for any one O–D pair rs is

zSSOðh
rsÞ ¼ �

qrs
h

log
X

j

expð�hðcrsj � drs
j ÞÞ

 !

þ
X

j6¼1

hrsj crsj � crs1 þ
1

h
log

hrsj

hrs1

� �� 	

ð13Þ

306 After substitution for the drs
j followed by some simplification, and then summing over all O–D

307 pairs, the expression for the SSO objective function in the logit case is

zSSOðhÞ ¼
X

rs

X

j

hrsj c
rs
j ðhÞ �

X

rs

qrs
h

log qrs þ
1

h

X

rs

X

j

hrsj log hrsj ð14Þ
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310 The middle term can be omitted, as it is constant, so we can write

zSSOðhÞ ¼
X

rs

X

j

hrsj c
rs
j ðhÞ þ

1

h

X

rs

X

j

hrsj log hrsj ð15Þ

314 This is identical to the objective function derived by Yang (1999) that uses the expected indirect

315 utility received by a randomly sampled individual as the benefit measure (consumer surplus).

316 For comparative purposes, the expressions for the SUE objective functions in the case of logit

317 loading, and expressed in terms of a mixture of path flows h, link flows x and link costs t, is (Fisk,

318 1980):

zSUEðhÞ ¼
X

a

Z xa

0

taðxÞdxþ
1

h

X

rs

X

j

hrsj log hrsj ð16Þ

322 For completeness, the objective functions for SO and UE are

zSOðhÞ ¼
X

rs

X

j

hrsj c
rs
j ðhÞ ¼

X

a

xataðxaÞ ð17Þ

zUEðxÞ ¼
X

a

Z xa

0

taðxÞdx ð18Þ

329 There is a clear connection or symmetry between the four objective functions (15)–(18).

330 7. A link-based objective function for the general case

331 As it has been established in Section 5 that at the SSO solution, a stochastic loading using the

332 marginal path costs produces an auxiliary flow pattern that is identical to the current flow pattern,

333 this enables us to write down a link-based objective function for the general, utility-maximising

334 case.

335 Sheffi and Powell (1982) showed that the general SUE problem is equivalent to the uncon-

336 strained minimisation, with respect to the link flows x of the following objective function

zSUEðxÞ ¼ �
X

a

Z xa

0

taðuÞduþ
X

a

xataðxaÞ �
X

rs

qrsSrs½tðxÞ
 ð19Þ

339 where ta is the travel cost on link a, and Srs is the ‘‘satisfaction’’ function, the expected value of the

340 minimum perceived travel cost for users travelling between OD pair rs. Sheffi and Powell (1982)

341 shows that, under the conditions set out earlier for the link performance functions, the uniqueness

342 of the SUE solution is guaranteed. Sheffi (1985) shows that the derivative of this function with

343 respect to a link flow is given by

ozSUE

oxa
¼ ðxa � yaÞ

dtaðxaÞ

dxa
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346 It follows that at the SUE solution, the auxiliary flows {ya} are equal to the current flows {xa}.

347 That is, when a stochastic loading is carried out using mean link costs based on the current link

348 flows, the resulting auxiliary flow pattern is identical to the current flow pattern

yaðtðxÞÞ ¼ xa 8a

351 In Section 4, it was shown that at the SSO solution, if the marginal costs are used in place of the

352 unit costs, the auxiliary flow pattern produced from a stochastic loading is equal to the current

353 solution. It follows therefore that we need merely replace the unit link costs ta in the Sheffi and

354 Powell objective function for SUE by thea marginal link costs ma = ta + xa(dta/dxa) in order to

355 give an objective function for SSO

zSSOðxÞ ¼ �
X

a

Z xa

0

maðuÞduþ
X

a

xamaðxaÞ �
X

rs

qrsSrs½mðxÞ
 ð20Þ

358 At the SSO solution, we therefore have

yaðmðxÞÞ ¼ xa 8a

361 Because of the correspondence between the SSO and SUE objective functions, the uniqueness of

362 the SSO solution is guaranteed by the conditions placed on the link performance functions.

363 8. An illustrative example

364 To illustrate and confirm the results of section 4 consider the five-link network shown in Fig. 4

365 (that has the same topology as that in Yang, 1999). There is a single O–D pair from node A to

366 node D (with a demand of 1000 vph), and three paths: 1–4, 1–3–5, and 2–5. The link cost-flow

367 functions are

t1 ¼ 5þ 0:01x1

t2 ¼ 10þ 0:01x2

t3 ¼ 3:5þ 0:005x3

t4 ¼ 8þ 0:01x4

t5 ¼ 5þ 0:01x5

A

B

C

D

1

2

3

4

5

Fig. 4. Five-link, three-path network.
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370 We consider the probit case: that is, Normally distributed perception errors with link variances

371 being fixed and equal to b times the mean free-flow cost. In carrying out the stochastic loading

372 at any iteration, the algorithm of Donnolly (1973) is used for calculating probabilities from the

373 bivariate Normal distribution. For more general, larger networks, a variety of approximate meth-

374 ods can be used to calculate the prsj values (see Rosa and Maher, 2002).

375 The SUE and SSO solutions are found by using respectively the standard path costs crsj or the

376 marginal social path costs crsj þ
P

axad
rs
aj

dta
dxa

at each iteration when calculating the path choice pro-

377 portions prsj to produce the auxiliary path flow pattern. The results in Table 1 have been obtained,

378 to a high degree of convergence (measured directly by the difference between the current and aux-

379 iliary solutions), by an iterative process that optimises the step length along the search direction

380 (y–x) at each iteration (see, for example, Maher and Hughes (1997)).

381 The results are shown in Table 1. It is clear that, as the variance-to-mean ratio b is steadily re-

382 duced in value, the SUE solution moves towards the UE solution and the SSO solution moves

383 towards the SO solution, as would be expected.

384 For a value of b = 1, then, the SSO link flows are xSSO = (578.340, 421.660,119.275,

385 459.066,540.934) and hence the MSC tolls are s = (5.783,4.217,0.596,4.591,5.409). By setting

386 up the linear programming problem specified in (11) and (12), the minimal revenue toll set can

387 be found

Maximise z ¼ 578:34D1 þ 421:66D2 þ 119:28D3 þ 459:07D4 þ 540:93D5

subject to :

D1 þ D4 � c ¼ 0

D1 þ D3 þ D5 � c ¼ 0

D2 þ D5 � c ¼ 0

390 and D1 6 5.783, D2 6 4.217, D3 6 0.596, D4 6 4.591, D5 6 5.409

Table 1

Path flows assigned by SUE and SSO for various b values

h1 h2 h3

SUE b = 1 463.318 144.990 391.692

SUE b = 0.1 500.046 89.525 410.429

SUE b = 0.01 519.977 56.640 423.383

SUE b = 0.001 528.571 41.773 429.656

SUE b = 0.0001 531.750 36.155 432.094

SUE b = 0.00001 532.824 34.244 432.933

UE 533.333 33.333 433.333

SSO b = 1 471.275 99.277 429.448

SSO b = 0.1 496.446 54.406 449.148

SSO b = 0.01 508.804 31.535 459.660

SSO b = 0.001 513.897 21.936 464.167

SSO b = 0.0001 515.749 18.416 465.835

SSO b = 0.00001 516.372 17.230 466.399

SO 516.667 16.667 466.667
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391 An optimal solution is found to be D = (5.035,4.217,�0.818,4.591,5.409) so that the minimal

392 revenue tolls s–D = (0.748,0,1.414,0,0), raising a total revenue of 601 compared with a revenue of

393 10,227 raised from the MSC tolls.

394 9. Summary

395 In this paper, we have formulated the SSO (Stochastic Social Optimum) traffic assignment

396 problem to complement the well-known UE, SO and SUE problems and investigated the relation-

397 ships and similarities between them. The formulation is for a general utility-maximisation frame-

398 work, which includes as special cases both logit and probit. Under SSO assignment, the total

399 perceived travel cost is minimised with, generally, some users being assigned to paths that are

400 not their personal minimum perceived cost paths. The analysis was developed in two stages.

401 The first stage involved the optimal assignment of users to paths for any given set of path flows

402 h, with the idea of augmented path costs c–d in which the drs
j values were such that the flow pattern

403 produced by the stochastic loading matched the required flow pattern, and produced an expres-

404 sion zSSO(h) for the minimum total perceived cost. The second stage then investigated the condi-

405 tions for the minimisation of zSSO(h)with respect to the path flowsh. It was shown that under a

406 general utility-maximising framework that includes the two most important cases of logit and pro-

407 bit loading, the augmented path costs at the SSO solution were the marginal social costs, and

408 hence the relationship of the SSO solution to the SUE is the same as that of SO to UE. In par-

409 ticular, the SSO solution can be found by means of an SUE algorithm, by replacing the standard

410 path costs by the marginal social path costs in the stochastic loading; and the toll set that is opti-

411 mal in the stochastic case has the same form as that which is optimal in the deterministic case, but

412 evaluated at the SSO flow values instead of the SO flow values. Additionally, for the logit case, an

413 expression for the objective function zSSO(h) has been derived which has a pleasing symmetry with

414 those for UE, SO and SUE. Finally, a link-based objective function has been formulated for the

415 general utility-maximising case (that includes probit as well as logit), which is similar in form to

416 the SUE objective function of Sheffi and Powell.
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