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Abstract ⎯ This paper deals with two mathematically similar problems in transport network 

analysis: trip matrix estimation and traffic signal optimisation on congested road networks. 

These two problems are formulated as bi-level programming problems with stochastic user 

equilibrium assignment as the second-level programming problem. We differentiate two types 

of solutions in the combined matrix estimation and stochastic user equilibrium assignment 

problem (or, the combined signal optimisation and stochastic user equilibrium assignment 

problem): one is the solution to the bi-level programming problem and the other the mutually 

consistent solution where the two sub-problems in the combined problem are solved 

simultaneously. In this paper, we shall concentrate on the bi-level programming approach 

although we shall also consider mutually consistent solutions so as to contrast the two types 

of solutions. The purpose of the paper is to present a solution algorithm for the two bi-level 

programming problems and to test the algorithm on several networks. 

 

Keywords: Trip matrix estimation, Traffic signal optimisation, Stochastic user equilibrium 

assignment, Mathematical programming 
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1. INTRODUCTION 

 

In this paper, we deal with two mathematically similar problems in transport network 

analysis: trip matrix estimation and traffic signal optimisation on congested road networks. 

These two problems are of great importance in transport planning, scheme appraisal and 

traffic management. A matrix estimation problem and signal optimisation problem have a 

common input: route choice proportions or, equivalently, link flows in the road network. 

These are the output of a traffic assignment model which, in turn, requires a trip matrix or 

signal settings as inputs. An equilibrium assignment (EA) model needs to be included in the 

matrix estimation and signal optimisation so as to achieve consistency in route choices and to 

model congestion effects in the network. This can either be a user equilibrium (UE) 

assignment model or a stochastic user equilibrium (SUE) assignment model. In the combined 

matrix estimation and EA problem, there are two linked optimisation problems: matrix 

estimation (ME) problem with fixed route choice proportions and the EA problem with a 

fixed trip matrix. Similarly in a combined signal optimisation and EA problem, there are also 

two linked optimisation problems: the signal optimisation (SO) problem with fixed link flows 

and the EA problem with fixed signal settings. In both combined problems, there is a mutual 

interaction between the two sub-problems. 

 

In recent years there has been increasing interest in formulating the two combined problems 

as bi-level programming (BP) problems (Bard, 1988) in which the ME or the SO problem is 

at the upper level and the EA problem at the lower level. A BP problem has a hierarchical 

structure in which an upper-level and a lower-level decision maker must select their strategies 

so as to optimise their objective functions, respectively. But, the upper-level decision maker 

knows how the lower-level optimiser would react to a given upper-level decision and acts 

accordingly while the lower-level optimiser can act only according to given decisions of 

upper-level problem. On the other hand, a conventional approach to deal with the two 

combined problems is to treat the two sub-problems in a parallel way and to seek a mutually 

consistent solution. This "mutually consistent" problem falls into another type of 

mathematical programming problem, namely, the equilibrium programming (EP) problem 

(Garcia and Zangwill, 1981). In an EP problem, each of the two parties is continuously 

resolving his own sub-problem given the latest information on the actions of the other party. 
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The BP problem is different from the EP problem in that the upper-level decision maker 

knows how the lower-level decision maker makes a decision. Although he cannot intervene in 

the lower-level decision maker's decision, he can consider the lower-level decision maker's 

reaction in his own decision making. This is particularly important in the bi-level signal 

optimisation problem. In the EP problem, on the other hand, neither of the two optimisers 

knows how the other would react; each of them acts only according to the decision of the 

other. In this paper, we shall concentrate on the BP approach although we shall also consider 

mutual consistent solutions so as to contrast the two types of solutions. 

 

The BP problem may be seen as a single programming problem with the upper-level variables 

being constrained by the lower-level solutions. In this sense, a BP problem is similar to a non-

linear programming (NP) problem. However, in a BP problem, the evaluation of the upper-

level objective function requires solving the lower-level optimisation problem whose 

functional form is generally unknown. A further complication is that a BP problem is in 

general non-convex. This implies the potential existence of local minimum solutions and so a 

global minimum may be difficult to find. The EP problem is similar to a multiple-objective 

NP problem in that there are two objectives. However, in a NP problem, there is only one 

decision maker who chooses all variables so as to optimise several objectives. In an EP 

problem, on the other hand, there are two decision makers, each having control of only one 

set of variables. (A more general EP problem can have more than two parties.) It is clear that 

most standard algorithms for NP problems may not be applicable to BP and EP problems. 

 

The two types of programming problem may also be cast into the framework of game theory. 

Fisk (1984) discussed a range of combined problems in the framework of game theory, and 

the discussion was illustrated by the combined signal optimisation and UE assignment 

problem.  In game theory, a mutually consistent solution corresponds to a Nash non-

cooperative game and a BP problem to a Stackelberg game or leader-follower game. In fact, 

the Nash non-cooperative game is a special type of EP problem. Formulating the two 

combined problems as different types of mathematical programming problems or games can 

help to understand the nature of the problems. However, solution algorithms developed in 

these theories may not be applicable to general transport network problems because a 

combined problem in a transport network tends to be large, involving many road links and O-
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D pairs. Most algorithms developed for the two combined problems in transport networks 

have been heuristic. These methods will be reviewed later in the paper. 

 

Recently, the authors have developed algorithms for the solution of the combined ME and UE 

assignment problem, and of the combined SO and UE assignment problem (Zhang & Maher, 

1998; Maher & Zhang, 1999). In this paper, we present a solution algorithm for the bi-level 

matrix estimation problem, and the bi-level signal optimisation problem, using the new 

algorithm for the logit-based SUE assignment model by Maher (1998). The two combined 

problems will be discussed separately in sections 2 and 3, each of which contains the problem 

formulation, the algorithm and the test results. The SUE algorithm will be described in 

subsection 2.3 before the proposed bi-level solution algorithm is described. The paper is 

summarised in the last section. 

 

 

2. THE COMBINED MATRIX ESTIMATION AND SUE ASSIGNMENT PROBLEM 

 

2.1. The problem formulation and the solution 

 

The problem of trip matrix estimation has been considered by many researchers (e.g., 

Cascetta and Nguyen, 1988). One of the most widely used formulations for matrix estimation 

is the minimisation of the weighted sum of squared distances between the observed and 

estimated traffic flows (Cascetta, 1984): 

 

ME: )()()()(),(Min 11
ME vvWvvttUttvt

t
−−+−−= −−Z  (1) 

subject to v=Pt, t≥0 

 

where 

ZME is the objective function for matrix estimation; 

t is the vector containing the trip matrix to be estimated, t=(…, ti, …), i∈I; 

I is the set containing O-D pairs; 

t is the vector of the target matrix, t =(…, t i , …), i∈I; 

v is the vector containing the link flows to be estimated, v=(…, va, …), a∈A; 
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v  is the vector containing the observed link flows, v =(…, va , …), a∈ A ; 

A  is the subset of links with observed link flows, A⊆A; 

A is the set of links in the network; 

U and W are weighting matrices, or the variance-covariance matrices of target matrix and the 

observed link flows; 

P is the matrix containing proportions of each O-D flow using each link, or link choice 

proportions. 

 

All vectors in this paper are column vectors. Note that the second term of the objective 

function is defined only for those links with traffic counts; it is not necessary to have all the 

links in the network observed. In the matrix estimation problem, t is the set of decision 

variables, v varies with t, and P is assumed to be given. The solution to this problem, t*, is 

the generalised least squares (GLS) estimator and is given by (Cascetta, 1984) 

 

 )()+(= 11111 vWPtUPWPUt −−−−−∗ + TT  (2) 

 

The link flows and link choice proportions are determined from a trip assignment model.  We 

shall use the optimisation formulation for SUE assignment proposed by Powell and Sheffi 

(1982): 

 

SUE:  (3) ∑∫∑∑
∈∈

−+−=
Aa

v

a
Aa

aaa
i

ii

a

xxcvcvStZ
0

SUE d)()()(),( Min vtv
v

 

where ca (va) is the cost-flow function for link a and Si is the value of the satisfaction function 

of O-D pair i arising from a stochastic loading based on link flow v. In the SUE assignment 

problem, it is possible to find a SUE solution of link choice proportions together with link 

flows. Although we have included the trip matrix t in the objective function, t is fixed in the 

SUE assignment problem. In this section, we will use V(t) and P(t) to denote SUE solutions 

of link flows and link choice proportions. Then we have V(t)=P(t)t. It worth mentioning that 

SUE assignment does not in general have an explicit functional form of V(t) or P(t), not even 

for a simple network of one O-D pair joined by two links with linear cost functions. 
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The bi-level trip matrix estimation problem is one in which the matrix estimator tries to 

minimise the matrix estimation error while the link flow pattern adjusts itself accordingly to a 

SUE. The problem may be written as 

 

  (4a) ))(,( Min ME ttPt
tt

Z
D∈

 

or 

 

  (4b) ))(,( Min ME tVt
tt

Z
D∈

 

where Dt is the feasible regions for t, V(t)=P(t)t, and V(t) is the lower-level SUE assignment 

problem. The EP formulation of the problem, on the other hand, is 

 

  (5a) ),(Min ME Ptt
tt

Z
D∈

  (5b) ),(Min SUE tv
vv

Z
D∈

 

where Dv is the feasible regions for v. Note the difference between (4a) and (5a): the former is 

solved with variable P while the latter with fixed P. It is clear that the mutually consistent 

solution is also a feasible solution of the bi-level problem. The two solutions are in general 

different and the bi-level solution has a smaller value of the ME objective function than that 

of the mutually consistent solution. By definition, among all the solutions that satisfy SUE 

conditions, the bi-level solution has the minimum ME objective function value. 

 

 

2.2. Previous solution algorithms for the combined problem 

 

Hall et at. (1980) considered a combined ME and UE problem, in which the observed link 

flows are assumed to be error-free. An iterative algorithm for solving the problem was 

proposed, in which the two sub-problems are solved alternatively until convergence is 

achieved. This iterative estimation-assignment (IEA) algorithm has been widely used. 

However, it has been demonstrated (Fisk, 1988) that this algorithm may or may not converge, 
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depending on whether the coupling between the two sub-problems is weak or not. In addition, 

when it does converge, it will converge to the mutually consistent solution. Yang et al. (1992) 

and Yang (1995) considered a more general bi-level trip matrix estimation problem with UE 

assignment at the lower level. They proposed two heuristic algorithms which also involve 

alternate optimisation of the upper- and lower-level problems. The first algorithm is 

essentially the same as that by Hall et at. (1980) mentioned above, though the algorithm is 

developed for solving the more general problem. The second algorithm involves calculating 

the gradient using a sensitivity analysis method (Tobin and Friesz, 1988) to obtain the partial 

derivatives of UE link flows with respect to O-D flows. It has been shown (Maher and Zhang, 

1999) that, at least in a two-link network, the first algorithm converges to the mutually 

consistent solution while the second algorithm to the bi-level solution. In general, however, 

conditions for the convergence of both algorithms remain to be proved. An example in which 

the IEA algorithm diverges in a two-link network example was also shown in Maher and 

Zhang (1999). 

 

Below, we describe a solution algorithm for the bi-level problem. But before that we describe 

the algorithm for logit-based SUE assignment, which is a basic building block for the bi-level 

solution algorithm. 

 

 

2.3. Algorithm for logit-based SUE assignment 

 

The solution to the SUE problem is an iterative process. At each iteration a search direction is 

found by carrying out a stochastic loading based on travel costs calculated from the current 

link flows, v(k). Then the link flows are updated by 

 

 v(k+1) =v(k)+λ(k)(u(k)−v(k)) 

 

where λ(k) is the step length taken along the search direction (u(k)−v(k)), and u(k) is the auxiliary 

solution obtained from a stochastic network loading. Different algorithms differ in the way 

the step length is determined. In the method of successive average (MSA), a sequence of 

predetermined step lengths is used: λ(k)=1/(k+1) (Powell and Sheffi, 1982). The algorithm 

may be inefficient because the step size is not adaptive. In Maher (1998) , an approximate 
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optimal step length is calculated at each iteration. A stochastic loading carried out with the 

current link flow v(k) will produce not only the auxiliary flow pattern u(k), but also the value of 

the satisfaction function {Si(v
(k))} and hence the value of the objective function ZSUE(v

(k)). 

Furthermore, the derivative of the objective function along the search direction at λ=0 can 

also be obtained: 
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Another stochastic loading at the auxiliary solution point will give rise to another pair of the 

objective function value ZSUE(u
(k)) and the derivative: 
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where w(k)={wa
(k)} is the auxiliary flow pattern from a stochastic loading based on link flow 

u(k). Quadratic or cubic interpolation along the search direction can then be used to derive an 

estimate of the optimal step length (i. e. that at which ZSUE is minimum or each component of 

the gradient is zero). 

 

The logit stochastic loading algorithm considers only efficient links so as to avoid explicit 

route enumeration (Dial, 1971). However, when the stochastic loading is used as part of a 

SUE algorithm, the set of efficient links for each O-D pair may vary from iteration to iteration 

as link flows and costs vary. Consequently, the objective function is not necessarily 

continuous and convergence of the algorithms may be affected. One way round this difficulty 

is to make the choice of a set of efficient links based on some predetermined link flow pattern 

(such as free-flows) and to maintain the same set of efficient links throughout the iterative 

process (Leurent, 1997). 

 

 

2.4. The proposed algorithm for the bi-level solution 
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Suppose we have a current solution, [t(n),v(n)], where v(n)=V(t(n)). At each iteration, the upper-

level problem is firstly solved to get an auxiliary solution of the trip matrix, t*, assuming 

v=PP

(n)t. Then, a SUE assignment is performed to find the SUE link flows, v*, or V(t*) at t*. 

Thus, we have two points satisfying SUE conditions, t(n) and t*. We then search for an 

optimal step length along (t*−t(n)) by a line search. In the bi-level problem (4a) or (4b), 

however, a line search directly based on the objective function requires repeated SUE 

assignment and is very inefficient. To overcome this difficulty, we linearise the SUE 

assignment map between the two points, (t(n),v(n)) and (t*,v*), that is 

 

 V(t) ≅ v(n)+Q(t−t(n)) 

 

where Q=[Qai] and Qai=(va*−va
(n))/(ti*−ti

(n)). Let 

 

 t(β)=t(n)+β(t*−t(n)) (6a) 

 

We have 

 

 v(β)=v(n)+β(v*−v(n)) (6b) 

 

Then an optimal step length β* can be found by minimising ZME(t(β),v(β)). This is a standard 

one-dimensional search and can be solved by, for example, the Newton method. The function 

ZME(t(β),v(β)) and its derivatives with respect to β can be evaluated for any value of  β. The 

first and the second derivatives of the ZME(t(β),v(β)) with respect to β are 
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The new solution of the trip matrix is then given by (6a) with β*. However, v(β*) obtained by 

(6b) is only an approximation to V(t(β*)). Therefore, another SUE assignment is performed 

to find the exact SUE link flows, V(t(β*)), for t(β*). 
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The SUE solution itself is an iterative process. Therefore, there are two nested iterations in 

the algorithm for the bi-level solution: the outer iterations for the bi-level solution and the 

inner iterations for the SUE solution. We shall use free-flow costs to determine a set of 

efficient links and use this set throughout both inner iterations for SUE assignment and outer 

iterations for the bi-level solution. The bi-level algorithm can be outlined as follows. 

 

Step 1: Determine a set of efficient links by carrying out a stochastic loading based on free-
flow link costs. 

Step 2: Initialise t(0), v(0), and PP

(0); set n=0. The initial trip matrix can normally be set to be the 
target matrix. Assigning the target matrix to the network by SUE assignment gives v(0) 
and P(0)

P .  
Step 3: Determine a GLS estimation of t* by equation (2), using v=PP

(n) t. 
Step 4: Find V(t*) for t* by carrying out a SUE assignment. 
Step 5: Find β which minimises ZME(t(β),v(β)) by, for example, the Newton method. 
Step 6: Set t(n+1)=t(n)+β(t*−t(n)). 
Step 7: Find v(n+1) = V(t(n+1) as well as PP

(n+1)(t(n+1) by carrying out another SUE assignment. 
Step 8: If the convergence criterion is met, stop; otherwise, set n:=n+1 and go to step 3. 
 

The stopping criterion can be based on the maximum relative change in the elements of the 

estimated trip matrix at successive iterations: 

 

 Maxi (|ti(n+1)− ti
(n))|/ ti(n)) ≤ ε 

 

where ε is the error tolerance. This stopping criterion may not be a good indicator of an 

optimal solution. Another possible stopping criterion is the change of objective function 

values at successive iterations. However, due to the nonlinearity and nonconvexity of the 

problem, it is possible for different solutions to have similar objective function values. In the 

following numerical tests of the algorithm, the above stopping criterion is used to terminate 

the iterative process, and the changes in objective function values are also observed to make 

sure that the changes are also small. 

 

Several comments need to be made about the algorithm. First, although we have considered 

the GLS method for matrix estimation, other methods, such as the entropy maximisation 

method, can also be used without changing the structure of the algorithm. Second, this 

algorithm needs two SUE assignments at each iteration. This is necessitated by the bi-level 

nature of the problem: the SUE condition must be satisfied at every solution. The algorithm 
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can be made more efficient by starting the SUE assignment with the latest link flow pattern 

rather than the free-flow pattern. For example, at Step 4, the initial link flows for SUE 

assignment can be set to be v=PP

(n)t*. Third, in this algorithm, the auxiliary solution does not 

necessarily point to a descent direction and the optimal step length is not limited to be 

positive. Fourth, the algorithm involves an approximation in the optimal step length 

calculation: the SUE assignment map is linearised over the interval between the current and 

the auxiliary solution. The interval is generally finite because the auxiliary solution does not 

in general become closer to the current solution with increasing iteration number. Thus there 

is no reason to expect that the linearisation will become more and more accurate as the 

algorithm converges. As a result, the algorithm may converge to some point in the 

neighbourhood of the true solution due to the approximation. This problem may be dealt with 

by reducing the interval between the current and the auxiliary solution of matrix by, for 

example, a MSA-type scheme so that the linearisation is made over a smaller and smaller 

interval. This can be implemented by replacing the auxiliary solution of matrix with 

t(n)+(t*−t(n))/n at the end of step 3 of the bi-level algorithm. It can be expected that the 

algorithm will become less efficient with this modification. Numerical tests with the networks 

tried so far have shown that the first few iterations of the algorithm are most "cost effective"; 

the solution is close to the optimal one after only a few iterations. Therefore, if higher 

accuracy is desirable, we can introduce the modification after the first few iterations when the 

solution is close to optimal or when the ME objective function is not reduced at further 

iterations. The improvement of the algorithm can be observed by the reduction in the value of 

objective function of matrix estimation. This modification procedure will be demonstrated in 

the numerical calculations below. 

 

 

2.4. Test results 

 

There are two parts in this test. In the first part a simple example is used to test if the 

algorithm can identify the bi-level solution because in this example the bi-level solution can 

be found by direct search. The network has one O-D pair connected by two links The cost 

functions on the two links are 

 

 c1 = 5 + v1/1000 
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 c2 = 6.25 + v2/1000 

 

The target matrix is 1t =2000 and the link count is 2v =620, made on link 2. The value of 

"spread parameter" θ in the logit model used is 0.5, and an error tolerance ε is 0.001. These 

two values will be used for all numerical tests in this paper. The solutions by the bi-level 

algorithm, and the modified bi-level algorithm at the 20th iteration, together with the true bi-

level solution and the mutually consistent solution are shown in Table 1. The modification to 

the bi-level solution was introduced after three initial iterations of the original algorithm when 

the iterations have passed the convergence test. The true solution was found by direct search 

in the trip matrix with an incremental size of 0.001 ⎯ a more detailed search showed that the 

objective function is rather flat and does not change much with changes in the matrix at the 

fourth decimal place. The mutually consistent solution was found by the IEA algorithm. It can 

be seen that the bi-level algorithm gives a good approximation to the true bi-level solution 

and that the modification improves the accuracy of the algorithm, though only marginally. It 

can also be seen that the bi-level solution has a smaller value of ZME than that of the mutually 

consistent solution, as expected. 

 

 

{ Table 1 is about here} 

 

 

The second part of the experiment is made to investigate the performance of the algorithm for 

different values of errors in the prior matrix and the observed links flows on two networks. In 

this test, the true trip matrix is supposed to be known. Assigning the true matrix to the 

network by SUE assignment gives the true link flows. The target matrix and the observed link 

flows are generated by (Yang et al., 1992)  

 

 )0.1(~
od ivii Ctt ξ−=  

 )0.1(~
lk avaa Cvv ζ−=  

 

where it
~  and av~  are the elements of the true matrix and link flows, ξi and ζa are randomly 

generated N(0,1) variables, and Cvod and Cvlk are the coefficients of variation reflecting the 
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random errors of the target matrix and observation errors in link flows respectively. The 

variance-covariance matrices, U and W, are assumed to be diagonal matrices with the 

variances (Yang et al., 1992)  

 

 Var( it )=(Cvod it
~ )2

 Var( av )=(Cvlk av~ )2

 

The BPR (Bureau of Public Roads) cost function will be used: 

 

 ⎥
⎦

⎤
⎢
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+= γα )(1)0()(

a

a
aaa q

v
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where [ca(0)] is uncongested link costs, [qa] is link capacity, and α and γ are constants. The 

values  α=1.0 and γ=4.0 will be used. We shall show the results calculated on two networks 

and then analyse the results. 

 

The first network is the grid network shown in Figure 1. The network has 9 nodes and 24 

links. There are 4 centroids (nodes 1, 3, 5, and 7) and 4 O-D pairs (1→5, 3→7, 5→1, 7→3). 

The true matrix is assumed to be: [72 60 72 60]. The uncongested link costs [ca(0)] and link 

capacities [qa] are listed in Table 2. Calculations with different values of Cvod and Cvlk are 

summarised in Table 3, including the solutions and the values of objective functions at the 

20th iteration of the algorithm, the number of iterations as well as the c.p.u. times (in seconds) 

needed for the algorithm to converge at the given error tolerance. Also shown in the table is 

the mutually consistent solutions found by the IEA algorithm. In addition, convergence of the 

proposed algorithm in terms of objective function values with the largest values of Cvlk is 

shown in Figure 2. The second test was made on the well-known Sioux Falls network. 

Information in the data set includes the network characteristics (link-node topology and the 

parameters in the cost functions) and a demand trip matrix which is treated as the true matrix. 

The network has 76 links, 24 nodes. All nodes are both origins and destinations, and so there 

are 576 O-D pairs. The values of objective functions at the 20th iteration of the algorithm, the 

number of iterations as well as the c.p.u. times (in seconds) needed for the algorithm to 

converge together with the mutually consistent solutions found by the IEA algorithm are 

13 



summarised  Table 4. Convergence of the algorithm in terms of objective function values is 

shown in Figure 3. 

 

 

{ Figure 1 is about here} 

 

 

{ Table 2 is about here} 

 

 

{ Table 3 is about here} 

 

 

{ Figure 2 is about here} 

 

 

{ Table 4 is about here} 

 

 

{ Figure 3 is about here} 

 

 

Several points can be observed from the results. First, the proposed algorithm converges after 

a few iterations and is quite efficient. Second, the two types of solutions are different and the 

value of the objective function of the matrix estimation problem is lower at the bi-level 

solution than that at the mutually consistent solution. Third, the larger the errors in the prior 

matrix and observed link flows, the more effort it takes for the algorithms to converge. 

Fourth, the computation time of the algorithms also depends on the size of a network. The 

calculations were made on a 300MHz Pentium II machine with 64.0 Mb RAM. Whilst an 

estimation takes about 2-3 minutes to converge on the Sioux Falls network, it takes only one 

or two seconds for the iterations to converge on the grid network at the same error tolerance. 

The main computational burden in the proposed algorithm is the solution of the ME problem 

and the SUE assignment problem; the former involves a matrix inversion and the latter is 
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itself an iterative process. If there are many more O-D pairs than links, such as in the Sioux 

Falls network, the solution of the ME problem contributes more significantly to the c.p.u. 

time. On the other hand, if there are a lot more links than O-D pairs, such as in the grid 

network, SUE assignment contributes more significantly to c.p.u. time. 

 

 

3. THE COMBINED SIGNAL OPTIMISATION AND SUE ASSIGNMENT PROBLEM 

 

3.1. The problem formulation and previous algorithms 

 

The combined signal optimisation and SUE assignment problem is mathematically similar to 

that of the combined matrix estimation and SUE assignment (Note that the trip matrix is 

assumed to be fixed in the signal optimisation problem). The most commonly used policy for 

signal optimisation is to minimise the total journey costs in the network: 

 

SO: ),( =),( Min SO aaa
Aa

a svcvZ ∑
∈

vs
s

 

subject to sa
max ≥ sa ≥ sa

min,   a∈A 

 sa
a Aj

=
∈
∑ 1,   Aj⊂A 

 

where sa is the ratio of green for link a, s=(…, sa, …); sa
max and sa

min are maximum and 

minimum allowable green split for link a, sa
min>0, sa

max<1; Aj is the set of links heading for 

the jth signal controlled intersection. If link a is not controlled by a signal, then sa
max, sa, and 

sa
min will all be equal to 1. The set of link flows v is the output from a SUE assignment 

problem. Given a signal setting, s, the SUE assignment problem (3) may be re-written as 

 

SUE:  ∑∫∑∑
∈∈

−+−=
Aa

v

aa
Aa

aaaa
i

ii

a

xsxcsvcvSqZ
0

SUE d),(),()(),( Min vsv
v

 

In this section, we will use V(s) to denote the SUE link flows for given s. The bi-level 

solution, sBL is defined as 
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while a mutually consistent solution, [sMC, vMC], can be expressed as 
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The comparison of the two types of solutions here is the same as that in the combined matrix 

estimation and SUE assignment problem. However, it is important to note that the bi-level 

solution has a smaller value of SO objective function which is the total cost in the network. 

Therefore, the system would perform better under bi-level approach.  

 

The traffic signal optimisation problem is a special case of the more general optimal network 

design problem, in which the number of phases, the cycle time, and the offsets of traffic 

signals are determined. The optimal network design problem has been considered by many 

researchers (See e.g., Davis, 1994; Friesz et. al., 1992; Harker and Friesz, 1984; Suwansirikul 

et. al., 1987 among others). In this paper, we consider signal optimisation for isolated 

intersections. Thus, given a set of link flows, the SO problem is reduced to several sub-

problems of determining the optimal green split for each signal controlled intersection. Each 

of them may be solved by any standard one-dimensional optimisation algorithm, such as the 

Newton method. 

 

An iterative algorithm in which the SO and UE problems are solved alternately has been used 

for the solution of the combined SO and UE problem (Van Vuren and Van Vliet, 1992; Smith 

and Van Vuren, 1993). As in the matrix estimation problem, this iterative optimisation- 

assignment (IOA) procedure may converge to the mutually consistent solution but 

convergence is not guaranteed (Fisk, 1984, 1988). Several types of algorithms have been 

proposed for the solution of the bi-level signal optimisation problem with UE assignment 

(Sheffi and Powell, 1983; Heydecker and Khoo, 1990; Yang and Yagar, 1995).  See Maher 

and Zhang (1999) for a review for these algorithms. However, these algorithms require 

repeated UE assignment for direction finding and/or for line search. Using MSA instead of a 

line search can avoid repeated UE assignment, but will slow down the convergence of the 
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algorithms. Cascetta et al. (1998) considered a combined signal optimisation and SUE 

assignment problem. They proposed two methods for direction finding. The first one is the 

opposite gradient direction identified by numerical differentiation. This needs several SUE 

assignments, as in the method by Sheffi and Powell (1983). The second method is the use of 

the solution of the SO problem with fixed link flows as a direction. This, however, does not 

necessarily provide a descent direction. The step lengths calculation is a modified MSA 

algorithm in which step size is reduced only when the objective function is not reduced.  

 

 

3.2. The proposed algorithm and the test results 

 

The algorithm proposed here is similar to that for trip matrix estimation, with the trip matrix 

estimation being replaced by signal optimisation with fixed link flows. The algorithm will not 

be repeated here but the method of line search is described briefly. The optimal step length is 

found by solving 

 

 ))(,)((Min SO ββ
β

vsZ  

subject to β∈[βmin,βmax] 

 

where 

 

 s(β)=s(n)+β(s*−s(n)) 

 v(β)=v(n)+β(v*−v(n)) 

 

and [βmin,βmax] is determined from constraints on signal parameters and link flows. The line 

search can be solved by the bisection method and no stochastic loading is needed. The first 

derivative of the objective function with respect to β needed in the bisection method is given 

by 
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The algorithm is tested on two networks. The cost function used is a combination of the BPR 

function (for link travel time) and the signal delay formula by Doherty (1977), that is 
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Here da is signal delay for link a and is given by 
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where T  is the cycle time and is fixed at 90 seconds in the test. The values of α=1.0 and 

γ=4.0 are used in the BPR function. 

 

The first test was made on a simple three-link network shown in Figure 4. The network has 

two O-D pairs, with demand t1 = t2 = 100. O-D pair 1 is connected by link 1 and link 2. O-D 

pair 2 is connected by link 3. There is a signal at the intersection of links 1 and 3. The 

uncongested link costs [ca(0)] and link capacities [qa] are 

 

 [ca(0)] = [1  2  1] 

 [qa] = [200  100  200] 

 

Direct search (by exhaustive trial of all possible solutions of signal settings, with increment 

size of 0.0001) has shown that in this example, there is only one optimal bi-level solution and 

that the solution is s1=0.3070. Three initial signal splits for s5 are used in the test: 0.3, 0.5, and 

0.7; and the algorithm converges to the same solution. The solutions by the bi-level algorithm, 

and the modified bi-level algorithm (modification introduced at the fourth iteration) at the 

20th iteration, together with the true bi-level solution found by direct search and the mutually 

consistent solution found by the IOA algorithm are summarised in Table 5. It can be seen that 

the bi-level algorithm converges almost to the true bi-level solution and that the modification 

improves the solution marginally. In this example, link 2 is twice as long as link 1, although 
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its capacity is comparable to that of link 1 (considering signal control). More drivers would 

naturally use link 1 at low demand. However, if the signal optimiser knows drivers' route 

choice behaviour, as in the bi-level problem, he can reduce the green split on link 1 and thus 

divert more traffic to link 2. Therefore, we have in Table 5 s1
BL<s1

MC; v1
BL<v1

MC; and the total 

cost, ZSO, in the bi-level solution is lower than that in the mutually consistent solution. 

 

Another similar test was carried out on the same grid network as shown in Figure 1 used for 

the matrix estimation problem. A traffic signal is added at node 9 and the capacities on all 

links controlled by the signal (links 5, 10, 15, 20) is doubled. The convergence of the green 

splits and the objective function values with the three initial values of s5 are shown in Figure 

5. It can be seen that the bi-level algorithm is very efficient. In fact, in just a few iterations, 

the algorithm converges to [s5, s10] = [0.5506, 0.4494] with ZSO=15058.3954, which is the 

same as the true bi-level solution found by direct search in the signal split with increment size 

of 0.0001. Therefore, in this case, the modification to the bi-level algorithm is not necessary. 

 

 

 

{ Figure 4 is about here} 

 

 

{ Table 5 is about here} 

 

 

{ Figure 5 is about here} 

 

 

4. SUMMARY 

 

The problem of combined trip matrix estimation and SUE assignment, and that of traffic 

signal optimisation and SUE assignment have been addressed in this paper. Two types of 

solutions are identified and compared. An algorithm for the bi-level solution of the two 

problems has been described. At each iteration, the algorithms use standard routines of matrix 

estimation (or signal optimisation) and SUE assignment to find a search direction. Then a line 
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search is made by linearising the SUE assignment model, which does not need repeated SUE 

assignments. 

 

The algorithm was tested on simple two- or three- link networks, a 3×3 grid network with 24 

links and 4 O-D pairs, and the Sioux Falls network with 24 nodes, 76 links, and 528 O-D 

pairs. It was shown to be convergent and efficient in terms of the number of iterations and 

c.p.u. times. In the two- or three- link network examples in which the true bi-level solution 

can be found by direct search, it was shown that the bi-level algorithm converges almost 

exactly to the true bi-level solution. The errors are caused by the linearisation of the SUE 

map. A modification to the algorithm is proposed and has been shown to be effective. 

 

The algorithm presented here is heuristic in nature. It has not been possible to prove 

theoretically that the algorithm is convergent. In addition, it is not guaranteed that the 

algorithm identifies the global optimal even when it does converge. Fletcher (1987) argued 

that the existence of convergence proof for any algorithm is not a guarantee of good 

performance in practice; and the development of an algorithm also relies on experimentation. 

The algorithm presented here has been used to solve the bi-level ME problem with UE 

assignment or logit-based SUE assignment at the lower level, and the bi-level SO problem, 

again with UE assignment or logit-based SUE assignment at the lower level. The networks 

tested so far include simple two- or three-link networks, 3×3 grid networks, the Sioux Falls 

network and the Headingley network. The last two networks are used in the congested ME 

problems only. The Headingley network has 73 nodes, 188 links, and 240 O-D pairs. Test on 

this network can be found in Zhang et. al., 1999. In all the tests so far it has been found that 

the algorithm is convergent. In those cases where the (global) optimal solution can be found 

by direct search (two- or three-link networks or the grid network with one traffic signal), it 

was found that the algorithm is able to identify or to give a good approximation of the optimal 

solutions. Further tests of the algorithm on more general networks will be carried out. 

 

Because of its simplicity, the logit assignment model has been most widely used. However, it 

has well-known weaknesses. For example, it does not take account of overlapping or 

correlated routes. Cascetta et al. (1996) have proposed a modified logit model which allows 

for overlapping routes, but the model requires complete route enumeration. On the other 

hand, probit-based assignment model does not suffer from these weakness. Recently, Maher 
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and Hughes (1997) have developed a probit-based SUE assignment algorithm which does not 

require route enumeration. Further work of the current research is to adapt the bi-level 

algorithm for use with probit-based SUE assignment. 
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TABLES 

 

Table 1. Solutions of the matrix estimation problem on the two-link network 

 t1
(20) v1

(20) P1
(20) ZME

(20) ZSUE
(20)

Bi-level algorithm 1937.1100 1170.4515 0.604226 25463.8575 -9022.1208
Modified bi-level algorithm 1937.1157 1170.4548 0.604226 25463.8574 -9022.1506

True bi-level solution 1937.1160 1170.4550 0.604226 25463.8574 -9022.1507
Mutually consistent solution 1941.2442 1172.8129 0.604155 25484.0922 -9043.4699

 

 

Table 2. Uncongested link travel costs and link capacities on the grid network. 

Link 
No. 

Start 
node 

End 
node 

ca(0) qa Link 
No. 

Start 
node 

End 
node 

ca(0) qa

1 1 2 10 80 13 6 5 10 80 
2 1 8 10 80 14 6 7 15 80 
3 2 1 15 80 15 6 9 15 40 
4 2 3 15 80 16 7 6 10 80 
5 2 9 15 40 17 7 8 10 80 
6 3 2 10 80 18 8 1 15 80 
7 3 4 10 80 19 8 7 10 80 
8 4 3 10 80 20 8 9 15 40 
9 4 5 15 80 21 9 2 15 80 
10 4 9 15 40 22 9 4 10 80 
11 5 4 15 80 23 9 6 15 80 
12 5 6 10 80 24 9 8 10 80 

 

 

Table 3. Performance of the matrix estimation algorithm on the grid network with ε=0.001. 

  Bi-level solution algorithm Mutually consistent solution 

Cvlk Cvod t1
(20) t2

(20) t3
(20) t4

(20) ZME
(20) c.p.u. N t1

(20) t2
(20) t3

(20) t4
(20) ZME

(20)

0.05 0.05 72.4248 62.1171 73.3805 59.8124 21.7269 0.22 2 74.86 60.93 73.84 58.30 24.02
0.05 0.10 72.7429 63.0385 73.8583 59.4134 22.0442 0.33 3 78.59 57.65 77.15 54.69 25.94
0.05 0.15 73.5010 62.8052 73.7669 58.7810 23.3130 0.44 5 81.94 54.43 80.31 51.42 26.46
0.10 0.10 72.8381 64.2430 74.7682 59.6426 21.7169 0.33 3 77.69 61.87 75.66 56.59 24.15
0.10 0.20 73.5056 66.0323 75.7283 58.7798 22.1468 0.33 3 85.57 54.88 82.65 48.91 26.41
0.10 0.30 74.3838 66.5703 74.3789 58.8879 23.2844 0.55 5 92.35 48.40 89.03 42.26 26.90
0.15 0.15 73.2404 66.3779 76.1611 59.4935 21.7083 0.33 3 80.48 62.81 77.45 54.85 24.31
0.15 0.30 73.9014 70.1670 76.4926 59.6675 21.9938 0.33 3 93.16 51.46 88.73 42.35 26.98
0.15 0.45 75.6174 69.4799 75.3692 58.2051 23.4984 0.66 6 102.3 42.71 97.32 33.35 27.03
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Table 4. Performance of the matrix estimation algorithm on the Sioux Falls network with 

ε=0.001. 

  Bi-level solution algorithm Mutually consistent solution 

Cvlk Cvod ZME
(20) c.p.u.  N ZME

(20)

0.05 0.05 39.4834 57.58 2 39.7423 
0.05 0.10 41.8604 84.34 3 42.9385 
0.05 0.15 44.3356 85.16 3 46.4643 
0.10 0.10 39.4407 67.09 2 39.6997 
0.10 0.20 41.7600 84.56 3 42.8199 
0.10 0.30 44.1281 86.54 3 46.2565 
0.15 0.15 39.4084 88.46 3 39.6667 
0.15 0.30 41.6537 86.43 3 42.7068 
0.15 0.45 43.9314 89.01 3 46.1082 

 

 

Table 5. Solutions of the signal optimisation problem on the three-link network. 

 s1 s3 v1 v2 ZSO ZSUE

Bi-level algorithm 0.3104 0.6896 44.1310 55.8690 416.8505 117.6111 
Modified Bi-level algorithm 0.3074 0.6926 43.8272 56.1728 416.8194 117.1417 

True bi-level solution 0.3070 0.6930 43.7952 56.2048 416.8189 117.0786 
Mutually consistent solution 0.3412 0.6588 46.9890 53.0110 420.9068 121.0235 
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FIGURES 
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Figure 1. The grid network. All links are two-directional. 
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Figure 2. Convergence of the matrix estimation algorithm on the grid network, with  Cvlk= 

0.15. 
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Figure 3. Convergence of the matrix estimation algorithm on the Sioux Falls network, with  

Cvlk= 0.15. 
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Figure 4. The three-link network. 
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(b) 

Figure 5. Convergence of the algorithm for signal optimisation on the grid network from 

different initial conditions. (a) The green splits, (b) Values of signal optimisation objective 

function. 
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