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A BlI-LEVEL PROGRAMMING APPROACH FOR TRIP MATRIX ESTIMATION
AND TRAFFIC CONTROL PROBLEMSWITH STOCHASTIC USER
EQUILIBRIUM LINK FLOWS

MICHAEL J.MAHER andXIAOYAN ZHANG
School of Built Environment, Napier University,
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and
DIRCK VAN VLIET
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Abstract — This paper deals with two mathemalligaimilar problems in transport network
analysis: trip matrix estimation and trafsaggnal optimisation on congested road networks.
These two problems are formulated as bi-lgselgramming problems with stochastic user
equilibrium assignment as the second-levegpamming problem. We differentiate two types

of solutions in the combined matrix estineetiand stochastic user equilibrium assignment
problem (or, the combined signal optimisation and stochastic user equilibrium assignment
problem): one is the solution to the bi-lepebgramming problem and the other the mutually
consistent solution where the two sub-problems in the combined problem are solved
simultaneously. In this paper, we shall centrate on the bi-level programming approach
although we shall also consider mutually consiss®lutions so as to contrast the two types

of solutions. The purpose of tipaper is to present a solution algorithm for the two bi-level

programming problems and to test the algorithm on several networks.

Keywords: Trip matrix estimation, Traffic signaptimisation, Stochastic user equilibrium

assignment, Mathematical programming



1. INTRODUCTION

In this paper, we deal with two mathemally similar problems in transport network
analysis: trip matrix estimation and trafsaggnal optimisation on congested road networks.
These two problems are of great importancdramsport planning, scheme appraisal and
traffic management. A matrix estimation prefl and signal optimisation problem have a
common input: route choice proportions or, eglently, link flows in the road network.
These are the output of a traffic assignment rhadegch, in turn, requires a trip matrix or
signal settings as inputs. An equilibrium assignt(EA) model needs to be included in the
matrix estimation and signal optimisation so as to achieve consistency in route choices and to
model congestion effects in the network. Tlugn either be a user equilibrium (UE)
assignment model or a stochastic user equilibrium (SUE) assignment model. In the combined
matrix estimation and EA problem, thereeamo linked optimisation problems: matrix
estimation (ME) problem with fixed routehaice proportions and the EA problem with a
fixed trip matrix. Similarly in a combinedgial optimisation and EA problem, there are also
two linked optimisation problems: the signal opsation (SO) problem with fixed link flows

and the EA problem with fixed signal settings. In both combined problems, there is a mutual

interaction between the two sub-problems.

In recent years there has been increasing sttémeformulating the two combined problems
asbi-level programmingBP) problems (Bard, 1988) in winiche ME or the SO problem is
at the upper level and the EA problem at thedoblevel. A BP problem has a hierarchical
structure in which an upper-level and a lower-ledestision maker must select their strategies
SO as to optimise their objective functionsspectively. But, the upper-level decision maker
knows how the lower-level optimiser wouldact to a given upper-level decision and acts
accordingly while the lower-level optimiser caat only according to given decisions of
upper-level problem. On the other hand, a cotweeal approach to deal with the two
combined problems is to treat the two sub-peotd in a parallel way and to seek a mutually
consistent solution. This "mutually consigte problem falls into another type of
mathematical programming problem, namely, @wiilibrium programming(EP) problem
(Garcia and Zangwill, 1981). In an EP probleeach of the two parties is continuously

resolving his own sub-problem given the latest information on the actions of the other party.



The BP problem is different from the EPoptem in that the upper-level decision maker
knowshowthe lower-level decision maker makedexision. Although he cannot intervene in

the lower-level decision maker's decision, he cansider the lower-level decision maker's
reaction in his own decision making. This isrtfaularly important in the bi-level signal
optimisation problem. In the EP problem, or thther hand, neither of the two optimisers
knows how the other would rdaeach of them acts only according to the decision of the
other. In this paper, we shall concentrate on the BP approach although we shall also consider

mutual consistent solutions so as to contrast the two types of solutions.

The BP problem may be seen asrgleprogramming problem with the upper-level variables
being constrained by the lower-level solutions. In this sense, a BP problem is similar to a non-
linear programming (NP) problem. However,amBP problem, the evaluation of the upper-
level objective function requires solving ethlower-level optimisation problem whose
functional form is generally unknown. A furtheomplication is that a BP problem is in
general non-convex. This implies the potential texise of local minimum solutions and so a
global minimum may be difficult to find. The EP problem is similar to a multiple-objective
NP problem in that there are two objectivewever, in a NP problem, there is only one
decision maker who choosa@dl variables so as to optimiseveral objectives. In an EP
problem, on the other hand, there are two siesi makers, each having control of only one
set of variables. (A more general EP problemltave more than two parties.) It is clear that

most standard algorithms for NP problems may not be applicable to BP and EP problems.

The two types of programming problem may dlgocast into the framework of game theory.

Fisk (1984) discussed a range of combinembj@ms in the framework of game theory, and

the discussion was illustrated by the combined signal optimisation and UE assignment
problem. In game theory, a mutually consistent solution correspondsNaska non-
cooperative gamand a BP problem to $tackelberg gamer leader-follower gameln fact,

the Nash non-cooperative game is a spetyipe of EP problem. Formulating the two
combined problems as different types oftimesnatical programming problems or games can
help to understand the nature of the probleH®wever, solution algorithms developed in
these theories may not be applicable to general transport network problems because a

combined problem in a transport network tetalbe large, involving many road links and O-



D pairs. Most algorithms developed for theotwombined problems in transport networks

have been heuristic. These methods will be reviewed later in the paper.

Recently, the authors have developed algoritfanghe solution of the combined ME and UE

assignment problem, and of the combineda®@ UE assignment problem (Zhang & Mabher,

1998; Maher & Zhang, 1999). In this paper, present a solution algorithm for the bi-level

matrix estimation problem, and the bi-lev&nal optimisation problem, using the new

algorithm for the logit-based SUE assignmerodel by Maher (1998). The two combined

problems will be discussed separately in s&&i2 and 3, each of wiicontains the problem

formulation, the algorithm and the test ésuThe SUE algorithm will be described in

subsection 2.3 before the proposed bi-levélitgan algorithm is described. The paper is

summarised in the last section.

2. THE COMBINED MATRIX ESTIMATION AND SUE ASSIGNMENT PROBLEM

2.1. The problem formulation and the solution

The problem of trip matrix estimation sidbeen considered by many researcherg, (

Cascetta and Nguyen, 1988). One of the mostlwigged formulations for matrix estimation

is the minimisation of the weighted sum sduared distances between the observed and

estimated traffic flows (Cascetta, 1984):

ME: Min Z,e t,Vv)=t-t) Ut -t)+(V-vV)W(V-V)
subject to v=Pt, t>0
where

Zye is the objective function for matrix estimation;
t is the vector containing the trip matrix to be estimatteg, ., t;, ...), i€l;
| is the set containing O-D pairs;

tis the vector of the target matrik=(..., f;, ...), iel;

v is the vector containing the link flows to be estimateq,.., v, ...), acA;

(1)



V is the vector containing the observed link flowss(..., V,, ...), ac A;

A is the subset of links with observed link flowscA;

A'is the set of links in the network;

U andW are weighting matrices, or the variance-cawece matrices of target matrix and the
observed link flows;

P is the matrix containing proportions of ea€hD flow using eacHink, or link choice

proportions.

All vectors in this paper are column vectoMote that the second term of the objective
function is defined only for those links with traffic counts; it is not necessary to have all the
links in the network observed. In the matrix estimation problems, the set of decision
variables,v varies witht, andP is assumed to be given. The solution to this probt&ms

the generalised least squares (GLS) estimator and is given by (Cascetta, 1984)
t'=(UT+PTW'P)' (Ut +PTW V) 2

The link flows and link choice proportions are detmed from a trip assignment model. We
shall use the optimisation formulation fSJUE assignment proposed by Powell and Sheffi
(1982):

SUE: Min Zgue (v,1) = =3 1S (V) + Y v,C, (v,) -3 [e. ©)

i acA acA o

wherec, (va) is the cost-flow function for linla andS is the value of the satisfaction function
of O-D pairi arising from a stochastic loading based on link floin the SUE assignment
problem, it is possible to find a SUE solutiohlink choice proportions together with link
flows. Although we have included the trip mattixn the objective functiort, is fixed in the
SUE assignment problem. In this section, we will U$9 andP(t) to denote SUE solutions
of link flows and link choicgproportions. Then we hawg(t)=P(t)t. It worth mentioning that
SUE assignment does not in general have an explicit functional foviti)odr P(t), not even

for a simple network of one O-D pair joined by two links with linear cost functions.



The bi-level trip matrix estimation problem @e in which the matrix estimator tries to
minimise the matrix estimation error while thek flow pattern adjusts itself accordingly to a

SUE. The problem may be written as

Min Z,e (t, PO (42)

or

Min Z,e (t, V(1) (4b)

whereD; is the feasible regions foyV(t)=P(t)t, andV(t) is the lower-level SUE assignment

problem. The EP formulation of the problem, on the other hand, is

I\t/IiDn Z,e (t,Pt) (5a)
Min Zge(v,t) (5b)

\

whereDy, is the feasible regions for Note the difference between (4a) and (5a): the former is
solved withvariable P while the latter withfixed P. It is clear that the mutually consistent
solution is also a feasible solution of the dé¢l problem. The two solutions are in general
different and the bi-level solution has a snrallelue of the ME objdtve function than that

of the mutually consistent solution. By definition, among all the solutions that satisfy SUE

conditions, the bi-level solution has the minimum ME objective function value.

2.2. Previous solution algorithms for the combined problem

Hall et at. (1980) considered a combined ME dd# problem, in which the observed link
flows are assumed to be error-free. Amrateve algorithm for solving the problem was
proposed, in which the two sub-problems are solved alternatively until convergence is
achieved. This iterative estimation-assigntn€iitA) algorithm has been widely used.

However, it has been demonstrated (Fisk, 1988 this algorithm may or may not converge,



depending on whether the coupling between tleesmb-problems is weak or not. In addition,
when it does converge, it will converge to the mutually consistent solution.etahd1992)

and Yang (1995) considered a more general l@Haip matrix estimation problem with UE
assignment at the lower level. They proposed heuristic algorithms which also involve
alternate optimisation of the upper- and lowevel problems. The first algorithm is
essentially the same as that by Hsllat. (1980) mentioned above, though the algorithm is
developed for solving the more general problem. The second algorithm involves calculating
the gradient using a sensitivity analysis Inoet (Tobin and Friesz, 1988) to obtain the partial
derivatives of UE link flows with respect to O-D flows. It has been shown (Maher and Zhang,
1999) that, at least in a two-link networkethirst algorithm converges to the mutually
consistent solution while the second algorithnthte bi-level solution. In general, however,
conditions for the convergence of both algorithms remain to be proved. An example in which
the IEA algorithm diverges in a two-link natvk example was also shown in Maher and
Zhang (1999).

Below, we describe a solution algorithm for thdevel problem. But before that we describe
the algorithm for logit-based SUE assignment, Wwheca basic building block for the bi-level

solution algorithm.

2.3. Algorithm for logit-based SUE assignment

The solution to the SUE problem is an iterativegesss. At each iteration a search direction is
found by carrying out a stochastic loading basedravel costs calculated from the current

link flows, v®. Then the link flows are updated by
VD) 2045, 00y )

wherea® is the step length takeong the search direction®—v®), andu® is the auxiliary
solution obtained from a stochastic networkdimg. Different algorithms differ in the way
the step length is determined. In the metloddsuccessive average (MSA), a sequence of
predetermined step lengths is us&tf=1/(k+1) (Powell and Sheffi, 1982). The algorithm

may be inefficient because the step size isauaptive. In Maher (1998) , an approximate



optimal step length is calculated at each iteratiA stochastic loading carried out with the
current link flowv® will produce not only the auxiliary flow patteut’, but also the value of
the satisfaction functiong(v®)} and hence the value of the objective functidsg(v®).
Furthermore, the derivative of the objective function along the search directierd atan

also be obtained:

AZsue (V)| _ Z(V;k) _ u;k))dca (Va)

a0 _y®
di (U )

1=0 a d a  ly=y®

Another stochastic loading at the auxiliary sauatpoint will give rise to another pair of the

objective function valu&sygu®) and the derivative:

Woe(VA) > - Wék))dca(va)

u _yo
i (Uz” —va)

i a dv, v, —ul®

wherew®={w,} is the auxiliary flow pattern from a stochastic loading based on link flow
u®. Quadratic or cubic interpolation along the seatithction can then be used to derive an
estimate of the optimal step lengthd. that at whichZsye is minimum or each component of

the gradient is zero).

The logit stochastic loading algorithm considerdy efficient links so as to avoid explicit
route enumeration (Dial, 1971). However, whea #tochastic loading is used as part of a
SUE algorithm, the set of efficient links for each O-D pair may vary from iteration to iteration
as link flows and costs vary. Consequgntthe objective function is not necessarily
continuous and convergence of the algorithmg beaffected. One way round this difficulty

is to make the choice of a set of efficiemki based on some predetermined link flow pattern
(such as free-flows) and to maintain the saatof efficient links throughout the iterative

process (Leurent, 1997).

2.4. The proposed algorithm for the bi-level solution



Suppose we have a current solutidf’ y™], wherev™=V (t™). At each iteration, the upper-
level problem is firstly solved to get an auxiliary solution of the trip mattixassuming
v=P™t. Then, a SUE assignment is perfied to find the SUE link flowss*, or V/(t*) at t*.
Thus, we have two pointsatisfying SUE conditionst” and t*. We then search for an
optimal step length along*(t™) by a line search. In the kel problem (4a) or (4b),
however, a line search directly based oe thbjective function requires repeated SUE
assignment and is very inefficient. To ov@me this difficulty, we linearise the SUE

assignment map between the two poirtf8 (") and ¢*,v*), that is

V(t) = v+Q(t-t™)
whereQ=[Qa] and Qai=(va*—va")/(t* -t ). Let

t(B)=t"+p(t*—t") (62)
We have

v(B)=v"+B(v*—v") (6b)
Then an optimal step lengff can be found by minimisingwve(t(B),v(B)). This is a standard
one-dimensional search and can be solveddnygxample, the Newton method. The function

Zyve(t(B),v(B)) and its derivatives with respectffocan be evaluated for any value pf The

first and the second derivatives of tg=(t(B),v(B)) with respect t@ are

dZ,e (1(5), v(5))

a5 =V R @(B).D" -t)+V F,(v(B),V)(v' -v")

il oy vim @m0 1)

+ (v =v) VIR, (v(B), V)(v' ~v ")

The new solution of the trip matris then given by (6a) witf*. However,v(p*) obtained by
(6b) is only an approximation %(t(p*)). Therefore, another SEJassignment is performed

to find the exact SUE link flows/(t(3*)), for t(*).
9



The SUE solution itself is an iterative procetberefore, there are two nested iterations in
the algorithm for the bi-level &dtion: the outer iterations for the bi-level solution and the
inner iterations for the SUE solution. We shall use free-flow costs to determine a set of
efficient links and use this set throughout bioither iterations for SUE assignment and outer

iterations for the bi-level solution. The bi-level algorithm can be outlined as follows.

Step 1. Determine a set of efficient links ¢rrying out a stochastic loading based on free-
flow link costs.

Step 2: Initialiseg®, v, andP®; setn=0. The initial trip matrix camormally be set to be the
targe}o)matrix. Assigning the target matrixthe network by SUE assignment givés
andP"™.

Step 3: Determine a GLS estimatiortbby equation (2), using=P™ t.

Step 4: Findv (t*) for t* by carrying out a SUE assignment.

Step 5: Fing3 which minimisesZye(t(B),v(B)) by, for example, the Newton method.

Step 6: Set™Y=t™+p(t*—t™).

Step 7: Find/™V = v (™) as well a®™(t™?) by carrying out another SUE assignment.

Step 8: If the convergence criterion is met, stop; otherwise;=®tl and go to step 3.

The stopping criterion can be based on the maximelative change in the elements of the

estimated trip matrix at successive iterations:

Max (M- ™)/ ™) <e

wheree is the error tolerance. This stoppingtenion may not be @ood indicator of an
optimal solution. Another possible stoppingtemion is the change of objective function
values at successive iterations. However, thu¢he nonlinearity and nonconvexity of the
problem, it is possible for different solutionshiave similar objective function values. In the
following numerical tests of the algorithm, thbove stopping criterion is used to terminate
the iterative process, and the changes in obgdtiuction values are also observed to make

sure that the changes are also small.

Several comments need to be made aboualt@ithm. First, although we have considered
the GLS method for matrix estimation, athmethods, such as the entropy maximisation
method, can also be used without changing structure of the algorithm. Second, this
algorithm needs two SUE assignments at eachtiberarlhis is necessitated by the bi-level

nature of the problem: the SUE condition miostsatisfied at every solution. The algorithm

10



can be made more efficient by starting the Si$Bignment with the latest link flow pattern
rather than the free-flow pattern. For exampht Step 4, the initial link flows for SUE
assignment can be set to\weP™t*. Third, in this algorithm, the auxiliary solution does not
necessarily point to a descent direction and the optimal step length is not limited to be
positive. Fourth, the algorithm involves approximation in the optimal step length
calculation: the SUE assignment map is linearideer the interval between the current and
the auxiliary solution. The interval is generdiigite because the auxiliary solution does not

in general become closer to the current smtuwith increasing iteration number. Thus there

IS no reason to expect that the linearisatrah become more and more accurate as the
algorithm converges. As a result, the aitjon may converge to some point in the
neighbourhood of the true solution due to the axipnation. This problem may be dealt with

by reducing the interval between the current dhe auxiliary solution of matrix by, for
example, a MSA-type scheme so that the linearisation is made over a smaller and smaller
interval. This can be implemented by reptacithe auxiliary solution of matrix with
tW+t*—t™)/n at the end of step 3 of the bi-levalgorithm. It can be expected that the
algorithm will become less efficient with thisogtification. Numerical tests with the networks
tried so far have shown that the first few iterations of the algorithm are most "cost effective";
the solution is close to the optimal one after only a few iterations. Therefore, if higher
accuracy is desirable, we can introduce the froadion after the first few iterations when the
solution is close to optimal or when the Mibjective function is not reduced at further
iterations. The improvement of the algorithm &@nobserved by the reduction in the value of
objective function of matrix estimation. This modification procedure will be demonstrated in

the numerical calculations below.

2.4. Test results

There are two parts in this tesh the first part a simple example is used to test if the
algorithm can identify the bi-levedolution because in this example the bi-level solution can
be found by direct search. The network has @AP pair connected by two links The cost

functions on the two links are

c1 =5 +w,/1000

11



C, = 6.25 +v,/1000

The target matrix i4,=2000 and the link count i8,=620, made on link 2. The value of

"spread paramete® in the logit model used 8.5, and an error toleraneas 0.001. These

two values will be used for all numerical teststhis paper. The solutions by the bi-level
algorithm, and the modified bi-leValgorithm at the 20th iteration, together with the true bi-
level solution and the mutually consistent solution are shown in Table 1. The modification to
the bi-level solution was introduced after thigi@al iterations of the original algorithm when

the iterations have passed the convergence test. The true solution was found by direct search
in the trip matrix withan incremental size of 0.064+ a more detailed search showed that the
objective function is rather flat and does notrgf@amuch with changes in the matrix at the
fourth decimal place. The mutually consistsalution was found by thH&A algorithm. It can

be seen that the bi-level algorithm givegaod approximation to the true bi-level solution
and that the modification improves the accuratyhe algorithm, though only marginally. It

can also be seen that the bi-level solution has a smaller valiyg tfan that of the mutually

consistent solution, as expected.

{Tablelis about here}

The second part of the experiment is madevestigate the performance of the algorithm for
different values of errors in the prior matard the observed links flows on two networks. In
this test, the true trip matrix is supposedbe known. Assigning the true matrix to the
network by SUE assignment gives the true limkv. The target matrix and the observed link

flows are generated by (Yameg al, 1992)

£ =T (10-C o)
va = \7a (10 - Cvlk é/a)

wheret andV, are the elements of the true matrix and link flogysand ¢, are randomly

generated\(0,1) variables, an€,,q and Cyk are the coefficients ofariation reflecting the

12



random errors of the target matrix and observation errors in link flows respectively. The
variance-covariance matrices), and W, are assumed to be diagonal matrices with the

variances (Yanegt al, 1992)

Var(t, )=(Cuoa § )2

Var( v,)=(Cuk V,)?

The BPR (Bureau of Public Roads) cost function will be used:

C.(Va)=¢, (0){1+ a(k)ﬂ

0

where E4(0)] is uncongested link costsyy] is link capacity, andx andy are constants. The
values o=1.0 andy=4.0 will be used. We shall show the results calculated on two networks

and then analyse the results.

The first network is the grid network shovin Figure 1. The neork has 9 nodes and 24
links. There are 4 centroids (nodes315, and 7) and 4 O-D pairs¢b, 3-7, 551, 7-3).
The true matrix is assumed to jé2 60 72 60]. The uncongested link costg(d)] and link
capacities (] are listed in Table 2. Calculans with different values of,,q andCyx are
summarised in Table 3, including the soluti@msl the values of objective functions at the
20th iteration of the algorithm, the number of itemas as well as the c.p.u. times (in seconds)
needed for the algorithm to converge at the geeor tolerance. Also shown in the table is
the mutually consistent solutions found by @A algorithm. In addition, convergence of the
proposed algorithm in terms of objective ftinon values with the largest values Gji is
shown in Figure 2. The second test waade on the well-known Sioux Falls network.
Information in the data set includes theéwmrk characteristics (link-node topology and the
parameters in the cost functions) and a demananaipix which is treated as the true matrix.
The network has 76 links, 24 nodes. All nodesharth origins and destinations, and so there
are 576 O-D pairs. The valuesalfjective functions at the 20th iteration of the algorithm, the
number of iterations as well as the c.p.u.etsn(in seconds) needed for the algorithm to

converge together with the mutually comesig solutions found by the IEA algorithm are

13



summarised Table 4. Convergence of the algoritih terms of objective function values is

shown in Figure 3.

{Figurelis about here}

{Table 2 is about here}

{Table 3 is about here}

{Figure 2 is about here}

{Table4 is about here}

{Figure 3 is about here}

Several points can be observed from the reskitst, the proposed algorithm converges after
a few iterations and is quite efficient. Secoti two types of solutions are different and the
value of the objective function of the matmstimation problem is lower at the bi-level
solution than that at the mutually consistent sofu Third, the largethe errors in the prior
matrix and observed link flows, the more effa takes for the algorithms to converge.
Fourth, the computation time of the algorithalso depends on the size of a network. The
calculations were made on a 300MHz Pentium Il machine with 64.0 Mb RAM. Whilst an
estimation takes about 2-3 minutes to congearg the Sioux Falls network, it takes only one
or two seconds for the iterations to converge engihid network at the same error tolerance.
The main computational burden in the proposalgmrithm is the solution of the ME problem

and the SUE assignment problem; the fornrmmolives a matrix inversion and the latter is

14



itself an iterative process. If there are manyenO-D pairs than links, such as in the Sioux
Falls network, the solution of the ME problesantributes more significantly to the c.p.u.
time. On the other hand, if there are a lot mamks than O-D pairs, such as in the grid

network, SUE assignment contributes more significantly to c.p.u. time.

3. THE COMBINED SIGNAL OPTIMISATION AND SUE ASSIGNMENT PROBLEM

3.1. The problem formulation and previous algorithms

The combined signal optimisation and SUE assiminproblem is mathematically similar to

that of the combined matrix estimation andESdssignment (Note that the trip matrix is

assumed to be fixed in the signal optimisation problem). The most commonly used policy for

signal optimisation is to minimise the total journey costs in the network:

SO: Min Zo(s,v) =DV, C,(V,.,S, )
s acA
subject to "> 5, >5M acA
Y5, =1, AcA
aeh

wheres, is the ratio of green for linlg, s=(..., S, ...); SS"* ands.™ are maximum and

minimum allowable green split for link, s,"">0, s,"¥<1; A is the set of links heading for
thejth signal controlled intersection. If lirkis not controlled by a signal, theg™, s,, and
s:™" will all be equal to 1. The set of link flows is the output from a SUE assignment

problem. Given a signal setting),the SUE assignment problem (3) may be re-written as

SUE: len ZSUE(V'S) = _Z qS| (V) + Zvaca(va’sa) - Z\_/fca(xl Sa)dX

i acA acA o

In this section, we will us&/(s) to denote the SUE link flows for given The bi-level

solution,s?t is defined as

15



s® = Arg minZs,(s,V(s)

while a mutually consistent solutios"f, vM“], can be expressed as

sV = Arg minZg, (s, v©)
Se S

vM® = Arg min Zoue (v,8Y°)
veD,

The comparison of the two types of solutions herthe same as that in the combined matrix
estimation and SUE assignment problem. Howeitas, important to note that the bi-level
solution has a smaller value of SO objective function which is the total cost in the network.

Therefore, the system would perform better under bi-level approach.

The traffic signal optimisation problem is a spé@ase of the more general optimal network
design problem, in which the number of phases, the cycle time, and the offsets of traffic
signals are determined. The optimal netwddsign problem has been considered by many
researchers (Sexg, Davis, 1994; Frieset. al, 1992; Harker and Friesz, 1984; Suwansirikul

et. al, 1987 among others). In this paper, wengider signal optimisation for isolated
intersections. Thus, given a set of link flowke SO problem is reduced to several sub-
problems of determining the optimal green sfiteach signal controlled intersection. Each

of them may be solved by any standard omeedsional optimisation algorithm, such as the
Newton method.

An iterative algorithm in which the SO and UEbplems are solved alternately has been used
for the solution of the combine®lO and UE problem (Van Vuren and Van Vliet, 1992; Smith
and Van Vuren, 1993). As in the matrix esdiion problem, this iterative optimisation-
assignment (IOA) procedure may converge tlee mutually consistent solution but
convergence is not guaranteed (Fisk, 1984, 1988yeral types of algorithms have been
proposed for the solution of the bi-levegfyisal optimisation problem with UE assignment
(Sheffi and Powell, 1983; Heydecker andd¢, 1990; Yang and Yagar, 1995). See Maher
and Zhang (1999) for a review for these algorithms. However, these algorithms require
repeated UE assignment for direction findimgl/r for line search. Using MSA instead of a

line search can avoid repeated UE assigraurt will slow down the convergence of the
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algorithms. Cascett&t al (1998) considered a combined signal optimisation and SUE
assignment problem. They proposed two methods for direction fin@lir first one is the
opposite gradient direction identified by nuncatidifferentiation. This needs several SUE
assignments, as in the method by Sheffi Bodiell (1983). The second method is the use of
the solution of the SO problewith fixed link flows as a direction. This, however, does not
necessarily provide a descent direction. Bbep lengths calculation is a modified MSA

algorithm in which step size is reduced only when the objective function is not reduced.

3.2. The proposed algorithm and the test results

The algorithm proposed here is similar to thattfgr matrix estimation, with the trip matrix
estimation being replaced by signal optimisatioth fixed link flows. The algorithm will not
be repeated here but the metluddine search is described briefly. The optimal step length is

found by solving

Min Zo(s(5), v(5))

subject to Be[p™ B
where

s(B)=s"+p(s*—s")
v(B)=v+B(v*—v)

and B™" ™| is determined from constraints omysal parameters and link flows. The line
search can be solved by the bisection methmtire stochastic loading is needed. The first

derivative of the objective function with respecfitoeeded in the bisection method is given

by

Sa* - Sa(n) )

%ZSO(S(ﬁ),V(ﬂ)) =3 +v, Coyv, v, ™)+ 3 v,

C, (
acA aVa aeC aSa
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The algorithm is tested on two networks. The ¢osttion used is a combination of the BPR

function (for link travel time) and the sigrdelay formula by Doherty (1977), that is

c.(v)) = ¢, (0)[1+ a(;—aV} d,

a

Hered, is signal delay for linla and is given by

d, = Ta- s,)% + 1950 Yo v /(g.s)<0.95
2 Oasa Oasa _Va
g, - T 1-s) - 19855x 3600+ 220x 36(10/a  Va/(Ga5)>0.95
2 Q,S, (0.S,)

whereT is the cycle time and is fixed 80 seconds in the test. The valuesusfl.0 and

v=4.0 are used in the BPR function.

The first test was made on a simple thre&-inetwork shown in Figure 4. The network has
two O-D pairs, with demang =t, = 100. O-D pair 1 is connected by link 1 and link 2. O-D
pair 2 is connected by link 3here is a signal at the intersection of links 1 and 3. The

uncongested link costs,[0)] and link capacitieqyy] are

[ca(O)]=[1 2 1]
[0s] = [200 100 200]

Direct search (by exhaustive trial of all pddsisolutions of signal settings, with increment
size of 0.0001) has shown that in this examblere is only one optimal bi-level solution and
that the solution is;=0.3070. Three initial signal splits fey are used in the test: 0.3, 0.5, and
0.7; and the algorithm converges to the sardisa. The solutions by the bi-level algorithm,

and the modified bi-level algthm (modification introduced at the fourth iteration) at the
20th iteration, together with the true bi-legelution found by direct search and the mutually
consistent solution found by the I0A algorithm arenmarised in Table 5. It can be seen that
the bi-level algorithm converges almost to thestbi-level solution and that the modification

improves the solution marginally. In this examplink 2 is twice as long as link 1, although
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its capacity is comparable to that of linKdonsidering signal control). More drivers would
naturally use link 1 at low demand. Howevirthe signal optimiseknows drivers' route
choice behaviour, as in the bi-level probldra,can reduce the green split on link 1 and thus
divert more traffic to link 2. Therefore, we have in Tablg®<s,"“; v,®-<v,"'; and the total

cost,Zso, in the bi-level solution is lower thanathin the mutually consistent solution.

Another similar test was carried out on the s@meé network as shown in Figure 1 used for
the matrix estimation problem. A traffic sigria added at node 9 and the capacities on all
links controlled by the signal (links 5, 10, 1A)) is doubled. The convergence of the green
splits and the objective function valuegh the three initial values & are shown in Figure

5. It can be seen that the bi-level algorithnvesy efficient. In fact, in just a few iterations,
the algorithm converges tas[ sig] = [0.5506, 0.4494] withZso=15058.3954, which is the
same as the true bi-level sttun found by direct search in the signal split with increment size

of 0.0001. Therefore, in this case, the modifaato the bi-level algorithm is not necessary.

{Figure 4 is about here}

{Table5is about here}

{Figure5is about here}

4. SUMMARY

The problem of combined trip matrix estitioem and SUE assignment, and that of traffic
signal optimisation and SUE assignment have lsdressed in this paper. Two types of
solutions are identified and compared. Agaaithm for the bi-level solution of the two

problems has been described. At each iterati@enaldporithms use standard routines of matrix

estimation (or signal optimisation) and SUE assignito find a search direction. Then a line
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search is made by linearising the SUE assighmmedel, which does not need repeated SUE

assignments.

The algorithm was tested on simple two- or three- link networkg3agB8d network with 24
links and 4 O-D pairs, anthe Sioux Falls network with 24 nodes, 76 links, and 528 O-D
pairs. It was shown to be convergent andceffit in terms of theumber of iterations and
C.p.u. times. In the two- or ri&e- link network examples in which the true bi-level solution
can be found by direct seardh,was shown that the bi-level algorithm converges almost
exactly to the true bi-level solution. Ther@s are caused by the linearisation of the SUE

map. A modification to the algorithm is proposed and has been shown to be effective.

The algorithm presented here is heuristicnature. It has not been possible to prove
theoretically that the algorithm is convergefit. addition, it is not guaranteed that the
algorithm identifies the global optimal even evhit does converge. Fletcher (1987) argued
that the existence of convergence prdof any algorithm is not a guarantee of good
performance in practice; and the developmeraroflgorithm also relies on experimentation.
The algorithm presented here has been usesblee the bi-level ME problem with UE
assignment or logit-based SUE assignment atidiver level, and the bi-level SO problem,
again with UE assignment or logit-based Sa&HSignment at the lower level. The networks
tested so far include simple two- or three-link networks §rid networks, the Sioux Falls
network and the Headingley network. The lagb networks are used in the congested ME
problems only. The Headingley network Wa&snodes, 188 links, and 2@BD pairs. Test on
this network can be found in Zhaeg al, 1999. In all the tests so far it has been found that
the algorithm is convergent. In those casegrn&tihe (global) optimal solution can be found
by direct search (two- or three-link networkstbe grid network with one traffic signal), it
was found that the algorithm is able to identifyto give a good approximation of the optimal

solutions. Further tests of the algorithm on more general networks will be carried out.

Because of its simplicity, the logit assignmertdal has been most widely used. However, it
has well-known weaknesses. For exampleddes not take accourtdf overlapping or
correlated routes. Cascetthial. (1996) have proposed a moddilogit model which allows
for overlapping routes, but the model requicesnplete route enumeration. On the other

hand, probit-based assignment model doesufier from these weakness. Recently, Maher
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and Hughes (1997) have developed a prolsetdecSUE assignment algorithm which does not
require route enumeration. Further work o€ tburrent research is to adapt the bi-level

algorithm for use with probit-based SUE assignment.
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TABLES

Table 1. Solutions of the matrix estimation problem on the two-link network

tl(20) Vl(20) F,l(zo) ZME(zo) ZSUE(ZO)
Bi-level algorithm 1937.110Q 1170.4515 0.604226 25463.8575 -9022]1208
Modified bi-level algorithm 1937.1157 1170.4548 0.6042p6 25463.8574 -9022/1506
True bi-level solution 1937.1160 1170.4550 0.6042R6 25463.B574 -9022.1507
Mutually consistent solution 1941.2442 1172.8129 0.604155 254840922 -90438.4699

Table 2. Uncongested link travel costs and link capacities on the grid network.

Link Start End cx(0) Oa Link Start End ca(0) Oa

No. node node No. node node
1 1 2 10 80 13 6 5 10 80
2 1 8 10 80 14 6 7 15 80
3 2 1 15 80 15 6 9 15 40
4 2 3 15 80 16 7 6 10 80
5 2 9 15 40 17 7 8 10 80
6 3 2 10 80 18 8 1 15 80
7 3 4 10 80 19 8 7 10 80
8 4 3 10 80 20 8 9 15 40
9 4 5 15 80 21 9 2 15 80
10 4 9 15 40 22 9 4 10 80
11 5 4 15 80 23 9 6 15 80
12 5 6 10 80 24 9 8 10 80

Table 3. Performance of the matrix estimation algorithm on the grid networkew@t001.

Bi-level solution algorithm Mutually consistent solution
Cuk | Cuod tl(zo) t2(20) t3(20) t4(20) ZME(ZO) cp.u.| N t1(20) tz(zo) t3(20) t4(20) ZME(ZO)
0.05| 0.05 72.4248 62.1171 73.3805 59.8124 21.7269 0.220 2 [74.86 |60.93| 73.84 58.30 24.02
0.05| 0.10 72.7429 63.0385 73.8583 59.4134 22.0442 0.33 3 [78.59 |57.65| 77.15 54.69 25.94
0.05| 0.15 73.501p 62.80%2 73.7669 58.7B10 23.3130 0.44 5 [81.94 |54.43| 80.31 51.42 26.46
0.10| 0.10 72.838] 64.2430 74.7682 59.6426 21.7169 0.33 3 |[77.69 |61.87| 75.66 56.59 24.15
0.10| 0.20 73.5056 66.0323 75.7283 58.7[798 22.1468 0.33 3 [85.57 |54.88| 82.65 48.91 26.41
0.10| 0.30 74.3838 66.5703 74.3789 58.8879 23.2844 0.55 5 [92.35/48.40| 89.03 42.26 26.90
0.15| 0.15 73.2404 66.3779 76.1611 59.4P35 21.7083 0.33 3 [80.48 |62.81| 77.45 54.85 24.31
0.15| 0.30 73.9014 70.1670 76.4926 59.6675 21.9938 0.33 3 [93.16 |51.46| 88.73 42.3% 26.98
0.15| 0.45 75.6174 69.4799 75.3692 58.2p51 23.4984 0.66 6 [102.3|42.71| 97.32 33.3% 27.03
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Bi-level solution algorithm Mutually consistent solution

Cui Cuod Zue® c.p.u. N Zue®

0.05 0.05 39.4834 57.58 2 39.7423
0.05 0.10 41.8604 84.34 3 42.9385
0.05 0.15 44.3356 85.16 3 46.4643
0.10 0.10 39.4407 67.09 2 39.6997
0.10 0.20 41.7600 84.56 3 42.8199
0.10 0.30 44,1281 86.54 3 46.2565
0.15 0.15 39.4084 88.46 3 39.6667
0.15 0.30 41.6537 86.43 3 42.7068
0.15 0.45 43.9314 89.01 3 46.1082

Table 5. Solutions of the signal optimisation problem on the three-link network.

Table 4. Performance of the matrix estimatiafgorithm on the Sioux Falls network with

€=0.001.

S S Vi Va2 Zso Zsue
Bi-level algorithm 0.3104| 0.689¢ 44.1310 55.86P0 416.8505 117.6111
Modified Bi-level algorithm| 0.3074 0.6926 43.8292 56.17P8 416.8194 117.1417
True bi-level solution 0.3070 0.693 43.79%2 56.2048 416.8189 117)0786
Mutually consistent solution  0.341 0.654 46.9890 53.0L110 420.p068 121{0235
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FIGURES
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Figure 1. The grid network. All links are two-directional.
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Figure 2. Convergence of the matrix estimatialgorithm on the grid network, withCx=
0.15.
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Figure 3. Convergence of the matrix estimatiog@ithm on the Sioux Falls network, with
Cvlk: 0.15.

Figure4. The three-link network.
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Figure 5. Convergence of the algorithm for sigrggtimisation on the grid network from
different initial conditions. (a) The green splitp) Values of signal optimisation objective
function.
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