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1 INTRODUCTION AND OBJECTIVES 
 
Much analysis of rail travel demand in Great Britain has been undertaken 
using time-series direct demand models, for example Jones and Nichols 
(1983), and Owen and Phillips (1987).  In these models, changes in demand 
over time are explained as a function of independent variables that change 
incrementally over the same time period.  However, such an incremental 
approach is of no use for forecasting the demand from new stations, or for 
other new rail services.  Furthermore, this approach does not handle 
competition between different stations, nor the impact of access on either rail 
demand or rail elasticities. 
 
There is, therefore, a need for cross-sectional models which can forecast 
demand for journeys from new stations, or in response to population changes, 
changes in station accessibility or radical service quality changes.  Previous 
examples include Tyler and Hassard (1973), Holt and White (1981), Shilton 
(1982), Jones and White (1994), and Wardman (1996).  These authors were 
unable, for obvious reasons, to take advantage of the new opportunities for 
developing such models which have been presented by the increased 
availability of machine-readable Geographical Information Systems (GIS) data 
on populations and road networks.  Such data can be combined with data on 
rail passenger flows and revenues and on rail service quality, these latter data 
being those already used to develop time-series models.   
 
Arising on the growth of computing power, a further opportunity is now 
presented for potentially more sophisticated cross-sectional models, which 
may not be amenable to linear regression, to be calibrated using non-linear 
regression. 
 
Some initial attempts to build more sophisticated models have already been 
reported (Lythgoe and Wardman, 2002; 2004).  The objective of this paper is 
to generalise the station choice model from the earlier work and to show how 
various limitations have been overcome.  There is an emphasis on replacing 
the MNL station choice form by a particular cross-nested logit form, with 
different dissimilarity parameters between given station i and each of its 
competing stations.  Introducing such a cross-nested logit form enables the 
proportion of new journeys from station i abstracted from its competitors to be 
dependant, inter alia, on the proximity of station i to each of those 
competitors. 
 



In particular, what we propose here is an improvement in that the previous 
model could only be applied to a subset of origin stations, namely Parkway 
stations.  Also, when fitting the data, a specification error that had been 
previously identified is remedied by introducing a population elasticity. 
 
The origin station choice model described in this paper builds on the original 
Parkway station model (Lythgoe and Wardman, 2002; 2004) and can predict 
the demand for inter-urban rail journeys of over 40km between pairs of 
stations in Great Britain.  It is based upon 10,324 observed demand levels 
from 329 existing stations to 334 destination stations.  The aim is that it should 
be more straightforward to apply than existing techniques for forecasting 
demand from new or greatly revised stations and services, and that it should 
provide consistent results. 
 
2 BACKGROUND:  SUMMATION MODELS 
 
Before the station choice model described here was developed, rail travel had 
been analysed using a series of simpler cross-sectional direct demand 
models.  The most recent of these was the 'summation model' and this model 
informs the derivation and refinement of the origin station choice models 
which are discussed later. 
 
In a summation model, the populations around the origin and destination 
stations are allocated to zones.  The number of journeys between an origin 
zone a and a destination zone b, using rail between stations i and j, is given 
by: 
 

=aijb a ai b jb ijQ Kp F p F F       (1) 

 
where: 
 

aijbQ  is the number of journeys from origin zone a to destination 
zone b 
 

ap , bp  are the populations in zone a and zone b, respectively 
 

aiF  is a function of the utility of access, , from zone a to the 

origin station i 
aiU

 

jbF  is a function of the utility of egress, , from the 

destination station j to zone b 

jbU

 

ijF  is a function of the utility of the rail journey, , from station 

i to station j 

ijU

 
 



The number of journeys between origin station i and destination station j, is 
derived by summing the numbers of journeys between origin zones a and 
destination zones b, so that: 
 

⎛ ⎞⎛
= = ⎜ ⎟⎜⎜ ⎟⎜

⎝ ⎠⎝
∑∑ ∑ ∑ij aijb a ai b jb ij

a b a b

Q Q K p F p F
⎞
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⎠

F    (2) 

 
It has been found that population elasticities are needed in the summation 
model when it is estimated to the data, so that: 
 

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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i j
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a b

Q K p F p F F

δ δ

    (3) 

 
A hybrid summation model can combine a summation model at the origin, and 
a dummy parameter for the destination station j, so that the number of 
journeys is given by: 
 

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

i

ij a ai j ij

a

Q K p F B F

δ

      (4) 

 
Reference will be made to this model as the origin station choice models are 
developed below. 
 
3 THE NEW MODEL:  ORIGIN STATION CHOICE MODELS 
 
The origin station choice models, which are the focus of this paper, are hybrid 
models which combine station choice at the origin, and a dummy parameter 
for the destination station. 
 
Figure 1 shows the choices for a potential traveller who might choose to travel 
from origin zone a to destination station j.  The annual number of journeys 
from zone a, via station i, to destination station j, is given by: 
 

=aij a aijQ np P         (5) 

 
where: 
 

aijQ  is the number of journeys from zone a, via station i, to 
destination station j 
 

n is the (unknown) number of travel choices per year 
 

ap  is the population in zone a 
 



aijP  is the probability of an individual resident in zone a 
choosing to travel via station i, to destination station j 
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Figure 1 General model - journeys from origin zone a to destination 

station j 

 
 
Equation (5) can be re-written as: 
 

| * *=aij a aij a j a jQ np P P        (6) 

 
where: 
 

| *aij a jP  is the probability of an individual resident in zone a 
choosing to travel via station i, to destination station j given 
that rail will be used (the station choice form) 
 

*a jP  is the probability of an individual resident in zone a 
choosing to travel by rail via any origin station to 
destination station j 
 

 
Note that the asterisk (*) used in the subscripts in Equation (6) is used as a 
'wild card'; in this case indicating travel by rail via any origin station. 
 

The probability  is determined empirically when the models are estimated.  

At this stage, for clarity, this probability can be assumed to take the following 
form: 

*a jP

 

*
* *

1 a jU
a j i ja j

P KF e F
n

= B       (7) 



 
where: 
 

K is a constant (to be estimated) 

iF  is a factor which is applied for origin station i 
 

*a jU  is the composite utility of travelling from zone a by rail via 
any station to destination station j 
 

*a j
F  is a function of the composite utility, 

*a j
U , of not travelling 

from zone a by rail via any station to destination station j 
(i.e. travelling by an alternative mode from zone a to 
destination station j, or not travelling at all) 
 

jB  is the dummy parameter (to be estimated) for destination 
station j 
 

 

Note that the bar ( ) used over the subscript in Equation (7) is used to 

negate the usual meaning of the subscript. 
 
Substitute Equation (7) into (6) to give: 
 

*
| * *

a jU
aij i a aij a j ja j

Q KF p P e F B=      (8) 

 
The number of journeys between origin station i and destination station j, is 
derived by summing the numbers of journeys between origin zones a and 
destination station j, so that: 
 

*
| * *

a jU
ij aij i a aij a j ja j

a a

Q Q KF p P e F
⎛ ⎞

= = ⎜⎜
⎝ ⎠
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It was noted above (in Section 2) that population elasticities are required when 
models described in that section are estimated to the data.  By an analogy to 
the hybrid summation model defined by Equation (4), an origin population 
elasticity can be introduced into the origin station choice model by setting: 
 

1i
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i L a ai

a

F A p F

δ −
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where: 
 

LA  is the dummy parameter (to be estimated) for London as 
origin station i 
 

LO  is dummy variable which takes the value 1, if London is the 
origin station, or 0 otherwise 
 

aiF  is a function of the utility of access, , from zone a to the 

origin station i 
aiU

 

iδ  is the origin population elasticity (to be estimated) 
 

 
Substitute Equation (10) into Equation (9) to give: 
 

*

1
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i
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UO
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  (11) 

 

Two alternative forms for the station choice, , are discussed below (in 

Sections 4 and 5). 

| *aij a jP

 
4 MULTINOMIAL LOGIT STATION CHOICE  
 
The most obvious form for the station choice is Multinomial logit (MNL), as 
represented in Figure 4.  This form is the same as that used in Lythgoe and 
Wardman (2002; 2004).  The MNL station choice form is: 
 

( )
( )*

1

| * 1

aij

a j

U

aij a j

U

e
P

e

μ

μ

=        (12) 

 
given the useful shorthand definition: 
 

( ) ( )*

1 1

a j akjU U

k

e eμ μ=∑       (13) 

 
where: 
 

aijU  is the utility of travelling from zone a by rail via origin station 
i to destination station j 
 

akjU  is the utility of travelling from zone a by rail via competing 
station k to destination station j (the set of competing 
stations k includes origin station station i) 



 

*a jU  is the composite utility of travelling from zone a by rail via 
any station to destination station j 
 

μ is the dissimilarity parameter (to be estimated) between 
choices of origin station 
 

 
 
 
 

aij akj

aijU  akjU  

*a jU

zone a by rail via any station to 
destination station j

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Multinomial logit origin station choice showing utility 

notation 
 
Substitute Equation (12) into Equation (11): 
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1
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U

O
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A 'generation ratio' is defined as the proportion of newly generated journeys to 
the total increase in journeys.  An 'incremental generation ratio' ρ can be 

defined as the ratio of the incremental change in the probability  to the 

incremental change in the probability , at a given value of .  The 

incremental generation ratio is given by: 

*a jP

aijP aijP

 

* , *

,

 a j aij

aij aij

P U a j

P U aij

P

P

η
ρ

η
=        (15) 

 
where: 
 

* ,  a j aijP Uη  is the elasticity of  with respect to  *a jP aijU

 

,aij aijP Uη  is the elasticity of  with respect to  aijP aijU

 
 

When, for all a, , then 0aijP = 0ijQ = , and the incremental generation ratio is 

given by: 
 

( ) *0ij a jQ
Pρ μ= =        (16) 

 
However, it can be assumed that: 
 

*
1

a j
P ≈         (17) 

 
so that: 
 

( ) 0ijQ
ρ μ= ≈         (18) 

 



5 CROSS-NESTED LOGIT STATION CHOICE 

 
The MNL station choice form discussed immediately above leads to a 
constant generation ratio ρ which is independent of the proximity of station i to 
any of its competitors.  This was considered to be a deficiency.  In order to 
overcome this problem a particular form of cross-nested logit station choice 
form, as represented in Figure 5, was devised.  This cross-nested logit station 
choice form is: 
 

( ) ( )

( ) ( )*

1

1

| * 1

ia j
k

aij
ik a

a ji ik aa j
k

U

U
ik

aij a j

k i UU

e
e

P

e
e

1

μ

ν

ν μ

α
⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝=
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given the useful shorthand definitions: 
 

( ) ( ) ( ) ( ) ( )

1
1 1

i ik aa j
k aij akj
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U
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ν
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where: 
 

i
ka j

U ⎡ ⎤
⎣ ⎦

 is the utility of travelling from origin a using rail from either 
station i, or station k (a 'choice pair'), to station j 
 

( )ik aν  is the dissimilarity parameter between station i and station k, 
(the choice pair), given that the journey starts at origin a 
 

μ is the dissimilarity parameter (to be estimated) between 
choices of choice pairs 
 

ikα  is an allocation parameter applied to the use of origin station 
i, which is used to distribute its probability to each of the 
choice pairs 
 

 

Note that the square brackets ([ ] ) used in the subscripts in Equations (19) to 

(21) are used to indicate journeys via either of two stations. 



 
 

aij akj

i
ka j
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⎣ ⎦

 

*a jU

akjU  aijU  

zone a by rail via any station to 
destination station j

ikα

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Cross-nested logit origin station choice showing utility 

notation ( ikα  is an example allocation parameter) 

 
In a more general context, this can be regarded as a GNL model (Koppelman 
and Sethi, 2000) with a nest for each competing station k i≠ , such that: 
 

0 ik 1α< ≤         (22) 

 

( )
1

1ik

k i

μα
≠

=∑         (23) 

 

1kkα =         (24) 

 

0k' kα =  (if k' i≠ , k' k≠ )     (25) 

 



where: 
 

k' kα  apportions the probability of the use of station k' to the nest 
for station k (in general, the set of k' includes both k and i) 
 

 
Substitute Equation (19) into Equation (11): 
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         (26) 
 

When, for all zones a, , then 0aijP = 0ijQ = , and the incremental generation 

ratio is given by: 
 

( ) *0ij a jQ
Pρ ν= =        (27) 

 
 
where: 
 

ν  is 'a composite dissimilarity parameter' (this is a weighted 

harmonic mean of the ( )ik aν  across all k and all a) 

 
 
However, again it can be assumed that: 
 

*
1

a j
P ≈         (28) 

 
so that: 
 

( ) 0= ≈ ≤
ijQ

ρ ν μ        (29) 

 

Although μ is to be estimated by regression, Figure 6 shows how ( )ik aν  might 

be part calculated prior to estimation using costs ,  and  as 

separation measures between a, i and k, so that: 
aiC akC ikC

 

( ) ( ), ,ai ak ikik a f C C Cν =       (30) 

 



where ( ), ,ai ak ikf C C C  increases monotonically with  and where: ikC
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( )

, ,0 , ,0 0
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ai ak ai ai
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akC
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Figure 6 Minimum and maximum values of dissimilarity parameter 

( ) ( ), ,ai ak ikik a f C C Cν = : 

(a) illustration of journey costs ,  and  between 

a, i and k. 
aiC akC ikC

(b) arrangement of a, i and k when ( ) 0ik aν =   

( , =ai akC C = 0ikC ) 

(c) arrangement of a, i and k when ( )ik aν μ=  

( ) = +ik ai akC C C

 
 
 
6 DATA SOURCES AND PREPARATION 
 
In Great Britain, the rail industry’s CAPRI (Computer Analysis of Passenger 
Receipts and Revenue) system provides the numbers of journeys between 
pairs of stations and has been used for many years for the development of 
robust rail demand models. This study used CAPRI data for the numbers of 
journeys and the revenues for full, reduced and season tickets for all 1.4 
million GB rail passenger flows in financial year 1999/2000. In this exercise, 
season tickets were excluded. 
 
The stations were chosen for this study by adding revenues for journeys 
originating and terminating at each station, then sorting the stations in 
descending order of these total revenues.  For the top 438 stations sorted in 
this way, Generalised Journey Times (GJTs) for 1999/2000 for flows between 

station  i 

zone  a zone  a 

station  k 

zone  a 

station  i 

(a) (b) (c) 



pairs of stations from this subset were obtained from another system known 
as MOIRA. 
 
Populations from the 1991 census were obtained through MIMAS/ Casweb at 
enumeration district (ED) level for England and Wales, and output area (OA) 
level for Scotland, together with the Ordnance Survey grid references of their 
‘centroids’.  There is an average of 181 households in an ED, and 53 
households in an OA (Leventhal et al, 1993). 
 
The road network for the whole of Great Britain was downloaded in the form of 
1:250,000 Ordnance Survey ‘Strategi’ tiles from EDINA/ Digimap, and 
converted to a MapInfo Geographical System (GIS) compatible format. 
 
The ticket sales data from CAPRI for all station pairs were merged with the 
GJT data from MOIRA for journeys between pairs of stations from the station 
subset explained above to produce a 'data superset' with 152,949 
observations.  These data cover 63% of all full and reduced ticket revenues, 
and 40% of all full and reduced ticket journeys.  When journeys less than 
40km are excluded, the 'data superset' is reduced to 146,292 observations. 
 
A FORTRAN program was used to create a zonal structure for the 20km 
around each station, and to generate zonal populations. The program also 
produced an ordered list of competing origin stations for each origin station.  
As well as providing data for model estimation, this program can also be used 
to generate data for forecasting purposes.  Further details of this process are 
reported in Lythgoe (2004). 
 
Potential competing stations are defined as those within 20km of at least one 
origin zone.  Thus a competing station may be up to 40km from the origin 
station and, in consequence, destinations must be at least 40km away from 
the origin station.  This is, of course, in line with the existing criterion that 
journeys less than 40km are excluded.  Candidate competitor stations are 
ordered by criteria calculated from the product of the total number of journeys 
originating at the candidate station and the population of a zone, divided by 
the distance to the centre of population for that zone, then summing across all 
zones for the origin station.  The candidate stations are sorted in decreasing 
order of these criteria, and the top 15 form an ordered list of competing 
stations. 
 
Road distance and time matrices between two sets of locations have been 
estimated using road network data and road speeds for a series of road types.  
The road speeds that were used in this study are listed in Table 1.  These are 
based on default values used in Autostreet Navigator (ISYS Systems Ltd).  
Software developed at the Institute for Transport Studies for the purpose was 
used to calculate distances and times from zonal centres of population to the 
origin station and all competing stations, from the origin station to all 
competing stations, and from zonal centres of population to the destination 
station. 



 
Table 1 Road types and corresponding speeds used in 

calculating access times and costs from 
population zones to stations 

 

Road 
type 

Description Road 
speed 
(kph)

1 Motorway 112
2 Primary dual carriageway 96
3 Primary single carriageway 80
4 Primary narrow 72
5 A road dual carriageway 80
6 A road single carriageway 72
7 A road narrow 64
8 B road dual carriageway 80
9 B road single carriageway 64

10 B road narrow 56
11 Minor road > 4m 48
12 Minor road < 4m 48

(based on default values used in Autostreet Navigator) 
 
Building the observations on origin stations and up to 15 competitors in this 
way should provide 146,292 observations available for estimation, but the 
inclusion of populations, and road distance and time matrices, would have led 
to potentially unmanageable data sets and excessive processing times in 
order to estimate the more complex models.  Therefore, it was decided that a 
subset of observations would be created by excluding flows with small 
numbers of journeys.  The top 10% of the original 152,949 flows gives 15,295 
flows with at least 462 journeys per year.  When flows of less than 40km are 
excluded from this top decile, the number of observations is further reduced to 
12,252. 
 
Finally, only 334 of the 438 stations for which the observations had been 
generated were used due to further considerations which are not elaborated 
here.  This reduced the number of flows in the final subset of observations to 
10,324. 
 
Generalised costs were calculated within the SAS programs (SAS Institute 
Inc., 1999).  The value of time formula from the Passenger Demand 
Forecasting Handbook (PDFH) (ATOC, 2002), which cites Wardman (2001), 
was used to calculate the money costs of both rail GJTs and road journey 
times.  This value of time varies with journey distance and, in this study, it was 
calculated using total journey distance; in other words the sum of the access 
distance to the origin station and the rail journey distance.  The fare is added 
to the GJT multiplied by the value of time to give the generalised cost for the 
rail journey.  For road journeys, the distances are multiplied by a notional but 
plausible car cost of 7 pence per km and added to the time multiplied by the 
value of time to give their generalised costs. 
 



7 MODEL ESTIMATION 
 
The models are estimated by using non-linear least squares on the logarithm 
of the model form.  The following empirical forms are found to provide a good 
fit: 
 

*a aiC
aiF e

θ=         (32) 

 

* * logaij a ai j ijU C Cθ γ= +       (33) 

 

* * logakj a ak j kjU C Cθ γ= +       (34) 

 

*
= aj ajL

a j
F e

θ
        (35) 

 
where: 
 

aiC  is the road journey generalised cost between zone a and 
station i (access cost) 
 

akC  is the road journey generalised cost between zone a and 
station k (access cost) 
 

ijC  is the rail journey generalised cost between station i and 
station j 
 

kjC  is the rail journey generalised cost between station k and 
station j 
 

ajL  is the road distance between zone a and station j 
 

*

*

j

a

aj

γ

θ
θ

⎫
⎪
⎬
⎪
⎭

 

 

are model parameters (to be estimated) 
 

 
The following empirical form was used for a part calculation of the cross-
nested logit allocation parameters: 
 

ik ik

ik ik'

L

ik L
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e

e

μ

θ
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⎛ ⎞
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∑
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where: 
 

ikL  is the road distance between station i and station j 
 

ikθ  is a model parameter (to be estimated) 
 

 
The following empirical form was used for a part calculation of the cross-
nested logit dissimilarity parameters: 
 

( )
2 ik

ik a
ai ak ik

T

T T T

φ

ν μ
⎛ ⎞

= ⎜ + +⎝ ⎠
⎟       (37) 

 
where: 
 

aiT  is the road journey time between zone a and station i 
 

akT  is the road journey time between zone a and station k 
 

ikT  is the road journey time between station i and station k 
 

φ  is a model parameter (to be estimated) 
 

 
 
Tables 2 and 3 show the parameters estimated for both models. 
 

In Table 2, * jγ  is a rail journey generalised cost elasticity, and its estimated 

value is in line with expectations.  For the cross-nested model, μ is the 
maximum dissimilarity between the origin station and any competing station 
while, for the MNL model, it would be an average dissimilarity.  Therefore, the 
higher μ estimate for the cross-nested model versus the lower μ estimate for 
the MNL model appears to be intuitively correct, as this is what would be 

expected.  It is interesting to note that 0=ikθ  in the cross-nested model 

provided the best fit, indicating that the allocation parameters ikα  are 

constant. 



 
Table 2 MNL and Cross-nested origin choice forms:  

parameter estimates (10,324 observations) 
 

 
MNL origin  

choice 
Cross-nested origin  

choice 

 t Value t Value 

K 18.14 93.45 17.31 89.74 

μ 0.505 78.87 0.566 63.80 

*aθ  -0.00395 -31.01 -0.00362 -26.94 

* jγ  -1.82 -75.33 -1.83 -75.91 

ajθ  0.00315 29.29 0.00310 28.85 

iδ  0.45    * 0.50    * 

ikθ  ------ ------ 0    * 

φ  ------ ------ 0.754 13.16 

Adj. R2 0.6087 0.6108 

 
t Value * indicates that a series of models have been tested with this 

parameter set to different values 
 

In Table 3, the  values are broadly correlated with the populations around 

the destination stations although it can be seen that London, Edinburgh, York, 
Brighton and Norwich, all tourist destinations, attract more journeys than 
would be expected, were population to be the only factor.  Another destination 
attracting more journeys than would be expected is Gatwick, which obviously 
attracts air travellers. 

jB

 



 
Table 3 MNL and Cross-nested origin choice forms:  

estimates of log LA , and of log jB  for a 

selection of stations (10,324 observations) 
 

 population 
within 

10km of 
station 

MNL origin choice Cross-nested origin 
choice 

 log LA t Value LA log LA t Value LA  

London 2,082,964 2.10 31.50 8.16 2.11 31.28 8.28 

Station ( j ) log jB t Value jB log jB t Value jB  

London 2,082,964 2.36 26.42 10.61 2.35 26.41 10.54 

Manchester 969,343 0.00    * 1.00 0.00    * 1.00 

Newcastle 619,302 -0.14 -2.09 0.87 -0.14 -2.06 0.87 

Leeds 549,410 -0.17 -2.50 0.84 -0.17 -2.42 0.85 

Edinburgh 406,781 0.10 1.42 1.10 0.10 1.42 1.10 

Gatwick 166,229 -0.42 -6.24 0.65 -0.41 -6.10 0.66 

Birmingham 1,123,502 -0.08 -1.27 0.92 -0.08 -1.22 0.92 

York 157,688 -0.31 -4.51 0.73 -0.31 -4.52 0.73 

Glasgow 792,335 -0.08 -1.17 0.92 -0.09 -1.20 0.92 

Liverpool 855,898 -0.23 -3.40 0.79 -0.23 -3.35 0.80 

Sheffield 559,787 -0.52 -7.18 0.59 -0.53 -7.32 0.59 

Bristol 514,611 -0.30 -4.24 0.74 -0.30 -4.27 0.74 

Nottingham 495,390 -0.48 -6.64 0.62 -0.48 -6.63 0.62 

Leicester 441,754 -0.86 -11.15 0.42 -0.86 -11.25 0.42 

Brighton 252,085 -0.59 -8.38 0.55 -0.56 -7.97 0.57 

Reading 271,012 0.30 0.46 1.35 0.17 0.26 1.19 

Norwich 219,941 -0.64 -7.77 0.53 -0.64 -7.80 0.53 

Southampton 358,240 -1.24 -13.38 0.29 -0.64 -8.51 0.53 

 
(Manchester is the redundant destination dummy variable) 

t Value * indicates that value is constrained 
 



8 CONCLUSIONS 

 
This paper describes a new new cross-sectional direct demand aggregate 
model of rail passenger demand between UK stations, and is innovative in 
making extensive use of geographical information in the form of spatial 
distribution of populations and road network data. 
 
The model can forecast demand for inter-urban rail journeys of over 40 km in 
Great Britain.  Because it is based on observed demand levels and other 
readily available information, it is more straightforward to apply than previous 
techniques which could include, for instance, extensive survey work.  Since it 
is based on observed demand, it also provides consistent results. 
 
The models focus on travel choices made by residents located around the 
origin stations, while dummy variables are used to represent the destination 
station effects. 
 
These residents, should they opt to travel, can choose between competing 
origin stations for a rail journey, or make their journey by road.  Initially the 
origin station choice was modelled using a Multinomial logit (MNL) form but it 
was found that abstraction from competing stations took no account of their 
proximity to the origin station, and this was obviously a limitation. 
 
Work on a model variant examined whether a station choice form with 
overlapping nests could be used.  A particular cross-nested logit form 
recognised the proximity of a station to each of its competitor stations, and the 
model used this proximity to vary the proportion of journeys that are 
abstracted from those stations.  The two theoretical models provide the 
foundations for the models that were subsequently estimated. 
 
A number of potential weaknesses in the study can be identified which could 
be addressed in further work.  For instance, the model developed here used 
1991 census populations to explain demand in 1999/2000.  The reason for 
this is that most of the work in preparing the data for the model was carried 
out prior to the availability of the 2001 census data.  Models could be re-
estimated again with population data that is more contemporary with the rail 
flow, revenue and service quality data, and it is likely that the fit would be 
improved.  Also, demographic and socio-economic variables have been 
excluded.  The authors suggest that the model might be refined by including 
variables such as those for car ownership or social class. 
 
The model assumes that all access is by car, even though some passengers 
would arrive using other modes.  This may be acceptable in most instances, 
given that road access times and distances could generally be effective 
proxies for all access modes, although the assumption should be recognised 
as a potential limitation.  It may be possible to avoid this assumption by further 
work on modelling choice of access mode. 
 
The origin population elasticities were introduced in order to overcome 
specification errors, discussed for instance by Gujarati (1995), in the 



theoretical functional form.  These elasticities were less than one and 
appeared to provide a proxy for intervening opportunities around the origin 
station. 
 
Competition with road journeys between the origin zone and the destination 
station has been modelled implicitly by including terms which recognise the 
utility of not travelling by rail.  Further work might introduce the explicit effect 
of road competition into the model. 
 
Finally, the model could also be modified in order to better understand 
traveller behaviour at destination stations, which were only estimated with 
dummy variables in this thesis.  In the first instance, destination only models 
with origin station dummy variables could be modelled.  The models could 
then be further extended to include population zones and competitor stations 
at both origin and destination stations. 
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