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ABSTRACT

ORTUZAR, J. de D. (1979) Testing the theoretical accuracy of
travel choice models using Monte Carlo simulation. Leeds: -
University of Leeds, Inst. Trans. Stud., WP 123 (unpublished)-

In recent years a considerable advance has been made in
the construction of micro-travel demand models from choice
‘theoretic principles. Within random utility theory, the structure
of models mey be shown to relate to the perceived similarity
between discrete choice alternatives, and this aspect may be
interpreted mathematically in terms of the correlation between
the components of random utility functions. Several possible
model structures have now been proposed, varying from the
multinomial logit model (uncorrelated) through the partly
correlated structures (hierarchical and cross-correlated logit
functions) to the most general form of problt model which allows-
an arbitrary variance-covariance matrix.

In this paper, these model structures are discussed using a
geometric interpretation of random utility theory, and the
"possibility of invoking transformations on the general probit
model is examined. Monte Carlo simulation methods are then used
to investigate some aspects of the trade-off between the generality
and accuracy of correlated structures (the cross—correlated logit
model in particular) and the greater ease with which less consistent
structures may be implemented. In this vay, the theoretlcal
accuracy of the multlnomlal logit model is assessed.

It is concluded that- where the general probit model is too
complex to implement, the practice of comparing the multinomial
logit model with alternative hierarchical logit structures is
unlikely to lead to significant errors in forecasting.



TESTING THE THEORETICRL. ACCURACY - OF TRAVEL
'CHOICEj‘MODELS USING MONTE CARLO‘_SIMULATION_

1. INTRODUCTiOH

In recent years considerable interest has centred on the relatlonshlp
between the structure of a travel demand model and. the behav1oural
principles associated with its formatlon This has arlsen not only
because of the need to underpin models with a con51stent theoretlcal
rationale, but also from the recognition of structural amblgultles in
existing-models ~ as, for example, with the relative ppsitione of
distribution and modal &plit models in the conventional planning system
~ which can give rise to significantly different results in policy
analysis (Ben—Akiva, 19Tk; Willisms and Senior, 1977). One particular
framework within which this relationship has been epught is that provided

by random utility theory (for a review, See.Dcmencich and McFadden, 1975).

In this quantal choice theory individusls are considered to associate
~with each member Anj n=i, «..,N of a discrete set of eptions A, a net -
utility Un5 n=l, ...,N, and to select that member with the highest value
of U. To account for interpersonal variation in the value of attributes
incorporated in the utility functions, andthe influence of unobserved -
faetors, the modeller considers the variables (U., ..., Un’ UN) to be
randomly distributed over the populatlon confronted by a ch01ce ‘The
probebility P that an individual with partlcular characterlstlcs selects
an alternatlve A is then 51mply expressed in terms of the probablllty
that Uﬁ be greater_than these values associated W1th_a11 other options.

A formal choice model may be derived when the density function

£(U) = f(Ul, e

It has recently been recognised that the.enalytic-structure of a model

,'UN) of the utility components is specified.

is crucially related to the interdependéncy, or statistical correlation,
between the utility functions associated with each alternative - - that is,
with the structure of f(U) (Williams, 1977; Langdon 1976; - Daly and .
Zachary, 1978; McFedden, 1979). A set. of. formal models now exists Wthh
accomnodates varylng degrees of ' 51m11ar1ty or correlatlon between

alternatlves ranglng from the w1dely used multlnomlal logit model (MNL),



generated by uncorrelated dlstrlbutlons through the. hlerarchlcal loglt

model (HL), to the generallsed probit function (GP) with ar arbitrary

correlation, expressed in terms of a variance - covariance matrix.

Until recently application of the generalised problt model has
been restricted to a small number (3 or 4) of choice optlons (Haussman
and Wise, 1978). ‘However by invoking the Clark approxlmatlon_(Clark,
1961), Daganzo et al (197T) have extended its practical range. “In
spite of the advances in its applicability there appear to be manyi
practical cases in which (a) the model cannot cope (Daganzo, 1979), or
(b) there is a need for a compromise between the genmerality it can
afford and the greater ease with which less consistent structures may
be imﬁlemented. One such compromise isg the‘bross*cerrelated logit (CCL)
funetion (Williams, 1977), which is a closed-form model containing °

alternative HL functions as special cases.

;f:Ih this'paper we wish to examine some generalkthemes.suchfas the
reletionship between certain utility functions andifhe structure of
travel choice models; the possibility of invoking transformations in
order to simplify models and derive conceptual links between them; the -
theoretical accuracr of particular choice models, and the problems-of-
misspecification associated rith model strhcturee and utiiity functions.

More specifically, we wish to address the-following-questiOns:

i) Is it posszble to apply transformatlons 1n utility space' in order'
to simplify bymmetrlc problt models and enable conceptual llnks
to be forged w1th the loglt famlly?

ii) How serious is the. absence of "similarity effects' in the multl—:
nomial 1oglt model? In other words, how much is the well known
'1ndependence from irrelevant alternatives' (IIA) property of the

model an impediment in ch01ce modelllng9

iii) How good an approxlmatlon to a general function is the cross—.

correlated logit model? .

iv) What is the effect of misspecification of choice models with

respect to model structure and their utlllty ecmponents? -

V) Can any of the 10g1t models dlSplay pathologlcal response
Apr0pert1es and is it p0351b1e to recognise their symptons at the

calibration stage?
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vi) Can we discriminate between contending model sfructures on the
basis of goodness of statistical fit, and the character of their

inherent elasticity paremeters? In particular, does a good

agreement to bese yvear data necessarily imply good response

characteristics? -

It shoilld be stressed aﬁ'fhe outset‘that ahy réference to the
accuracy of a model will refcr to its con51stency with the underlJlng

theoretical ratlonale, and not necessarllx,to its approprlateness 1n

choice modelling. '

In Section 2, the basic principles of genercting_random_utility
models are reviewed, a geometrie interpretation ofrﬁhe theofy is
presented, and the Monte Carlo metnod as a means for numerlcal _
evaluation of ch01ce‘models is outllned. The ex1stence and 1mp11cat10ns
of correlation between the‘utility functions ‘associdted w1th'd1fferent
alternatives are then examined in Section 3 and the vafious approaches
to its ineorporation in cheoice modelé noted. In Section b we investigate
the possibility of invoking transformations in utility space as a means
of simplifying the general probit model. Although conceptionally |
appealing in terms of its links with MWL, HL and CCL structures, the.
potential for-iﬁplementing such transformations does not, in'general,

appear practicable.

The numerical tests to determine the theoretlcal accuracy of the
alternatlve logit structures in a general ch01ce context are then

described in detail in Section 5.

2. THE GENERATION OF RANDOM UTILITY MODELS _
Formally, we can express the model generator equatlons of random -
utility theory as follows: ' o
B = Prob (U_ > Ur>¥ S  ea

R

s arw T e
g W - T

in which £(U) is the joint distribution function of (U;, ..., Uy) and
R is that region of utility space defined by |



‘R: U 32U, , VA, cA L S (2.3)
uozo0 - ey

In this paper we shall be concerned only wlth thoge cases in Whlch a
trip is actually made. The non—negat1v1ty restriction (2 h) will thus
be considered inoperative. For the distribution functlons considered
_ later this will involve & negligible incbneisﬁehcyj which dces not
affect the argument to be presented. “ '

' Tc derive an exblicit probabilisfic chcice model.we‘need to.know
both the form of f(U) and an expression for the utility functlons in

terms of the attrlbutes of alternatlves in the set A.

_We shall take the components Un to be of the folloﬁinguform;
) + e | . (2.5)

in which ﬁﬁ is the so-called 'representative’ ctility of the population . .
Q confronted by the choice, and €, is a stochastic residual. Un is
normslly taken to be linear in terms of the attributes Zg‘characterising
An. That is:

u (a;z)

n (8 Zn) = L0, ¥A €A ‘ ' (2.6)

1l
1
D

o
w

(2.7)

The vector of parameters B is estlmated from observed choices. It
remains to speclfy the dlstrlbutlon function f(U) or equlvalently that .

of the stochastic residuals E.

A geometric interpretation of the theory may'readil& be derived
from expression (2.2). In the utility spaceU, bounded by the components -
_(Ul, cers UN), the probability P is, for normalised £(U), the total

density of points in the region Rn bounded By the hyperplanes defined by:
U =0
1

and

8]
n

U, > ¥Aeh o o ) . (2.8)

This can be more easily seen in the convenient cartesian space. In
Figure 1(a) we illustrate the fundamental utility distributions
associated with binary choice (Williams, 1977). It is important to
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distinguish those distributions gl(U ) and gz(U fl)wh1ch are associated
with the whole population @ confronted by the choice between alternatlves
A, and A,, from gl(Ul) and gE(U ) which aré the "choice SpElelC
dlstrlbutlons of utility, for those members of @ who have selected
options Al and A2 reespef:tn‘el;r.-,7= The sum ‘of these last two dlstrlbutions
is termed the distribution of maximum utility g,(U), and the three

functions are formally defined as Tollows:

g (u,) = IRldUE fU, ) L - (2.9)
ég(Ué) = 1o au, #(u, U,) : L (2.10)
‘ 2 .
g,.(u) = RldU £(U;, U,) + fR dUl £(Uy, Uy) (2.11)
_ 2 :

We shall also wrlte the. distribution of maximum utllltles 1n the form
gx(U) = mex (U, U, S : o (2 12)
-U : ‘ ' : :
and we note here that the mean value of this distribution, U,, has great

significance in the evaluation problem (Williams, 1977).

The gecmetric‘interpretamion Qf'this'simple-choice process, which
is an extension of that provided by Robertson (1977), is given in Figure.
1(b). TFor identical and independent distributions (IID),. f(U) has a

circularly symmetric shape centred on ﬁi and ﬁé. The line 0Z divides

the positive quadrant into the regions Rl and Rg, and Pl and P2 comprise

of those. correspondlng portlons of the distribution inm these regions.
The distinction between g(U ) and the choice spe01flc_dlstr1butlon g(U )

can reed1ly be seen in terms of the respective progectlons onto the Ul

‘axis of ‘the density function f(U), and that portlon of f(U) bounded by

OZ and the Ul axis.

An important class of random utility models ineludes.thqse generated

by IID utility distributions for which we can decompose £(U) as follows:
(W) =1 &U) ' L e (2413)
. n=1 . . ' o

-re e w ass L} - uw * 0w LA ] . . ey LI ..

(1) Because they are identical in the flgure, we have labelled them
g(U ) and g(U ), respectlvely :
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Here g(Uﬁ) is the distribution of the utility component associated with

Aﬁ. The expression-for P can now be written

o T u
i

_ _ n
P o= av_ g(Un) . I

. I du, gkU ) '“TE __: t2;1&) -

Omizsion of the constraint (2.4) allows the lower 1limits of

integration to be extended to minus infinity.

It is by now w1dely known that the much favoured multinomial 1og1t
model (MNL)

AU
e D
P, = — (2.15)
AU ,
I e
z
is an ITD model generated from Weibull (Gnedenko) probability
distributions (Charles Rivers Associates, 1972) for which
o _ (U -U ) _ : _
g(u,) = a2 (00,) | (2.16)

This is a skewed unimodal distribution, in which the dispersion parameter
A is inversely related to the standard dev1at10n, g, as follows
(Cochrane, 1975):

A= : P o - (2.17)

Slmllarly 51mp1e problt models are generated from IID Normal dlstrlbutlons.

For a number of spec1a1 dlstrlbutlons, it is p0551ble to evaluate
the 1ntegral (2.2) to produce analytlcal expre551ons for P n? such as the
MNL in equation (2.15). In general, however, we have to resort to some
form of numerical method. One such approach involves Monte Carlo
simulation. As far as we are aware'the first3ap§1ication'of this method
to the solution of random utility models is that of Albright, Lerman and
- Manski (1977), in the'develepment of an estimation program for the general
probit model. However, and in most cases independently, the power of the
approach has attracted numerous appllcatlons recently (Bonsall 1979,
Chlcago Area Transportatlon Study, 1979; Horowitz, 1978; Kreibich, 1979;
Manski and Lerman, 19783 Ortuzar, 1978, Robertson, 1977; Robertson and.
Kennedy, 1979; Williams and‘értuzar, 1979) but clearly its roots can be
traced back to certain stochastic essignment methods (Burrell, 1968).



In this approach we follow tradltlon (Hammersley and Handacomb
1965); - a sample. of gize § is created, and each '1nd1v1dual' member t,

of 8, is confronted by the choice between Al, vees AN. Using a random -

numbher generator g set of utlllty values (U ces U )'is drayn from

1T
f(U), and the member & is a531gned to that optlon w1th the maxlmum
‘associated utility. For large S, the prqportlon S of '1nd1v1duale

assigned to option An will approximate to Pn’ Whlch is given by

P = lim Ea o o S - - (2.18)
n Seo 5 | AR : . o o

In the 51mple carte51an utlllty plane examlned before the method

involves random sampllng of points from £(U,, U, ). For a given sampled
t

observation (U s U2), the correspondlng '1nd1v1dual‘ will be assigned
to Al or A, according to the region in which the ‘'point' may be found.
That is .
R t . t .t .
if Uy > Uy, iee. (U3505) eRy» assign to-4) |
| - (2.19)

R R SR . |
if Uy < U,, i.e. (Ul,UE) eR,, assign te A,

To test the aecﬁracy of the method with sample size, the numerical
solution of a Y-option logit model was compared with the analytic solution.
For a sample of size S, the choice probabilities P were determlned by
drawing random values from four IID Welbull fUnctlons, Wlth glven means
(“i, Ué, U3, Uh) andlstandard dev1at10n o. These numerlcally derived

probabilities were then fitted by a logit function.

s 2 Un | : o
Pn = I ' _ . (2.20)
AU 1 . - : ' oo T

in whlch the parameter A® was estlmared by the uaual maxlmum llkellhood
method (Domencich and McFadden, 1975) “In Flgure 2, we show the
empirically derived relatlonshlp between the varlance of A® w1th the

size of the eample 8. In order to examlne ‘the accuracy of the numerlcal
solution under dlfferent condltlons we repeated this procedure for a .
binary loglt model and dlfTerent valuea of the dlfference between mean
utilities. As it can be seen, the closer the optlons (smaller dlfference

in mean utilities), the less: stable the 31mu1athn becomes., - In the
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numerical tests. described in later sectlons the semple size was flxed
at 5 = 30, ooo.(2) . L

We now proceed to con51der more complex ch01ce ‘contexts in whleh f
the presence of correlation between utlllty functlons 1s central to the '

structural - development of the models.

3. ATTRIBUTE CORRELATION AND MODEL STRUCTURES
For the utility dlstrlbutlons U 3 n=1, ..., N we can deflne a

variance-covariance matrlx & W1th elements Z glven by

nn'
fint- = E (UﬁHUn; Unl_ Unl )
=E (e, gn') VA ,A, cA | - - (3.1)

in which E(-) denotes an expectation value. In the case of IID utility
components the matrix has, by construction, a simple diagonal form

I=0 I o . (3.2)

where I is the unit matrlx of dlnen51on I, and g the common standard ‘

dev1at10n of the dlstrlbutlons z{U), that is
2 B y | _ \ . S
o =Ele e ¥ An €A _ (3.3)

It is one of the intentions of this work to determine the extent to:
which this very simple structure constitutes a real restriction to choice

modelling.

| The multinomial logit (ML) model (2. 15) generated from TID Weibull
dlstrlbutlons, which isg therefore characterlsed by. a matrlx w1th the
dlagonal structure (3.2), has been very w1dely applled in mode choice,
and more recently destlnatlon ch01ce modelllng (fbr a rev1ew, see Spear
1977). It is now well known, however, that the model suffers a
restrlctlve property of croSSfeubetltut;on, the 'rndepenﬁence from;
(2) Manski and Lermen (197T8) have examined the simulation approach

carefully and have proposed less naive stopplng rules for more
efficient programs.
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irrelevant alternatives' (ITA) property, whereby the ratio

-_ -

fg e Un-Un') ¥FA A ,ed -~ o o 03.)
P - ‘ n''n 3

is in@ependent of the utility values asscciated with'other options.

The ITA property, once seen as a positive adVantagé.ﬁo 5e'é£ploi£ed

in 'new option' situations, is now recognised to be a potential hazard
when certain alternatives are more"similar' %han‘d%hers'in £ﬁe set A.U_
In random utility theory this notion of 'similariﬁy' ié interprefed_in'-

terms of the presence of off-diagonal elements‘in'the matrix Z.

In certain applications, specific forms for the utility functions
tend td suggest themselves. Consider 'two dimensional' choice contexts
involving, for exasmple, combinations of destination (D) and mode (M).
Alternatives -in each dimension will be denoted by'(Dl, ""'Dn’-""DN)
and (Mi, ...,Mm, ...,Li), respectively, and the combination of
1' Ml,‘ ceen DnMn'l,
...,DNMM), which comprise the set A. The general‘element-An is now

dimensions produces the NM discrete choice options (D
Dan which might be a specific destination-mode combination for the
purpose of performing an activity.

For such choice contexts we shall be particularly interested in

utility functions of the form
| U(n,m) = U +U U ¥ DaneA. : : (3.5) |

here Un and Um méy, for example, correspond to destinatibn and mode
specifiec utilities, respectively, vhile Unm might be the travel disutility
associated with DnMﬁ combination. This form was used in_the.shopping
‘model developed by Ben Akiva (1974), and in a number of other applications

in the United Stateé since that time.

Writing U(n,m) in terms of a 'representative' term U{n,m) and

s stochastic residual e(n,m) we have

'U(n,m) = Uln,m) + ¢{n.m) -~ - h-, - (3.6)°
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in which
Unm) = U +U +U - (3.7)
and ‘ .
e(n,m) = e, tE, tE T (3.8)

We shallhnoﬁ assume that the residuals €y sﬁ and'eﬁﬁ are séﬁaratelx'
IID, with : R o

‘ : .2
Blepenr) = &40 .99 ;
SO 2 ) (3.9)

E(_E_mem,) = G‘mmv On ;
L ) ) -
E(-E:nme-'n’m') = 6nn'smm"GDM : g
E(enem) = E(enenm) = E(emenm) = 0 VD M eA )

in vhich § is the Kronecker delta. The elements of L now become

| 2 2 T2 o
anan.mn = Gnn‘aD + Gmm'UM + snn'amm'oDM 7(3i10)

and the matrix is expressed in Figure 3, together with those corresponding

to the residual_structures

elngm) = e | | 3 ' (3@11)“
elnm) = e +ey, (3.12)
elnm) = e+ ey (3.13)

which are clearly special_casés of that defined in Equation (3.8). Tt .

is readily seen that the source of correlation in '‘maltiple dimension'
cases is the existence of a common term or 'dimension specific' element

(U or U ) in the utility function. For the four cases (3.8), (3.11) - (3.13)
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we have developed in Figure 3, a pictorial repfesentafion_ofrthe structure
of the I matrix with correlation between'alternativee'incorporated through
common bonds as shown. This is the basis for a representation of the
choice model itself (Williams,‘lQTT)., In the firsticase bqth Uﬁ and Oy
are zero and a diagonal I matrix results. This case which is consistent.
with Equation (3.11) wili~c0rrespond to the MNL model-(2.15) if the
utility functions-are.drewn'from'IIwaeibull distributions. It is clear
that the use of the utility ‘function (3.5) in s MNL model of the form
(2.15) will be inconsistent because the appropriate I matrix, corresponding
to that utility function, is not of the diagonal formrigvolved in the

generation of the model.

Before treating the more general case (3.8), which is-consistent"
with the utility function (3.5) and which corresponds to the fourth %
matfix of Figure 3, we shall consider the derivation of a hiererchieal
or nested model from a functiqn consistent With_the residual structure
(3.12), ' |

U{n,m)

1
o]
+
c

+e_ +E (3

and which corresponds to the seeond'representa$ionrin Figure'S.' In this
case the component Oy vanishes and the two parameters'cD and UDM'allow
different degrees of cross—substitution between intra and inter- ‘branch '

alternatlves 1n the 'tree' form shown 1n Flgure 3(b), that 15 _between
D M and D M La 1n the former case, and between D M and D M - 1n the
latter It may be shown (Wllllams, 1977) that P(n,m), ‘the probablllty_

of selectlng D M can be wrltten

P(n,m) = PP . | o (3.15)
in which
P = Prob (U_ >1U W, M) ' {3.16)
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and o < o . S .
Pn = Prob (Un + Un* > Unl + Uﬂ[*. H v Dn| ED)‘ L o " : (3-17)
with ' ' = o : SR
Uy = #:x(Unl,-..., U s =oes UnM)- (3_13)

Ifthe components U .~ are Weibull distributed variables W(U U A)
with mean ﬁ;m + Y/A-(where Y is Euler's constant), and- standard dev1at10n
ﬂ/(/_h ), then it is readily shown (Cochrane, 1975) ‘that U n* is also
Weibull distributed, with meen - e

s U S , ‘ L 3

T,==1n £ m+y/a ' i - (3a9)

A m Lo o
and standard deviation given by

Oy = — - - : C (3.20)

DT e _ . L A

‘The marginal distribution Pn is then derived from the sum of
Weibull distributed varisbles Ups and variables U s derived from some

distribution "F(U,ﬁ£), n=l, ..., N to be specified.

Now the hierarchical logit (HL) model (Williams, 19TT; Daly‘and
Zachary, 1978; McFadden, 1979)

B(Un + Ups) AU
P{n, m)= AT~ nf (3.21)
B(Un' + Unv*) 5 oMW

n' _ _ n' .

can be generated by specifying that F(U'ﬁh) be that distribution of a
variate which is formed from the difference between random varlables
drawn from Weibull functions w(u, U + Un*= B) ‘and W(U, % A)(3)

Because Un and Un* are independent, the‘varlance of their sum 1is

given by
12 i
— = gl ——
68 D ga2
or €2 A2 (3,2?)
8 = (1 + D_. )_% o
A 2 '
]

{3) A logistic distribution (Domencich and McFadden, 1975).
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When o = 0, the nodel collapées to the MNL, characteriéed by the
single parameter A. . It can be. seen that for a coggigtent'model (and for

r(U, ﬁﬁ) to have a non-negative variance), Wé.reqpire (Williems, 197T) '
B A | . (3.23)

This condition is of particular”importaﬁce,Qaﬁd,ifs.violation may
imply cross—elasticities of the wrong sign. Vieclation has, in fact,
been observed in conventional transport models (Williams_and_Seniof,
1977). We will come back to this concept later when discussing the

pa@hological response properties of certain mis—épedifiea models.

- In the simﬁlatioﬁ tests to be described in Seption 5,‘in which the -
model corresponding to Equation (3.8) is derived numéfiééllj;,en, €
and_:-;nm will themselves be taken as Weibull functions, and it is necessary
to know what approximations are made if the resultant model iz assumed
to be of HL form. In fact, the only approximation is imvolved in the
marginal probabilitern, because the sum of the two Weibgll variates,
drewn from the distributions W(U, T ,, A) and W(U, U , n/(/6'0)) is pot
itself distributed Weibull. : :

For an example with N = M = 2, the parameters B and A (the latter
should be exact) were estimated from the logit function (3.21) by . .
Maximum Likelihood, and their ratio was plotted agginst_thé standard
deviation cb associated with the residuals €0 aqa cgﬁpared withithe
theoretical values in Equation (3.22). The results of this exercise
are shown in Figure L. Tt can be seen that a feasonabljkgoqd

approximaetion is obtained.

We now turn to consider the choice model,generated from the utlllty 
fuhctlon:(B.S) . Because of the form of the random re51duals, (3.8),
we can say immediately that this model should contein as speclal cases . -
the MNL_and.alternative HL functions. As far,as the author is aware né,
explicit analytic function has heen 6btaiﬁed_rqr.such a structure. | '
Clearly one could appeal to the.probit form and exploit. the Clark
ﬁpproximatibn'(01ark 1961), but. this would for medium 51ze problems
atill be unmanageable. Alternatlvely, we could try-to exploit ‘the very
symmetric structure of Z {as showm in Figure 3(d)) and attempt to
transform the proplt model %nto an equivalent MNL model. In fact, this

will be the subject of the next section. '
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The cross—correlated logit function (CCL) was an ad~hoe -model
)(h) as'a-cloSed”form%approximation which
corresponded to the utility function (3.5). It is defined by the

proposed by Williams (1977

equations |
eaug'f AUE + AUpm
P(n, m)'= ——— (3.2h4)
. ;- eBUE'I + AU.I_-IF"' + AUptpr _
n'm'
where . ‘ - - C
t o (B-A) =
U, = U, +5— Uy .(3.25)
U-|- _ -ﬁ— . {(A=A) E— oo B ' : L "“(3'-26)
m m A “m* : o . . T
Ty= ginz omt *A (3.27)
n A m ‘ . T
Ty= 2inz &fnrm * Y  (3.28)
cm A n' S S ‘ - :
and . -IGUD A2 3 | o
A 6°ﬁ AE -3 o

It may be checked that as ug‘ and 02, the variances of the residuals .

. M
€ and'em; tend to zero the respective hierarchical logit models are
formed. If both variances are zérp; the CCL collapses to the'multinomial

logit form (2.15).

© In summary, we note that within the framework qf random utility
theory in which behaviocur is governed by rational choice between discrete
alternatives, the strﬁcture of the model is determined uniquely by the -
underliying utility.functions, and the structure bf‘cofrelation or -
similarity between alternative choices is the essential feature which
dictates the complexity of the model. Varyingtdegrees of similarity
may be accommodated within the logit family. The first three casés in -

Figure 3 involve utility maximisations in which the variance-covariance

s+ s * awae e siaa T maw . eaaa Chwa auan -as as s

(4) In thet paper (section 5.3.2, pp 321-323), the function was denoted
General Choice Model. More recently, and in deference to the general
probit meodel and to the class of General Extreme Value {GEV) models
(McFadden, 1979), the function has been rechristened appropriately.
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matrices I are special cases of the cross*correlated structure, with a

L matrix and pictorial representatlon summarlsed in Flgure S(d) In
Sectlon 5 we will present ‘a set of 51mu1atlon tests on structural . i
m1sspec1flcat10n de51gned +0 examlne ‘some speclflc questlons concernlng
how good an approxlmatlon to (3. 5) is the three parameters CeL model

" and what potentlal errors can be 1ntroduced by u51ng the 51ngle parameter
MNL and two parameters HL models instead. Flrst, however, we wlll,examlne
the general probit model and the scope.for applying traneformations in

order to prodice more tractable models.

L. THE GENERAL PROBIT MODEL, STRUCTURE AND TRANSFORMATIOMS :
In random utility theory, the den51ty functlon whlch generates the
general probit model (GP)- for choice between N alternatives is given by:

N -d . _ma
£(U) = (2n)  |Z] exp(-3(U - U) g - . (k1)

(I

We shall immediately transform Equation (h.l)“from Qf'space:into gf space.

using Equation (2.5), giving -

| W b woa
flg) = {(2r) IEJ- exp{~2 ¢ L e} - e . (h.2)

If we.define . R _ . e o .
Enn‘- = En| - ?[-J:n. . L . ) _' o (}"-3:' ‘

then resorting to Equation‘(E.E) the model can be stated ae?

Po= g . 1 . S _ f(e) de: (L)

Although the GP(L.4) is more general in its theoretlcal statement
it is considerably more cumbersome than the MNL or HL to 1mplement - THe
difficulties of ach1ev1ng a solutlon to the GP by direct rumerical’ _
1ntegratlon for other than ’small' problems, 1nvolv1ng 3 or h options
(Hausman and Wise, 1978) are well known, and have led to the formulation
of approxlmate solutlon schemes. ‘One method 1nv01ves Monte Carlo ;

simulation dlrectly to évaluate the model (Albrlght et a1, 1977)."
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The method is elegant theoretlcally appeallng and has the advantage
of belng completely general 1n the sense that in pr1nc1p1e any functlon
can be 1ntegrated.l However, it is not well suited for Optlmlsatlon Ny
purposes near the helghbourhood of the optlmum, 1t 1s blased and very

slow and expen51ve to use. (Boutheller, 1978)

The second method, due to. Daganzo et al (19TT) 1nvokes the Clark -
(1961) approximation, which essentially involves the replacement of the .
maximum of bivariate normal variables by one normally distributed varlable.
By repeated aﬁplication of the Clark approiimation, the multiﬁle'iﬁtegral
in Equetion (4.%4) may be reduced to a particular_univariate integral,

When the correlation between variables. is nonﬂnegetive, this apprbximation
which has been extensively examined by Manski and Lerman (1978); using
Monte Carlo simulation, is apparently accurate to a few per.eent, for up.
to 20 alternatives. However, problems with the possibie.exiétence'of
multiple optima associated with the likelihood fuﬁction of GP models, for
more than 2 alternatives, have recently been reported (Deganzo,:l979).
These imply that in general, there is no guarantee that the model can be
calibrated. The program and documentation of & powerful.algofithm for.
calibrating the GP model, using this method, are new:widely available
(Daganzo and Schoenfeld,'1978).

When encountering normally distributed variables, it hes often been
the case that a transformation to a co—ordlnate system 1n which the
structure of variation in a data set is more approprlately descrlbed has
provided not only 1n31ght into the nature of factors giving rise to.the
varlatlon, but has also formed the basis for approximation schemes._
Principal component analysis is perhaps the best such examplee-(Ei:a'very'
didactic treatﬁent of transformatioﬁ theory in multivariate enalysis, see
Green and .Carroll, 1976). Moreover, it is well known that the MNL and
an uncorrelated equal varlance problt model (w;th sultably normallsed
standard dev1at10n) are almost 1ndlst1ngu1shable.‘ That 13, 1f we could
transform general probit models into equlvalent fUnctlons w1th dlagonal :
variance—covariance matrlces,_lt mlght be 90551b1e to establlsh conceptual
links with the loglt famlly, and in the process erasé the burden of '

numerical 1ntegrat10n.

If this were not enough‘mofivation, consider that the hierarchical
logit (3.21) may be written ag_a MNL function with ﬁransformed'utilities

and parsmeters of the underlying distributions:



-.—l"r_

eB(En + _3"':_A' En* + % Enm)

g :
‘ éﬂ(ﬁn' + ﬁ;s'-'é' ﬁni* + ‘2‘ Un'mt)

P(n,m) = (4.5)
_ . o
n'm'
The reader can check this by recrganising and using Equation
(3.19), 1In fact, this should not be too surpfising, since McFadden {1979)
has shown that any model derived from extreme value‘(weibull)‘or‘ |
generglised extreme value functions may be written as an equivalent
multinomial logit model. TIn this group follow, for example, the hedonic
demand models developed recently by Charles Rivefs'Associates (Cordell
and Reddy, 197T). - : |

Let us first examine and illustrate the power of transformations in

the convenient cartesian two dimensional space.

- Equation (k.4) reduces in two dimensions simply to:

s Upy +e7 £ 28,6, €y o
Py= Tag ! expl- === (2% 2+ (D e, ()
— < 2(1-p7) "1 1°2 - 2 e E
2t g0 Vl—pe

12

where p is the coefficient of correlation, and I is given by
1 P71% T
L= 2 1 N AT
po.0, Oy - : :
Figurers(a) presents a pictorial representation of £(U) in U-space -
for the general variance-covariance matrix (hk.7). 0Z, the iso-utility
line, is defined by ' '

0Z: Uy =T, A L (h.’8).

and the region of integration R

1 is'défined by

-0 £ J, & o™

- AR .1 o : , ;; . l" . ;. sy

Figure 5(b) presents a pictorial representatibn of the density function

in U- space defiried by the transformation

1]

U =+ (yg-7)=-2L 3 :
Ul - cl(Ul Ul) oy : ' ,
_ - : (4.10}
- 1 ( 'ﬁ.) €5 _ ,
U, == (U,- = — ‘
2 02 2 2 02
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In this transformed space the line 0Z, which defines the region of

integration is given by

oz: cng-va2‘= oU) ¥ Uy N o (h.11)

and cdnséqpently_the region of integration is:

B e . @y - (h.12)
R P R ) N
9o % .

Recali that we are searching for transformations that_wili restore the
symmétr& of the independént case. Thé next move-possible.is to a?ply a
rotation in order to have the elipseFShaped density.fﬁnction oriented
along the new axes of the co-ordinate system. - Figufe 5{c) presents a
pictorial representatiog of the probability density function in this new

space ﬁ.defined by

)

by l ~ ”~
Ul 7 (Ul + U2

. (h.13)
A l Ton A o Lo

= —= (U, - U)
2 /oo 2 1
Notice that this transformation requires algebraic operations which
entangle the previous axes. The region of integration is this time

defined by:

_ 8 ;1 £ ® o 5
i a 0.=0, = v2' (U, U)o 'r(k'l%)
TP PR . 1 2% -
172 ql + 02

The symmetry will be restored by a further compression of the axes.

It can easily be seen that this is achieved by:

T S— )
== - |
A ) “(4.15)
© %2 .; |
)
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The correspondlng pilctorial representation is glven in Flgure S(d), and

the region of_lntegratlon is deflned by -

- LT o

. _ 1% :
. (aléce) - /““(u -T,0,
/i+p (o +52) _ . Q JEI— (U +g

(4.16)

S S St S et

l 2)

Appendix 1 gives & matrix treatment of the problem, and shows. _
how the inverse of the variance-covariance matrix defining £he‘quadratic

form of the bivariate normal isg gradually transformed from the general

express:wn

1 P
012 q102 .

— _l . . :

It o= (1-p9) | Can
[
6.0 2

172 - a,

]

to the simple expression of the independent equﬁl variance model'

ita (1 0) . R R .
= lo 1 _ - o (ha8)

after the three transformatlons defined by Equatlons (h.lO), (4.13) and
(4.15). | ) '
Notice that because all the transformatlons are llnear the 1so—ut111ty

llne OZ remains a line throughout; indeed it is glven by -

oz: . 1, = -0 (o)-0,) T, + V2 (0,-U,)0, S (lt';19)
Vitp (ol+02)_ Vi+p (cl+c ) .

_ Now,-the structural and numerical characteristics of the variance-
covariance matrix I are dependent on the coordinate system (utility space);

_in which it is measured. It is natural, therefore, to enquire sbout the
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form of the b331c problem in the new space in which the transformed

matrix Z is dlagonal. We should not expect the beneflt of an analytically
simpler density function to be obtained st zero cost, for the region
of integration Rn’ over which An is preferred in Equation (2.2), will

8ls30 be tranSformed.

In-general, under the transformation
y —T - oo (k.20)

the expression for Pn given in Equation- (2.2)

P, =g/ f(U)AU
It
becomes
P =R_i*h(l)”ldi . | - (k.21)

in which h(T) is the transformed demsity function, J is the Jacobian and
Rn* the new region of integration,

In the probit model (L.4), the algebraic menipulations and geometric
interpretations of the required transformations are essentially those of

principal component analysis. The surfaces of constant density in £-Space

are this time ellipsoids, given by the quadratic form.

QF = E? -1 £ = constant (k.22)

e~

We wish to invoke an orthogonal transformstion . -

Tepe o (b3

=

such that the vectors Vl _2,'..., Eﬂ, which are the columns of I, are

the the principal axes of the ellipsoid. In the new coordinate system,

the transformed matrix I, is written

{1
It

s

é

oy o---- N S |

= [0 A----0 (4.24)
0 0---- | - _ -
0 —===02rg/ ) | :

o

o
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in which Al’ cees AN'are the eigenvalues of Z. The eigenvalues and

corresponding eigenvectors are determined from the usual equatidn
¥ =AY r=1l, .., 8 | | (4.25)

The quadratic form (%.22) may now be written
| 2 | N S
QF = % | : 7 ' - {4.26)

=
A

H

end the transformed probit model bécomes‘l, . .

. 2 : : - ,
Po=g/I exp(-3 Eg_).di . o (b27)

n¥ X
: r

(5)

the Jaccbian of the orthogonal transformation being unity.

The transformed region of integration becomes

o+ (éT_T_)n. ) VA €A - ~(L.28)

— T —
Rut Uy + (Q_ T), 20U
which is quite an unhospitable region involving all components of
T on both sides of the inequality without possibilities of simplification,
and therefore rendering useless the effort to decbmpose_the multivariate

density function  (L4.l) into the product of univariate functions (k. 27).

Notice that this is not the case in the binOmial context. Conqider

equation (4.6) and define

05=p0, - 0,7P0,
olfl-&.- 02¢1~& : o
— T (L.29)

L S N N et

L . d e .a s LI > LI LI [ CRC ) L -8 e

(5) Variance covariance matrices are especially well-behaved. They are
square, symmetric and positive semidefinite.  All their eigenvalues
are real -and non-negative, the transformations that diagonalise them
are orthogonal, and further, their 1nverse is equal to thelr transpose
(Green and Carroll, 1976) :
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then it can be seen that Equation (4.6) reduces to

2, 2 2 - g 2,2, 2,
P = ne;w:p(--r|l/2(or:L 0, 2p0102)) r 21 exp(fn2/2(01H+62 206102))
1 — dn, r —dn,, (L.30) -
_ 2. 2_ - 2.2 S
2w(01 +0, _290102) 2w (o, “+o, 29“1“2)

that is, by means of the transformation- (4.29) the multiple integral (4.6)

has been separated in its two components, and e, has been eliminated from

: 1
the upper limit of integration of the second integral. Note also that

o 2 +0

1 o, - 2pg

192

is precisely ci » ' the variance of the newly defined variable N, = ;7€

By making another transformation, namely

t. = n,/o )
1 1 ﬂ2 )
)
_ ). (W.31)
t. = n./o ) - .
2 2 )
équ#tion (4.30) further reduces to:
- - 2 U21/0' - 2 L
B = s exp(-t,"/2) o ! ny exp(-t,"/2) o )
—ed K- o .
}2,". . . Von . ‘ -

where the first integrallequals'l and the second 1s none other than the
standardised normal cumulative distribution » {.), with tabulated values.

In this case then, the binary probit model

= J__é ' 2
1 = 0 (Uy/ 0y, 20090,)

o
I

_ (1.33)
Ppo = 1-8 |

T St Mt St N
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is very simple and efficient to use while still being. completely general, |
both in terms of correlation among altérnatives and"étand&fd deviations
of the marginal distributions. A& workable ver51on of the model, along -
these lines, but for three alternatives has recently been put forvard by

Hausman and Wise (1978). Unfortunately,.thls method is also non-generalizable.
Before abandoning the transformation theory, let us examine probit
models correspondlng to symmetrlc varlance—covarlance matrlces, approPrlate

to the utlllty functions.

I
d.
+
e

U{n,m) N m
and Uln,m) = U + u +U

as depicted in Figure 3. The block diagonal structure of-g in these cases
implj that the éigenvalues and eigenvectors of the matrix, will not mix
meny utility components from the 'branch' associated with'Dﬁ‘and from

other branches. Although this occurs, there is also considerable degeneracy
in the system characteristics, some eigenvalues being not unique. Consider

the model (3.14) in the simplest 2 x 2 case. ‘Thelg matrix.is given by

2 2 2 : .
{9 + Iom GD o | 0
L= 6.2 o %4, 0 0 o
= D D DM (4.34)
0 0 o .24, 2
D DM ¢
0 o . 0_2 GD2_+ a
D
Solv1ng for the elgenvalues A ylelds the equation . L
2 2 y 2 2 8 _ T ;
(oD + UDM -1} 2g (o + oy A) + UD = Q_.. L (&.35)
which simply reduces to _
i{(ue + o2 -1)2 - ch} = 0 'K ' o 7 (4.36)

D TDM

the degeneracy already apparent .The solution of Equation,(h,35) is simply:

2
Mo ODM

o ‘ e . S - o .
- - | S o (e

s
R
o
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In conelusion, 1t has been shown that it is p0551b1e to deIlne.
sultable transformations that ellow one to restore the. simplicity of
the integrand of independent equal*varience;models, t0 anyamore'genersl
function, although:in the case of models‘incorporating correlation '
among, many alternatlves, the method does not commend ltself becauae
the limits of 1ntegratlon of Equatlon (h h) become 2 functlon of the _
utllltles of several, if not all the optlons. Uelther does the method
work for simpler symmetrlc matrix structures, the problem this tinme
belng hlghllghted by the high degeneracy of the eigenvalues of the

matrlx.

5. .THE THEORETICAL ACCURACY OF ALTERWATIVE LOGIT MODEL'éTRUCTURES_
| . In Sections_E and 3, we ontlined a theofy of choice behavicur,
random wkility theory; Within its framework the behaviour of individuals
is govefned by rational decision—making emong-discrete-alternatives,
("hémo economicus'), the structure of models is determined uniquely by
the underpinning utility functlons, -and the structure of: correlet;on

or similarity between alternatlve cholces is the essentlal Ieattre wnl n

dlctates the complexlty of the model.

Ir 1t is accepted that 1nd1v1duals select alternatives and respond
to changes in a manner which approxlmates the assum tions of tn_s thQrJ,
there are two immediate practical consequences. Firstly as the three
_model structures in Figure 3(a) {b) and {c}, (MIL ard two slternative
HL models) are all specla.l cases of the more genersﬂ struc’fur in _I-":|.gnrf=
3(d} (in which O GM and QDM are all non-zero), any strictural
embiguity, as referred to earller in the paper, ‘may be ooviated if the

later model is 1mplemented

: Secondly, if a partlculaf model, sey.the hierarchical structure in
Equation (3.21) is adopted for forecasting demand response, the composite
utilities (3.19) and estimated elastlcltj ‘parameters B and A, mist Te
consistent with the theoretical condltlons undernlnnlng the model i 2.
satisfy 1nequa11ty (3.23). It has been found in Brltlsn Transport
Studies which have employed & HL of this form, that either conc1tﬂon
(3.19) or the parameter relatlon B & A have been violated, . These
violations can give rise to_Hiéhly unrealistic response proverties of

the models, as discussed by Williams and Senior {1977).
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While a theory of model structure (and correspondlng evaluatlon
measures (Wllllams, 1977)) now exists which is consistent with rational
choice behev1our, there are many theoretlcal and practlcal 1ssues which
remain ‘to be resolved._ 'The cross~correleted loglt model or general
- probit model appropriate to the utllity structure (3. 5) have yet to be
1mplemented and’ it has been suggested ‘that one should 1mplement all
three special structures (3 11}, (3 12) and’ (3 13) and select that which
yields the ‘best statlstleal flt and is con51stent w1th the theoretical
conditions outlined in previous sections. (Ben Aklva 1977; Senior and
Williems, 1977). It remains to assess the extent of mls—spec1ficetidn
involved in-the implementation of a particular model in circumstances
for which a more general representation is appropriate.*.In:this centext,_

©)

Monte Carlo methods provide a very handy tool.

We are row in a position to present‘a set of simulation tests on -
structural mis-specification which are designed to'examine the foliowing'
guestions: ) | |

(i);jHow good an sapproximation is the three parameter CCL ﬁodel

to the exact model generated from Equatlon (3.5) through
utility maximisations?

(ii) What potential errors are made by invoking the single parameter

MNL and two parameter HL models, which accommodate restricted
degrees of 31m11ar1ty between alternatives, . to an epproprlate

three parameter s];Jec:J.f‘].c:sa.tlon'P

Figure 6 depicts the experimental scheme. Data was genereted by -
direct simulation from utility functions of the form (3 5) for a Slmple
2 x 2 case. A whole range of models was tested whlch can be
convenlently divided into two classes: ' h

- " theoretical, i.e. with spec1f1ed parameters based on 7

‘knowledge of the values of the underlylng standard dev1at10ns,

- calibrated, i.e. with parameters Fitted by maximm likelihood.

The first class contains the four logit models discussed before (MNL,

two alternative HL structures and CCL) and-the second only the.first
(m e ‘

three.' !’ Because the 'calibrated' versions always performed better

-a “an . ) RN “na e v e e e )

(6) Williams and Ortuzar (1979) have used the method outlined here
to test the effects of theoretical mis-representation allowed’
"~ by the'relaxation of some of the" assumptlons essoc1ated w1th the
- decision process of 'homo—economicus'.
(7) 1In fact, it is prec1se1y the dlfflculty of calibratlng a CCL
“model +that has prevented its implementation.
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(8)

than the 'theoretlcal' versions » We will consider only the former

frqm now on.

The s1mulated data sets con31sted of the mean utllltles and
aggregate shares of each alternatlve. The MNL(g) (h options) parameter A
was estlmated by maximum likelihood (u31ng a Newton Raphson procedure

descrlbed 1n Appendlx 2) snd the HL(lO)

models were calibrated heuristically
and 51mllarly as a serles of blnary loglt models, the appropriate
ccmposlte utllltles prov1d1ng a llnk between the two. levels in the

hlerarchy. . , T

.Hav1ng_estimated or theoretically determined the parameters of the
models for a given data set (base data), a second set of data wvas
generated for a particular change in the values of the mean utilities

(say E-new = ﬁizld + 1) consistent_with the effects of a particular policy.

. This second set, the 'design year data' was compared with the
predlctlons of the models for the same change in mean utility values.
By th;s means, the response properties of the models were also assessed.
The comgiete mechanism is depicted in Figure 6; it can be seen that it
can easily be ada@ted to test not only structural mis-specification as
we did here, but more profound problems of theoretical mis—representation
(Willians‘and Ortuzar, 1979).

The simulation tests involved variation of the co-ordinates
(GD, Oy UbM). A standardisation or 'normalisation' condition to bound
the joint varlaxlon of these guantities, of the following form was used:

2 2 2 ' . :
OD + Ty + ooy = constant | (5 1)

and a particular co-ordlnate (UD, UM, UDM) corresponds to s particular
simulation test. To_lllustrate the posslblé combinations of these three
qnantities,_we appealed to that property of equilateral triangles whereby

the sum of perpendicular distances to the three sides from an interior

2s . C e om . sas T e m s ' .o B Y aesa - s “-nw" ase “«-as

(8} The approximations involved in the models preventing the specified.
parameters to repllcate the data as closely as the fitted parameters.

(9) In a first set of tests the mean utility in Equation (2.15) was taken
as U = U + U + U In a second set of tests, we examined the

effect of lettlng & particular component, say by puttlng Um
(10) In the first set of tests, the mean utility in the lower hlerarchy
of Equation’ (3 21) was taken as U = u, *+ U (and correspondingly

Un + U for the. alternaﬁive form) In the second set of tests the

_effect of omitting a partlcular component, say U = 0, could easily
be tested.
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point is a constant, equal to the height of the'triangle. Any test
point may thus be identified with a point in or on the boundary of the
triangle, as shown'in Figupeﬂ?(a)f, Ap.interiof'pqints a three parameter
model (such as theQCCL moaei)”is ﬁecessary to eaptﬁre the full range of .
cross substitution implied by the utlllty functlon (3 .5). On the .
boundaries CB and CA the alternaﬁe HL models for Whlch GM =0 and'dD =0
reapectlvely, are approprlate (see Flgures 3(b) and (c)) Tt is only

at the vertex C (i.e. UD = oy = 0) that the MNL is an approPrlate

spec1f1cat10n.

In addltlon to test p01nts randomly sampled from w1th1n the trlangle,
.fqur partlcular cofordlnate test p01nts, as shown in F;gure\?(b), were
selected for the presentation of results. Recall that in all tests two
alternaﬁives vere taken in each of ﬁhe D and M dimeneions, allowing a -

four alternative cholice model to be generated.

(11)

The general performance of the four models for these test,points_
is shown in Figure T{(ec). We have‘restricted ourselves to a comparative
gquality assessment of the fit, in that it is the relative performance of

the models in whlch 1nterest lles.(_l2

A visual display of the meaning
of this 1nfgrmal assessment, in the fonm of‘a“particular set of baee and
response results for the four models used to_fit.deta_geﬁerated fTrom

test point 2 in Figufé 7(b), is shown in Figure 7(d).

Under conditions of change, points in the second and fourth
qﬁadrants_of the right_hand side of Figure T{d) areedeemed pathological
because the.cﬁange in behaviour predicted by the model is ogﬁoeite to
that simulated. We found that this behaviour is associated with .the
violatien of the condition (3.23) in hierarchical_logit sﬁecifications.

If, for example, o, >> Ty then the HL gpecification M/D_corfesponding

Lo oy > oy will involve pathological behaviour. The condition, however,

R fea . “ee .« ‘v a e e . “ee " e -

{11) Resuits are shown for the first set of test only, i.e. when it
was agsumed complete knowledge of the mean utilities.
(12) The performance measures used were average relative errors (ARE)

defined as: . N
ARE =,% ¥ {|P51m Pm°d|/Pm°d}“
. o : =1 ‘ '
- .and a ¥ measure, deflned as:
2 N
X = 5 { 51m F;nod 2/Pmod
i=]1:

where N = n ',er‘of 0pt§9ns Ce.g}h)

.Pi;m.= siﬁu}dted.share of option i, i = Lyoeusl

od o ' ' L '
P? = modelled share of option i, i = 1,...,N -
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appears also to depend on the underlylng representatlve utlllty
values.(13) o

If we further examine the perfbrmance of the models as reported
in Flgure T(e), we note that the CCL appears to be a good approx1mat10n
to the general functlon (3. 5) - Its superlorlty to the other logit
| Ops. GM_and
Ony Were different from zero and from each other. The most surprising

forms was especlally apparent vhen the three coordinates o

and wélcome'outcome, howaver, Was the. remarkably robust performance

of the MNL, everi at interior points of the triangle and ESpeelally when
GD'= GM As expected the IIA property was. a consmderable 1mped1ment
near the sides of the trlangle except in the 1mmedlate reglon of

point C.

The last point to noté in thie_Section'is, that out of the
estimated models (MNL and two HL forms), that with the best base Fit
consiStehtly'prOvided 8 good estimate of the response to change:
this woulﬁ“eeem to lend some theoretical/numerical support for the .
suggestion of Ben Akiva (1977) that results of alternative HL and
MNL models could be compared and the appropriate model selected
eccording to the estimated value of the 'similarity' parameter,

which in our notation is B/A.

We offer no apologies for the fact that the simulation tests
were confined to a2 x 2 eXampie (4 options). We believe that the
results and conclu51ons in next sectlon would not be qualitatively
modified when the number of alternatives are 1ncreased because .the

structure of the variance-covariance matrix itself was the focus of +the

mis-specification tests. The' Gependence of the results on the number

(1k)

of options could, of course, be tested.

(13) 1In the second series of tests the effect of omitting a _
particular utility component - by putting Uy = 0, for example-
was determined. . All results were inferior to their counterparts
in the first series, as would be expected because the number of
'degrees of freedom'! of the model specifications had been .
reduced. The performance of HL (asymmetriec in nature) was ‘
particularly suspect and pathologlcal behav1our became more

prevalant. - :

{(14) More important, in exercises of this kind,-isito make sure that the
process converges. We found it was necessary to sample 30,000
obgervationsg to-get consistent results. The reader is referred
to Becticn 2. ‘
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6. CONCLUSIONS
In this paper we have presented the essential features of random
utility theory, both formelly and in a geometric framework which

provides a clear interpretation of the nature of choice;-

We have studled the- role of correlation and how the form of the‘
utility function uniquely determlnes the structure of’models, thelr
complexity belng dictated’ prec1sely by the structure of similarity
or correlatim between the alternatlves.‘ In this way, we have been
able to present the basic assumptlons of the most popular models,
multlnomlal-loglt, general probit and hierarchical logit, and

discuss their implications.

The general - probit model is the more‘conceptuaily-appealing
of model forms, although unfortunéteiy the least tractatié of'them
for more than small problems, and even then with some ret unknown
properties. We have investigated the possibility of invoking
transformatious-in utility space as a means of simplifying'iuc We have
shown that it is indeed possible to define suitable transformations
that allow one to restore the simplicity of the integrand of independent
'equal variance' models to any more general model, élthough-in the
case of models incorporating correlation among many alternatives,
what is gained on the ‘roundabouts is lost on the sw1ngs because
of the non—separablllty of the multiple 1ntegral (4.27) which in _
turn is due to the unhospltable form of, the region of integration (4.28).
Although transformatlons certainly give more insight into the problem,"
the potentlal for implementing them, even in the case of models w1th

symmetrlc varlance—covarlance matrices, does,not appear practlcable,

The results of- the simulation tests are consistent with the

following conelusions:

i)  The cross—correlatailogit model is ‘a good theoretical
~approximation to the three parameter utility function (3.5).
The superiority to other logit forms is especially apparent when

the standard deviations o and ¢.,, are rather different from

p* M DM ,
zerc and from each other. However its estimation is very complex

(Williams, 1977) and for this reason it does not commeud-itSelf;-
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ii) The multinomial logit model performs reasopsbly well at
inﬁeriof points of the triangle (indeed'it is considerably .
_more robust than we had antlclpated) and thls is partlcularly
true when UD UM. Its maximum error oceurs near the 31des of
the triangle (except in the immediate reglon of point C)
vhere the lndependence from 1rrelevant alternatlves'

property 1s:a considerable 1mped1ment.

iii) A good base fit does not necessarily imply a good response
"model, after all every model baiibrates'.,‘However, out. of
_the three alternative logit structures (multinomial logit and
| two hierarcﬁical logit forms}, the model which provides thé

Bést base fit‘pfovides 8 good estimate o:_the,responSe to change;

iv) A mis-specified model {typical case is the inappropriate
‘hierarchical logit form) will tend to display pathological
behaviour in a response context. However it is possible to
.recognise,the:symptoms at the calibration stage, by examining

the consistency conditions (eg. rule (3.23)).

- In these tests we examined the capability of extended members
of the logit family to accomodate the structure of similarity between
alternatives embodied in the utility function (3.5). The general
:probit function would be appfopriate in thié'cése; and indeed to more
general utility forms. Horowitz (1978) has, in fact, examined_the

potential mis—specification problems of the multinomial logit model

- when compared with a 3- alternative probit model. His results are
‘complementary and consistent with ours, in the seﬁse'that in most -
practical cases, the greater ease with which less consistent structures —
provided they are robust enough to coPe relatively well w1th not serlous

mig- sPec1f1cat10n — may be 1mplemented w1ll win the day

" Finally the powerful tool employed in our analysis, Monte Carlo
simulation, deserves an especial'word‘of praise.: We noted the increasing
application of the method in the7tr§nsport field, but we believe that
our particular use:here"créating artificiai date sebts on which the
effects of specific model mls spec1f1cat10ns can be tested in a controlled
manner, indicates one way ahead to attack the problem of model evaluamlon.
Indeed, it has already been usSed in a more ambitious project to test_for
theoretical ﬁisrepresentation and to assess the validity of'cross*Sectional_'

models in general (Williams and Ortuzar,iQTQ).
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APPENDIX 1

If Ul and Ué are jointly'ﬂisfributed bivariate normal; with means

Ul and.Ué, standard dev1at10n ol and 95 and correlation coefficient p,

_then the quadratic form {QF) -of f(U » U, ) is glven by

F={-3@W-oT gl(u-ﬁ)} | (A1)
el s i .
shereU=| |3 =1 i @-®». =] 12
Uz U U - U,
’c pa i =
1 1% _ 2 0.0, —
L= and I T =| %1 2 1 a-o,9"1
o 0.2
PG99 97 - 1
70102 022

the region of integration is defined by Ryt U, < Ul'“

In this appendix a matrix treatment of the general transformation.
indicated "in the text will be given, both to show that the procesggis
~ easily generalizable to more dimensions and to show how each transformation
in turn, affects the corresponding inverse variance-covariance matrix

defining tﬂé QF at. each stage.

First h generﬁl statement about how a transformation works in matrix
terms will be glven. It is worth rememberiﬁg‘that the QF, by definition,
is.a scalar, that is, its value is invariable to the transfbrmatlons, only

changlng the components that define it.

In general a transfbrmatlon ¢sn be represented by a matrlx A &ctlng

upon & vector such as in (A2) and over a matrix such as in (A3)14?:ﬁ

o= AU-D) (A2)

p=ant (83)
"The?QF in the new space defined by 1 has the general form:

QF' = {-3 1? ! Tt} - - (Ak)

We will show now that QF' is indeed equal to QF
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A(u-0r (a7)

‘and noting that A" (A1) = I =A% 4, the. unit matrix, and that by
definition any matrix or vector M when pre- or post—multlplled by I

remains unaffected, we show that

't = QF - | o (48)

In the reméinder of the appendix we will present each transformaticn
of the general case in the text and the form of the inverse of the variance

-covariance matrix involved.

a) The first transformation: (h.lO)_

_l 0 P
9 T '
A= 1 » in this case A" = A (A9)
0 %
Ul -0 ‘ -
and 47 = (D7 = R o o (a10)
o] 02
80 E = _. _ ) (All)
- 1
T2 2
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b) The second transformation: (L4.13)

(1)

o) e
N T

B> .
]

3

= >
L}

n
1 [
—_——
L
[t =
S

therefpre ;_1

(a13)
©ap; L 1A
and (A ?_ = s \1 1
L
& (A1)
L .
0 “1l4p
e} The last transformation: (}.15)
. —1 -‘
(1-p)~2 0 '
& . o Am
g o= - ’ . = é (Al6)
0 (14p) 2
N fl;p h o
L A — .
therefore | 1. (AT) 1= ) _ (A1)
| . 10\ - R R
* | Vo 1t o | N -



APPENDIX 2

The multinomial logit model has an analytic closed form given by:

Pn_10d - eAUf ) e '(Alé)
j 5 - T

e
5
where _
P?Od = modelled share of alternative j, j =1, Q..} N.
ﬁj = mean or representative utility of
alternative j, j=1, ..., N.
A = parameter to be estimated

In this Appendix we will consider the maximum likelihood estimation

of A given the values of ﬁj and the simulated shares P351 » of each

alternative j. We will use a standard Newton Raphson search mechanism,

In this simple case, the log-likelihood function of A(k), at

iteration k, is given by

. k)=
)y _ .= (osim_ A
LA = 2 U (R et ) (420)
Z'eA I%
J
and the first derivative with fespect to A(k) is
(k)z, | N
(£ g b U5)? 16,2 eA(k)Ui 5
pr(a®y = & | - e
A5, : ‘ ARG, : :
(ze i) Ie Tl
i . i

Now the Newton Raphson solution involves defining a next best estimate

A(k+1),

for the parameter, as

) o) ety a0, - - (a22)

and the maximum likelihood estimate will be that found when the process
converges (which always does, Domenc¢ich and McFadden, 1975), that is

when

(k) (k) -

A = A _(A23)
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