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ABSTRACT

MURCHLAND, J.D. (1980) What are the errors we should be
seeking to minimise in the estimation process? Leeds:
Univ. Leeds, Inst. Transp. Stud., Work.Pap. 126

Three methods of fitting & gravity model — a triproportional
model — to an observed trip matrix are compared. The first
is the familiar practical method of choosing row, column and
cost factors so that the model has the same row, columm and
cost sums as the grossed-up data. The second method, a true
maximum likelihood esbimation, chooses the factors so that
the sums of the observed counts (not grossed-up) are matched.
This differs from the first method only when the sampling
probabilities vary from cell to cell. The third method applies
the more modern approach of selecting a loss function which
represents the practical effect of differences between the
model values and the true values, and then chooses the model
factors so that the expected loss, as far as it can be determined
from the sample data and any prior information, is minimised.
Squared error in flow times travel time is proposed as the
losg funetion., It is noted that there is a loss function whose
use is eguivalent to maximum likelihood.

When the sample counts are large and the model fits well,
each of the methods reduced to minimising the weighted squared,
difference between the model and the saturated value. The
variations in these weilghts show the differences between the
three methods. '
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WHAT ARE THE ERRORS WE SHOULD BE SEEKING 70 MINIMIZE IN THE
ESTIMATION PROCESS?

J.D.Murchland
University of lLeeds Institute for Tmnspart S'&udies

1. Intredugtion

Grav:lty models of the distribution of trips from origins
amongst daatmtiens usually have their umknown parameters
estimated by :Eitting to a sample of trips eolleeted at one
point in time. (This is already a state of sin since there is
no guaran*bec that such 'emss—uetiea' estimates are the right
values in other circumstances — - especially for parameters that
are used as pr:l.ee elast:le:lties.) conventimlly the most

~ important parameters estimated fron the bage-year sample m the
time or cost band paraneters in a tabular attraemce :I.’tmct:l.eu,
or the parameters in a Itmetional attractamc function (such as
en exponential or gma mmtien). These m kept fixed for all
forecasts.

Three different estimation methods are briefly described
amd compared below., The tabular attractance function (tripro=
portional model) is mainly considered -~ the bipropertional case
is very similar.

2, &gﬂen and the fumection g!x !-

a row (origin)
a column (destination). .
a 'filet (time or cost imterval)
demtes jk1 , for brevity (or )k in the b:l.propert:l.enal
eau)

padll L T

£ sampling probability for cell 1 (zere if unebserved)
ny sanplq count for cell 4

* Version of 1979:6:17 with minor additions.
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D;= Dyyy - Prior value of flow tor cell 1, >0

Di is zero if there can be no flow for 1 , and
usually 1 otherwise, Commonly, there is only one 1
for which Bakl is not zero.

£, = 4 model flow for cell 1, taken to be
+ "'k + Wl

fmnﬂ.abkal k1 = e 3 Bm (1)

for a triproportional model
The function e(x) , defined as follows, is of great
use here. The function is illustrated in Figure 1.
e(x)=xInx <x + 1 for 0<x
= q for x=0, | (2)

It is strictly convex over [0y ) s ei(x) 18 lnx .
e(c) is 1, but e'(0) is ~=, FPor x close to 1

v

e(x) = & (x1)%, | (3)

A a measure of the difference between x and 1., o(x) is
approximately half the sguare error, but when included in an
objective function, it wom't allow = to Decome negative.

- The functions

£y o(0y/f;)  amd  £,7 e(ny/2,%)

are convex fumctions ef uj,vk,w,l (but not aj’bk’ol) and for
f close to D ,




e

£, o (D,/2;) o 3£~ D, /1, @)

which is like the xz goodness of fit measure.

The goal of the nedel is to forecast the punber of trips
from er:l.gin J to destination k in cost band 1 , averaged
over relevant days (all amnual weekdays, or all emnual days,
as the case may be). Hence the sample is drawn from the three-
way array of erigins by destinations by days of the survey
period-

The smpl:l.ng probabiuty is to be the probability
of sampling any of the trips in cell 1 over the survey
period, trips being teken in the sense of the model (as persons,
vehicles or commodity volune, weight or value units). The
comt n, for the sample is scaled up by 1[;[1 to give the
estimate for the cell.

For a roadside cordon point %, is the product of the
probability that the trip will pass through the point times
the probability of being interviewed if it does. Each point
gives a separate sample h , but these are easily combined 3
the counts n,, are added, and so are the probabilities W, .

If household interviews are a uniform random sample of
all zones over the survey peried, and so of all trips, their
sampling probabilities are the same for all cells.

Usually the sample counts .»; and %, are not separately
- retained in survey processing, but they are there :lmplieitly
in the scaled-up values and it should be possible to mwer
them, For a cell in whieh n; and hence the scaled-up
value, is zero, it will be necessary to use the mpling
probability of some other, non-zere cell, Judged to be similar,




Further work on sampling probabilities is undoubtedly
needed, since there are various complications — such ag home
interview samples of non-home-based trips, and a distribution
for the number of trip:units per interview (giving a compound
Poisson sempling distribution). '

4, Multiproportional adjustment

A general method of adjusting a set of positive mmbers
so that particular subsets add up to specified totals, is %o
multiply each number by a factor for each sum im which it
appears. As there are as many factors as sums this should be
successful., An obvious algorithm is to adjust each factor in
turn to make its sum correct..

Obviously this is not a statistical approach. It can be
reformulated as a minimization problem: find mumbers _f’_.,_ vwhich
are as close as possible to given positive numbers 91 subject
to the conditions that subsets of the £; sum to the given
totals,. where closeness is measured by the function e ,

ZiBi a(filBj,)' - 7 (5) .

As noted, if the fit is good this is appreximately a minimization
of the X2 measure of disagreement. This minimization refor<
mulation shows that if there is a solution, it is umique for

the f;, . Also, the product form for £; becomes a deduction,
not an assumption.

Multiproportional adjustment is the original method of
fitting the gravity model. In the biproportional case Bj_
would be the attractance function value if the cell was
ebserved, and otherwise zere, and similarly wnity and zere
in the triproporticnal case. The row and column (ahd cest)
sumns of the scaled-up. ‘gurvey comnts nj_ﬁﬁ would be taken as
the requ:l.red totals.
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In 11:3 s:i.nple form this does not take account of different
smh prebabilities for different cells. This is easily
remedied by using the ttci and Bﬁf 1np1acee:t £; -and B.t
in the objective function (5) and changing to sums of un-gcaled
counts n; in place of scaled omes. What 1z interesting about
the adjustment process is that, once the prior values Bi have
been chosen, 1t is only the observed sums which are relevant
and not the individual observed cell values, even if known.

The measure of elaaemss nay be ehanged to any similar
function, but then the computational problem becomes more cmplex.
and the property just mentioned is lost., It should be said
that there are similar adjustment problems which are net
multiproportional in the precise sense used here ('a factor
for each sum in which it appears!, only).

A popular general methed of paraneter estimtion from
sample data is maximum likelihood: that is, ehoose those
parameter values thet maximize the probability (or probability
density) of the sample. This is an intuitively plausible
criterion, and as the sample. 8ize becomes indefinitely large
the estimates tend to the true values. with the smallest
variance that an estimatnr ean have.

- For a specified sempling method, either Poisson (at random
according to the sampling probabilities) or multinemial (at
random, according to the relative sampling pmbabilities. to
obtain & chosen sample size), maximum likelihood estimation
nay be mily applied, assum m ‘that the model is specified to
be eof produet form

o = 25Pk%: g | | (6)

(Djkl>° given, usually zero or ome aecarding as the movement
is possible or not). Indeed this gives = simple form of what



is called a "log-linear?! model, about which there is a large
literature.

If there are several independent Polsson samples they
combine into one, &s noted above., For this case maximum
likelihood estimation becomes, computationally, a multiproportio-
nal adjustment problem, indeed the same one. Of course, the
interpretation is different. Now it is the matching to observed
sums of counts n; which is deduced, instead of postulated.

Thw residuals are always of interest in Judging the f£it
of the model for particular cells. In terms of what the
minimization actually does in choosing parameters according to
this criterion, the residual should be measured by

vhere f:l. denotes the minimizing vaiue. (The appropriately
‘simd square root can be taken to get & signed measure of
-departure which, if ny is large and the model fits, is
s.ppmx:l.mtely a standardized deviate.)

A single multinomial sample is cumtatianaly the same as
& Poisson semple, but several overlapping mualtinomial semples,
or one or more combined with e Poisson sample, give a little
' extra complication.

Meximum likelihood estimation naturally suggests a goodness
of fit test. It is useful to compare the fit with the assumed
product form model with that from the 'complete! or 'saturated!
model which just takes the sample estimate nihri for each
cell., - A

Now for the objections to maximum likelihood. The advanta-
ges listed are rather weak — any reasonable method will have
the same large sample properties. For small samples there is
no guarantee that the estimates are unbiassed. The method seems to.
‘depend on the truth of the specified model. However the abiding ob-
Jection is that the maximized likelihood has no practical
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interpretation. It is one particular criterion, which cannot be
changed to meet the needs of a specific problem. It will not indi-
cate the value of collecting further data, except in the single
sense of a reduction in the estimated asymptotic variance of the esti-
mated parameters, and seems to make no sense at all if sampling error
is negligible relative to the approximation inherent in using the
model specified.

6, Optimal statistical decisions

The essence of an eptimal decision appreach is that the

- best ch@ice of model parametbers are those which minimize  °

_ the expected loss. The loss function for the particular -
problem represents the cost lncurred if the chosen model ...
velue differs from the actual value. The expectation is teken
over the distribution of possible values for the actual value,
conditional on any available prior information and on the
available sample data, Cheices of parameter values are con-
strained by the form of model adopted.

. Consider one cell i in isolation. The indication 1
is omitted for the moment. Let m >0 denote the actual
paremeter, ¢,(m) its probability distribution conditional
on the sample, and £ the chosen estimate,® If

denotes the loss when f is chosen but m is the actual
value, then the expected loss from choosing f is

e'L(:r.m) = f ”L(f;m)‘f(m_)dm | (9)

If a Poisson sample of ny for the cell, obtained with |
a sampling probability of 7%; , is available, it is convenient
to assume that the prior distribution, #,(m), has a gamma
form

*The notion that the true value of the parameter has a probability
distribution is a new viewpoint. '



o<, B - (106)

where o« and B, express the prior information. This
has mean aolﬁe and veriance %/Be"‘ s and the prior
information may be interpreted as equivalent to a sample
count of &, obtained with a sampling probability B,. The
convenience of this distribution lies in the fact that the
posterior distribution after the sample n,% has been ocbtained

will also be of gemma form, with
% = o +n By =By + W » | (11)

and s0 a mean of (a°+n)/(B@+?C) and variance (%+n)/(Bo+ﬁ')2 .
(As a bomus, the integrals for the expectation can be looked
up in a table of Laplace transforms.)

If no prior information is available, the limiting form
%= 0.y P,= 0 should be used (a so-called 'diffuse prior!)..
Note the importence of prior knowledge when n; happens to be

zero.

Two simple forms of 1@3; function are the deviatieh

L(z,m) = It-m] | | a2)
and half the aquared error _(qm@ratic fumetion)

L{z,m) = #(£-n)® . (13)

If £ is not comstrained (the saturated model), the expected
loss is minimized in the deviation case by choosing a median;
end in the quadratic case by the mean., When f is constrained
the expected lose splits into a part which would be incurred
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even by the saturated moedel, and a part arising from the
difference between the comstrained value and the saturation
value. Figure 2 shows several loss functions,

Vhat is ‘the most appropriate loss function for the
fitting of a model of trip distribution? Amengst absolute or
relative error in either flow or flow times evaluated travel
- time there is a strong argument for absolute error in flow
times evaluated travel time, namely: this is the quantity which
enters inteo economic and other evaluation. (Evaluated time,
that is evaluated perceived goneralizeel cost expressed :I.n time
units, will vary markedly between different purposes, because
of the mueh higher values given to commercial or business
purpose trips, but usually each purpose is fitted by a separate
model.) Accident exposure depends on time on the roed.
Assignment is concernmed to get the correct totzl time on the
netwerk, or possibly kilometerage, and also if a cell is
misestimated, it will comtribute incerrectly to every cordon
which its routes cross., Again this argues for flow times time,
rather than flow alone, w | |

Let Tj_ denote the travel time, or other weight, for |
cell i, The weighted deviation loss function

21t~ m| | (14)

is probably the form that would be generally preferred,
Although this is not intractable, it is harder to handle than
the weighted quadratic loss function

w2(e-m )2 , | | (15)

whose expected value over the gamme distribution is
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e I AW (16)
By
where @&y = &gy + By , Byg = Bog + g - (17)

The optimal decision approach for the triproportional medel
(1) thus chooses 855Gy minimize

,aj);ri(ri-«, /By ? . (18)

This objective could have been proposed directly, but the .
optimal decision approach has related it to a chosen deter<
minate loss function, to the Poisson sampling used, and to
any prior information available.

The minimization may be carried out by minimization with
respect to each variable in turn, Just like muitiproportional
adjustment. Por aj s for instance,this gives

ay "'"'E:l!%kl(bkelﬂjkl ' / E,_Tgkl(‘ﬁ ;Jk;f By k1 Pe®1Pax1s  (19)

end similarly for bk and Cqe Unfortunately the objective
function is not convex in a ,bk,el (or u;j"'k’wl) s but
provided all the variables are bounded the algorithm will at
least converge to a local minimum {Luenberger). Unlike the
multiproportional or maximum likelihood problems, the observed
row, column and cost sums are not.used, and the cell estimates
“11/511 (essentielly the gmssed—up observations) are
eenstantly employed.

There lies the apparent disadvantage of this éstimtien
method: the row and column sums play no special mle, and
the forecasting problem has to be rethought afresh. (One may
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comment on the asymmetry of the usual approach: why retain the
base year cost factors and forecast future row and colwm
 sums? Why not retain base year row and column factors and
forecast future cost sums? Why is it easier to forecast
numbers of trips tham total travel times?) It would be possible
to retain the customary bipreoportional forecast, assuming the
forecast for the base year was close enough to the base-year
fitted model. |

There is & curiosity, vwhich perhaps has a deeper explanation.
If the loss function is chosen to be the former error
measure

By fe(m/£) (20)

the expected loss turns out to be
E'B;‘-ta.(nlf) _-Eﬂe(mﬁ{la.n,') + Byre(ay /B iL) . | (21)

The first term on the right band side is the wnavoidable
expected loss from the saturated model valae a1/B1.
it evaluates to

| 1y P T 22
oy (¥(og#1) = In ay) 3652420, )

where U is the psi or digemma function (the derivative of the
logarithm of the gamma function), and the approximation is accu-
rate for large o, and is otherwise within .02 of the correct

value.

Hence with this loss function for a Poisson sample the
decision approach is identical to maximum likelihood. Maximum
likelihood has been Justified!
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If the loss function for the decision approach is changed
from the gquadratic form (15) to the weighted form of (20) which
has approximately the same value for small errors.

L(fym) = PPe(n/t) = %1-2(:%)2 (23)

the minimization problem (18) is now convex in the parameters
uj*vk,wl‘ This is desirable computationally. For large errors.
the true quadratic (15) gives a much greater penalty than (23) -
for a poorly fitting model.{15) will sacrifice everything else
t0 a minimization of the very largest errors. Choosing a loss
function requires not only a choice of what quantity to measure
the loss in,:but algo how large errors should be weighted rela—
tive to small ones.

7. QConclusion

Three approaches to estimation of a base-year trip distri-
bution model have been presented. They can be succintly compared:
for Poisson sampling, subject to the model form imposed

the original form of multiproportional adjustment to sums of
scaled=up counts minimized

L gyetmy/em) = 42 3 (epon P (25)
ok osty

whila the latey form with sums of unscaled counts, and
maximum likelihood, both minimize

L otetn/tm) 2 4) Plemm?, s
0 ti 0o ﬂi
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while the decisien approach minimizes the chosen loss (15)

2 Tz(ti—nilfr ' (@7)
ok, "

if there is no prior information, where T:l iz the
evaluated travel time. While the weighting factors ?61/11
and TE have some general resemblame. because large
times are asseeiated with few trips, they will not be very
close, and the fitted parameters are 1:|kely to be
substantially different.

The optimal decision method hes the adventage that the
objective is meaningful practically, and the minimized value
expresses the expected error in the fitted medel. It can
also utilize prior information. So far it has not been tried
mmerically., However, its adeption would seem to require
rethinking the method by vhich forecasts are made from the
_base-year Iitted model.
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