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ABSTRACT 

GUNN, Hugh F. (1981) Value of Time Estimation. 
Leeds: Univ. Leeds,Inst. Transp. Stud., Work. Pap. 157 

The s t a t i s t i c a l  aspects of the procedures by which values 
a r e  placed on savings i n  t r ave l  time, on the bas i s  of s ta ted  o r  
revealed preference data, a re  discussed and analysed. Conclusions 
a r e  drawn f o r  the design of such experiments. 

This work was undertaken i n  the  course of a l a rge r  project  on 
value-of-time estimation commissioned by the  Department of Transport. 
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1. THE STATISTICAL PROBLEM. 

1.1 Introduction 

1.1.1 There are  two priilcipal approaches t o  the valuation of t rave l  

t i ne  savings: 

a )  by t he  analysis of the outcomes of choices made between numbers of 

options with dif fering, t rava l  time and cost character ist ics,  and 

b )  by the  analysis of direct. estimates of the  difference i n  at t ract ive- 

ness of pairs of options which d i f fer  i n  respect of t rave l  time and 

cost character ist ics.  

When the  f i r s t  approach is based on observed behaviour, i .e. rea l  options 

and actual  choices as  revealed by subsequent actions, it i s  usually termed 

a 'revealed preference' method. When the  choices are hypothetical i n  

the sense of not comitting the  chooser t o  any action, it i s  usually 

termed a 'stated preference' approach. The second approach had been 

cal led ' t ransfer  pricing',  although i n  principle the  measure of difference 

i n  at t ract iveness could be sought i n  terms of t rave l  time. 

We sha l l  not discuss t he  way i n  which ' transfer pr ice'  estimates are 

obtained i n  de ta i l ;  put a t  i ts simplest, t rave l le rs  are invited t o  

consider changes i n  t he  cost and time at t r ibutes of options, and t o  indicate 

the  amount of var iat ion that  would be needed t o  make the  options equally 

a t t rac t ive  t o  them. 

1.1.2. The analyses require tha t  the l i nk  between behaviour and the  

chosen se t  of explanatory variables, or the  l i nk  between the estimates of 

t he  difference i n  attractiveness and the  se t  of explanatory variables, 

be made expl ic i t  i n  parameterised model. Theory suggests only general 

forms fo r  such models; the f i na l  choice of a part icular form and of a 

par t icu lar  se t  of factors by which t o  characterise the  options must be 

resolved by empiricalmeans, which is t o  say by t he  data themselves. 



The l imi tat ions of the  accuracy of the  model used i n  t he  analysis together 

with the  amount of data avai lable determine the  accuracy with which the 

parameters i n  the  models can be determined and thus the  accuracy with 

which values can be ascribed t o  t rave l  time savings. 

1.1.3 The s t a t i s t i c a l  aspects of the  problem can be l i s t e d  under f ive 

headings : 

1. How should we draw sample ? 

2. How la rge  must the  sample be ? 

3. How should we estimate the parameters i n  any model ? 

4. How should we choose between r i va l  models ? 

5.  How can we val idate our preferred model ? 

These f ive issues w i l l  ar i se  i n  any given survey context, and indeed it 

w i l l  be shown tha t  the  accuracy with which we can estimate model parameters, 

for  given sample s ize  and survey method, var ies from context t o  context, 

so tha t  the choice of experimental contkxt i t s e l f  should be made with 

reference t o  the  basic s t a t i s t i c a l  problem. 

1.2 Structure of the  Working Paper 

1.2.1 Throughout most of t h i s  paper, we sha l l  assume ourselves i n  the 

posit ion of considering the col lect ion of disaggregate data se ts  for  

value-of-time estimation. The insights gained on the  issue of sample 

s ize  w i l l  then a s s i s t  i n  the  scrut iny of exist ing data se ts ,  and of course 

the conclusions reached on model select ion, estimation and val idation 

apply equally t o  such data. In principle, t he  resu l ts  a lso apply t o  the 

analysis of aggregate data se ts  such as conventional mode s p l i t  o r  d i s t r i -  

bution data, where these can be interpreted a s  the  outcome of  a discrete 

choice process. :- -Some approaches to-value-of--time : r: ~. . .. ~. . .  -. 

es%i.r&tiim are-; based on analyses of overal l  t rave l  expenditure, o r  the  

variat ions i n  demandfor a part icular  mode as a resu l t  of changes i n  

journey times and changes i n  costs. The s t a t i s t i c a l  ljroblems associated 

with the analyses of such data are of a more conventional nature, and 

are also described br ief ly .  



1.2.2. In contrast ing the  s t a t i s t i c a l  propert ies of estimates of 

model co-efficients based on transfer-price measures of the - s ize  

of the  u t i l i t y  difference with those based only on the  & o f  the 

u t i l i t y  difference, we sha l l  t a l k  of 'maximal' accuracy under f a i r l y  

strong hypotheses about t he  accuracy of the t rans fe r  pr ice.  In 

pract ice,  the  degree of success of any t ransfer  pr ice study must depend 

cruc ia l ly  on the  s k i l l  with which the t ransfer  price question i s  posed, 

as well as the  su i tab i l i t y  of the context for  such an approach. 

These probBems present issues which can only be tackled by empirical 

research. 

1.2.3. Final ly, we emphasize a t  the outset t ha t  t h i s  paper se ts  out 

a theoret ica l  analysis of the  s t a t i s t i c a l  aspects of value of time 

estimation. The methods outl ined below, and the  formulae given fo r  

simple models, can be elaborated t o  address speci f ic  models and contexts 

once certain key fac ts  a re  made available. Such information should 

be acquired during the  course of a pi lot ing exercise. In advance 

of t h i s  information, we provide rough guidelines wherever possible, 

based on past studies. 



2. BASIC ASSUMPTIONS OF THE MODELS 

2.1 Introduction 

2.1.1 The concept of 'random u t i l i t y '  allows us t o  progress from the 

unfals i f iable and uninformative assertion tha t  behaviour can be 

described i n  terms of u t i l i t y  maximisation t o  the stage of postulating 

concrete model forms t o  describe and predict behaviour and t o  establ ish 

a ra te  a t  which time saving can be subst i tuted fo r  cost saving t o  

maintain the same leve l  of sat isfact ion (the 'compensated marginal value 

of t ravel  time saving' as defined by Bruzelius, 1979). The device of 

specifying the u t i l i t y  function only up t o  a random error  term with 

unknown variance not only allows us t o  proceed with our ( inevi tably)  

approximate models of behaviour (as Daly, 1980, remarks) but also allows 

us t o  measure the re la t ive importance of the factors omitted f romthe 

model specif icat ion i n  any part icular context, by estimating tha t  variance. 

. 
2.1.2 Specification o f t h e  'representative' u t i l i t y  fmct ion and- 

\ 

- 
~ '~'* 

sh;ecification of t h ~ k a n d o i  erro$ term, d$fines a complete model which 

can then be'manipulated t o  y ie ld  both a probabil i ty density function fo r  

the difference betwee h the u t i l i t i e s  of  any two options (and hence a 

distr ibut ion fo r  the corresponding Transfer Price estimate, were we t o  

equate tha t  with the u t i l i t y  difference) and a corresponding expression 

for the probabil i ty t ha t  a part icular one of t he  options has greater 

u t i l i t y  (and hence would be chosen by the  ' rat ional  decision maker') 

than any other. Both the p.d.f. for  the t ransfer  pr ice and the  probabil i ty 

t ha t  a par t icu lar  option is  chosen are defined by the 'complete model', 

the specif ied representative u t i l i t y  expression and the specif ied error  term. 

Both are functions of the ( i n i t i a l l y  unknown) parameters i n  both 

specifications. Standard s t a t i s t i c a l  techniques can apply t o  e i ther  

t ransfer  price data o r  t o  observed outcomes of choices; i n  

e i ther  case the analysis can be made consistent with the same underlying 

model, 



2.2.1 Following the  now c lass ica l  account of the  theory underlying 

discrete choice (see for example i n  Williams, 1980) we can describe 

our analysis of the  preferences indicated by par t icu lar  individuals over a 

f ixed number of options, N say, as being based on the  following postulates. 

1 )  An indiviaual drawn a t  ranaom from the  population, with par t icu lar  
- 

observed character ist ics,  constraints and facing a part icular  se t  

of options, is assumed t o  be drawn from a subpopulation of 

individuals with ident ica l  observed character is t ics ,  cons t ra i *~  and 

options. 

2)  Each of these individuals i s  assumed t o  .associate a net u t i l i t y  

with each option, U . ,  i=1, ..., N , and t o  se lec t  tha t  option w i t h  
1 

the highest value of U. 

3)  Individuals within the subpopulation with ident ica l  observed 

character is t ics ,  etc. ,  a re  assumed t o  vary i n  respect of some 

unobserved character is t ics ,  i n  such a way tha t  the  net u t i l i t i e s  

U1, ..., UN each vary randomly across the  subpopulation; t h i s  

var iat ion can be described by a jo in t  density function, f(Ul, ... UN) 

say. Drawing an individual a t  random from the subpopulation 

resu l ts  i n  observing preferences generated by a vector of net 

u t i l i t i e s  drawn a t  random from t h i s  joint d istr ibut ion.  

2.3 Models 

2.3.1 We then postulate tha t  the  nature of the  var iat ion of each Ui 

across the  subpopulation of individuals with ident ica l  character ist ics 

can be represented i n  the form 

where Ei, the 'representative u t i l i t y l , i s  f ixed fo r  a l l  members of t he  

subpopulation, and is a f_unction of observed character is t ics  Li describing 

the option and the s&population, a number of unknown pameters  &.;k,~ - - 



is  a vector of error  terms drawn f romepar t icu lar  d is t r ibut ion G say, 

which i t s e l f  contains unknown parameters,& say, and may a lso be a 
1 N 

function of the  observed character ist ics Z ; .. , Z . 
We can thus wr i te t he  d is t r ibut ion function of t he  disturbance terms 

1 N 
as G ( S , & , E , - , ~ ) .  

The most popular of the  models that  can be generated by spec i f ic  

assumptions about the form of TI and the form of G are described i n  

Gunn e t  al (-1980). 

2.4 Data - 

2.4.1 Revealed preference data se ts  then consist  of the  vectors of 

observed character ist ics for  each option avai lable,  together with an 

indication of which option was selected. Stated preference data se ts  

can a lso  include a ranking of preferences extending over a l l  o r  par t  of 

t he  s e t  of options. For t ransfer  pricing data se ts ,  the  data re fers  t o  

comparisons of pa i rs  of options : f o r  t ransfer-pr ice 

studies (such as those reported by Hensher, 1976, and Lee and Dalvi, 1969 

and 1971) only the  comparison between the  option actual ly selected and the  

next-best of the  avai lable options a re  compared, although there appears 

t o  be no reason (other than decreasing c red ib i l i t y  o f  the  data) why 

comparisons should not be made between a l l  possible pa i r s  of options. 

For each pa i r ,  an estimate of the  u t i l i t y  dif ference i s  col lected, together 

with the  two vectors of observed character ist ics.  

2.4.2 For the  purposes of i l l us t ra t i on ,  it i s  convenient t o  consider 

a simple case which can be presented graphically. Suppose we had a 

population of individuals with ident ica l  observed character is t ics ,  choosing 

between two options each of which was characterised by only two observed 

dimensions. We can consider t h i s  as a highly simpli f ied representation of 

the  choice between two very s imi lar  modes of t rave l ,  d i f fer ing only i n  

respect of time and cost character ist ics.  For t he  two modes, l e t  us 

make the  usual d ist inct ion between the  posi t ive u t i l i t y  t o  be gained a t  

the end of the  t r i p  and the  -ut i l i ty  incurred during t rave l  i t s e l f ,  and 

wr i te the  u t i l i t y  expressions for  individual j as 



j where the  termsr) a re  disturbance terms of a magnitude and sign 

usually unknown t o  the  modeller, and about which we would usually 

only hypothesise tha t  they were drawn from an underlying distr ibut ion 

whose general form could be-specif ied, having un i t  variance. 

The net u t i l i t y  difference between the o ~ t i o n s  is then eq. 3 - - 
j l  - j 2  j2 j - u j )  = -8 (Z  Zl ) - B2 (z? - Z2 ) + (4 - o;) C U 1  2 1 1  ... (3)  

and as usual, we would assume tha t  mode 1 would be selected if U were 
1 

l a rger  than U2, and U only selected if U were smaller than U 2 1 2' 
(We sha l l  ignore the poss ib i l i t y  of kquality:) 

2.4.3. For each individual, we can p lo t  a posi t ion on a ( ~ e e s l e ~ - )  

graph with axes (z? - z?) and (zF - z j2 )  corresponding t o  the  net 
2 

dif ference i n  observed character ist ics i n  the  options confronting the  

individual. Let us assume tha t  (z? - z?) represents a difference i n  

journey times and denote t h a t  axis by AT. Similarly, l e t  ( z F -  zF) 
denote difference i n  costs, and denote tha t  ax is  by AC. 

Working Paper 6 has descr ibea the  essent ia l  indeterminacy i n  the  uni t  

system appropriate for  such expressions, and we have seen t h a t ,  providing 

we take care t o  make consistent adjustments throughout, we can work 

i n  any u n i t  we please. For example, i f  we choose t o  s e t $  t o  unity, 

leaving 8 as a parameter t o  be estimated, we must a lso acknowledge the  2 
need t o  estimate the  scale parameter i n  the d is t r ibut ion function for  

the  disturbance term. (The more usual approach is t o  standardise tha t  

scale parameter t o  unity and express the  problem a s  one of estimating 

both and 02: i n  pract ice, of course, t h i s  amounts t o  exactly the same 

thing). To i l l u s t r a t e  the  relat ionship between the . t rans fe r  pr ice and 

revealed preference approach, it is  usef'ul t o  work throughout i n  money 

un i ts ,  so  l e t  us rewrite eq 3 a s  

/ 2 Where = B;! and vm E = l / e l  In t h i s  fonn 
3 

var E must now be estimated. 
.a 



For one particular individual, suppose the centre of the circle on 

figure 1 denotes the point corresponding to the difference in character- 

istics of the options which confront him, and let L denote the distance 

of the centre of the circle from the line ( L C )  = -e3(AT), measured 

parallel to the (AC) axis as shown. Since we have hypothesised that 

our individual is 'rational', he will choose to take mode 2 if and only 

if the net utility he will gain is greater than that arising from a 

choice of mode 1. This will only happen if the net value of the 
j unobserved faCtors in the utility expressions, 6 - E?), is less 2 

than -L. 

Figure 2a illustrates the sort of pattern we might observe in practice, 

denoting the choice of mode 1 by a hollow circle and the choice of mode 

2 by a shaded circle. As a result of the presence ofthe unobservable 

factors, some individuals choose modes which are apparently inferior in 

their net time-and-cost characteristics, and indeed some choose modes 

which are apparently inferior in each of time-and-cbst characteristics. 

FIGURE 2a f" FIGURE 2 h  &‘vGitf2) 



Now l e t  us suppose tha t  the net ef fect  of the  unobservables (E '  -€ .  ) 
1 2  

could be determined tha t  weknew6 and tha t  we could replot  each - 3' - 
individual on a graph with axes AT and ( A  C- E +E ). Figure 2b 

1 2  
i l l u s t r a t e s  the expected resu l t :  every individual i s  now seen t o  be 

making a rabional choice. 

2.4.4 The t ransfer  pr ice questions described i n  Working Paper 6 are 

intended to-discover the  net- u t i l i t y  difference between the options 

for  each individual; i n  f igure 2b, t h i s  would correspond t o  the  

distance from the ' location' of each individual t o  the  l i n e  ' 

E +.E )=--0 AT measured para l le l  t o  the (AC - el + E ~ )  axis. 
1 2 3 

It i s  easy t o  see tha t  I F  we did have a measure of ( E ~ -  E ~ ) ,  AND the 

t ransfer  pr ice data did t ru l y  represent the  net dif ference i n  u t i l i t y  

between the options, we could 

replot  the points corresponding FIGURE 3 e  

t o  each individual on a graph 

with axes AT and ( AC 7 + E~ - TE), 

and tha t  we would then f ind tha t  

a l l  the points lay  on the l i n e  

(AC - E~ f E~ - TP)=-8 AT, a s  
3 

i l l us t ra ted  i n  f igure 3a. 

FIGURE 36 

% 
In pract ice,  we only know AT and AC-TP 

Plot t ing individuals' locations on these 

axes produces a s e t  of points scat tered 

about the  (AC-TP)=-8 AT l i ne ,  as on 
3 

Figure 3b, where the  displacement from 

the l i n e  is jus t  t h a t  which distinguishes 

'dC-'')r-'>~r f igure 2b from f igure 2a, i .e. the net 
.( e effect of the  unobservables. 

The estimation of t he  slope of the  l i n e  then becomes a matter for  

s t a t i s t i c a l  resolut ion, given the e r ro r  d is t r ibut ions of these 

unobservables. For example if they were a l l  normally d istr ibuted with 

constant variance, we would f i t  the famil iar ' l eas t  square' regression 

l i ne .  
\* 



2.4.5 In pract ice,  of course, it is desirable t o  allow fo r  t he  

poss ib i l i t y  t ha t  the t ransfer  price data does not give an exact measure 

of the  u t i l i t y  difference between the options, but is  i t s e l f  subject 

t o  certa in errors.  This poss ib i l i ty  is  discussed by Daly (1979) who 

demonstrates tha t  simple solutions a re  avai lable for  conveniently chosen 

error  d istr ibut ions.  Daly* has also noted tha t  an elegant d is t inc t ion 

can be made between the  distr ibut ions of t rans fe r  pr ices i n  t he  context 

of choices actual ly made and those fo r  hypothetical options and 

contexts, i n  t ha t  the former can be res t r i c ted  t o  take only 

posi t ive values. Thus, a t  the  expense of some ext ra  complexity, we can 

ensure t h a t  t he  t ransfer  pr ice question can only add t o  our information 

if we actual ly know the  outcome of the  choice. 

* pr ivate communication. 

-. . 



3. ESTIMATION 

3.1 Introduction 

3.1.1 The relative advantages of the various methods by which 

probabilistic choice models can be estimated are by now well known 

(see for example Stopher and Meyburg, 1976) and the analysis of transfer 

price data calls only for the straightforward application of regression 

methods (Daly 19781. We shall not discuss these here. 

3.1.2 Instead, in recognition of the historical importance of the 

'Beesleygraph' approach in connection with the analysis of binary choice 

data for value of time measurement, the interest there is in the 

connection between this method and the more recent probabilistic choice 

analyses, and the importance of the related issues of use of data, we 

shall use this section to pursue the graphical illustration of the 

previous section in demonstration of the essential differences between 

the methods. 

3.2. Beesleygraph versus Probabilistic Choice Analysis. 

3.2.1 The 'Beesleygraph' technique can be simply illustrated as 

follows; obtain a sample of outcomes of choices between two options 

differing in respect of time and cost characteristics, and plot these on 

net time cost, net money cost axes as on figure ha, distinguishing as 

before between those points at which the outcome of the choice was that 



mode 1 was selected and those points a t  which mode 2 was selected. 

The problem i s  then t o  f ind tha t  stnaight l i n e  drawn through the origin 

which minimises the number of points a t  which the  mode chosen i s  

apparently inconsistent with ra t ional  behaviour i n  terms of time and 

cost alone. 

The data points i n  the  f i r s t  and th i rd  quadrants are redundant for t h i s  

analysis;  were trading t o  occur on time and cost  alone, mode 2 should 

always be chosen by those i n  the f i r s t  quadrant and mode 1 by those i n  

the  t h i r d  quadrant, (one mode being be t te r  than the other i n  ' a l l '  

respects i n  these areas).  

3.2.2 Figure 4b i l l u s t r a t e s  the process with a l i ne  drawn which resu l ts  

i n  only two apparently ' inconsistent '  observations; 'consistency' would 

require tha t  a l l  decisions characterised a s  points p lo t ted above the l i n e  

l ed  t o  mode 2 being selected, since i n  t ha t  area we have AC > 8 AT 3 
or  (c1-c2) > O 3  (T1-T2) i .e .  the value of the time saving offered by 

mode 2 outweighs i t s  extra cost (above the  l i n e  i n  quadrant 4) o r  the 

cost saving offered by mode 2 outweighs the ex t ra  time taken (above the  

l i n e  i n  quadrant 2) .  Similarly, a l l  'decision points'  below the l i n e  

should resu l t  i n  the  select ion of mode 1. 

3.2.3 Now l e t  us consider the  corresponding analysis provided by, f o r  

example, l og i t  analysis, using exactly the  same model of net  u t i l i t y .  

The probabi l is t ic  choice analysis supplies, for  every point on the decision 

plane, a probabi l i ty  tha t  mode 1 would be selected (and of course the 

probabil i ty tha t  mode 2 would be selected is thus defined a t  t he  same time). 

We can i l l u s t r a t e  the  end resu l t  

by drawing a ser ies  of iso- 

probability-choosemode-1 l i n e s  

one the decision plane, a s  i n  

f igure 5. It can now be seen 

qui te vividly tha t  the  d a t a  

must supply an extra piece of 

information, for the  model 

requires not only an or ientat ion 

for  the  iso-probabil ity l i nes ,  

but a ra te  of change also 

P C   rob( mode t I 

I* 



For example, in figures 6a and b we have iso-probability lines 

corresponding to differences in orientation(va1ue-of-time) but not 

rate of change, and in figures 7a and b we show differences in rate- 

of-change for lines with the same orientation. 

P. 
' '3 A c  

'.. FIGURE 6a 
9 ' '9 

. . We are free to choose a 

system of units for our utility expressions, provided that we remember 

that the dispersion of the random element must then be made parametric. 

The rate-of-change of the iso-probability lines is determined by just 

this dispersion. The requirement that the data determines this rate-of- 

change reflects our implicit choice of a particular unit system (money) 

in our example. 



3.3. Conclusions 

3.3.1 The example given above i l l us t ra tes  exactly why the probabi l is t ic  

choice models are potent ia l ly  more powerful i n  t h e i r  use of data than 

the  'Beesleygraph' approach. The evidence fo r  the or ientat ion of the 

equiprobabil ity l i nes  is taken from ALL the data, regardless of i ts 

location on the  plane. On the other hand, it is  also c lear  tha t  

'potent ia l  power' and ' lack of robustness' w i l l  go hand i n  hand, and tha t  

the  probabi l is t ic  choice models w i l l  be more sensi t ive t o  miscoded data 

points, or  sections of t he  data t o  which the model does not apply. 

Ignoring the evidence from observations i n  quadrants 1 and 3, a s  is 

inevitable with the 'Beesleygraph' approach a s  outl ined and indeed as has 

been done i n  the past i n  specif ic t ransfer  pr ice experiments (see Lee and 

Dalvi, 1969) - does resu l t  i n  the loss  of information t h a t  could improve 

estimates of co-eff icients i n  probabi l is t ic  choice models, o r  i n  transfer- 

pr ice experiments, ( a t  l eas t  if the model and data are both correct) .  

However, such an omission should not b ias the  resu l ts ,  merely reduce t h e i r  

precision. 

3.3.2 The 'Beesleygraph' approach i l l us t ra ted  here i s  a speci f ic ,  

highly simpli f ied appl icat ion of the 'Score Maximisation' technique 

developed by Manski (1975); the same pr incip les can be used t o  extend 

the  estimation procedure t o  more than two dimensions. 



4.  MODEL VALIDATION 

4 . 1  Introduction 

4.1.1 The general task of model appraisal can be considered under 

two headings. F i rs t l y ,  there i s  the issue of t he  in terna l  consistency 

of the  complete model with the  data from which it has been estimated. 

This aspect of a?pi-aisal includes the well-known t e s t s  of signif icance 

and examinations of residuals from standard s t a t i s t i c a l  theory; for  

disaggregate choice models, the  various t e s t s  t ha t  a re  commonly used are  

l i s t e d  i n  Gunn e t  a1 (1980). To t h i s  l is t  we would now add the 

Lagrangian Mult ipl ier t e s t s  and the  range of 'over f i t t ing '  t e s t s  

described by Horowitz (1980). The second issue concerns the  performance 

of the f i t t e d  models, and the  description of behaviour and values tha t  

these embody, i n  the  prediction of choice for  data s e t s  other than tha t  

from which the  model has been estimated. T h i s  we sha l l  c a l l  'val idat ion'.  

4.1.2 In t h i s  section, we sha l l  discuss the second of these issues 

i n  the context of one par t icu lar  t e s t  described by Foerster (1979). 

In par t icu lar ,  we are interested i n  the  question o f t h e  amount of data 

tha t  i s  necessary t o  'val idate '  a model. A separate question concerns 

the - sor t  of data tha t  should be used for  val idat ion. Most frequently, 

the  val idation data se t  i s  actual ly a randomly selected subsample of 

the  estimation data s e t ;  certa in ly a val idat ion procedure based on such a 

part i t ioning of the  data w i l l  guard against some of t he  dangers of model 

misspecification. However, i n  many cases it w i l l  be c lear  from the  

purpose for  which the model has been developed tha t  there is a par t icu lar  

sor t  of context i n  which the  model should be val idated. For example, 

if the model is derived from data from one s e t  of geographical areas fo r  

general appl icat ion i n  other areas, it should be tes ted  spec i f ica l ly  f o r  i t s  

performance i n  a sample of such other areas. Similarly, a forecasting 

model should be tested for  i t s  performance i n  other time periods. 

4.1.3 The work reported i n  t h i s  section was undertaken t o  explore the 

issues i n  the  context of a t ractab le  example. It w i l l  be obvious tha t  

a completely general treatment of the problem is a task f a r  beyond the 

scope of t h i s  project.  On the other hand, t he  inference tha t  can be made 



about 'values-of-time' from revealed preference data i s  a l l  CONDITIONAL 

on the  adequacy of the model used t o  represent behaviour. We should not 

underestimate the  importance of establ ishing the  adequacy of tha t  

representation. 

4.2. The FPR Criter ion for  Model Validation and for  Model Comparison 

Using Validation Data Sets 

4.2.1 A disaggregate model specif ies a se t  of probabi l i t ies attaching 

t o  each of a number of options avai lable t o  an individual. The option 

associated with the maximum of these probabi l t ies w i l l  be deemed the 

individual 's ' f i r s t  preference'. In  applicat ion t o  a val idat ion data 

se t ,  the  model may or  may not indicate tha t  the  option actual ly selected 

was the  ' f i r s t  preference' for  the  individual. I f  it does, t h i s  i s  

deemed t o  be a ' f i r s t  preference recovery'. 

Naturally we would not expect a l l  individuals t o  select  t h e i r  'maximum 

probabil i ty '  option i f  the  model were absolutely correct (unless of course 

the  model was specifying probabi l i t ies of 1 for  t h a t  option and thus 

0 f o r  a l l  others): In general, the expected number of FPR's w i l l  depend 

on the  actual  s izes of t he  maximum probabi l i t ies,  assuming a correct ly 

specif ied model. This is  discussed l a t e r ;  f irst we sha l l  consider the  

comparison of two competing models. 

4.2.2 Two di f ferent  models may be compared i n  respect of t h e i r  FPR's by a 

method described by Foerster (1979), due or ig ina l ly  t o  McNemar and 

generalised by Cochran (1950) t o  apply t o  an a rb i t ra ry  number of models 

o r  weighted averages of models. Only the  simple case of two model 

comparisons w i l l  be considered here. 

Consider a 2x2 tab le  layout a s  shown i n  f ig .  8; for  each individual i n  

the  val idation sample, a s e t  of probabiliities of choosing each option is  

calculated fo r  each of t he  two models under investigation. The individual 

i s  assigned t o  one of the  c e l l s  of the tab le  according t o  the ru les:  

assign t o  c e l l  ( 1 , l )  i f  the  actual  option chosen i s  not the 'maximum 

probabil i ty '  option for e i ther  model; 

assign t o  c e l l  (1,2) i f  the  actual  option chosen i s  the max. prob. option 

for  model 2 but not for  model 1 ( the numbering is  of course arb i t ra ry ) ;  



ass ign  t o  c c l l  ( 2 , l )  i f  t h e  ac tua l  opt ion chosen is  t h e  mnx. prob. 

opt ion f o r  model 1 but not fo r  model 2;  

assign t o  c c l l  (2 ,2 )  if chosen opt ion i s  t h e  max. prob. opt ion f o r  

each model. 

FIGURE 8 

n . = no. indlvlduals assrgned ro cel 1 i , i 1 
1 1  
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4.2.3 This s o r t  of contingency t a b l e  layout i s  most fami l ia r  i n  t h e  

context of a nu l l  hypothesis o f  independence o f  row and column c lass i -  
2 .  f i c a t i o n s ,  which i s  t e s t e d  with t h e  x d i s t r i b u t e d  s t a t i s t i c  

2 
~ ~ = z ( ~ ~ ~ - ~ t ~ )  That hypothesis is  not appropr iate i n  t h i s  

1, .el l  
case,  qu l te  apar t  from being highly implausible fo r  any sens ib le  p a i r  

of models (which should be specify ing broarllx s i m i l a r  choice 

p r o b a b i l i t i e s ,  thus  concentrat ing t h e  data i n  t h e  ( 1 , l )  and (2 ,2 )  

c e l l s ) .  Rather, we a r e  i n te res ted  i n  t h e  n u l l  hypothesis t h a t  t h e  

p robab i l i t i es  with which ind iv iduals  fa l l  i n t o  t h e  ( 2 , l )  and (1 ,2)  

c e l l s  a r e  equal ,  f o r  i n  t h a t  case t h e  impl icat ion i s  t h a t  t h e  two models 

a r e  equivalent i n  terms o f  expected number of FPR's. Wc can t e s t  t h i s  

hypothesis by consider ing t h e  e n t r i e s  i n  t h e  (1 ,2)  and ( 2 , l )  c e l l s  alone. 

On t h e  n u l l  hypothesis ou t l ined,  ( a f t e r  McNemar), t h e  s t a t i s t i c  Q, 
Q = (n12- 1'2~",2+021))2 ("21 -112 ' "12+"21) )2  + 

1 ~ 2 1 n , 2 + n 2 ~ )  112(n12+ "211 is x2 d is t r i bo tcd  with 7 d.f. 
- - 

2 
With some easy manipulation, we can show t h a t  = 1 n 1 2 - v l  1 

( "12 + "21 1 

4.2.4 Thus, a t e s t  o f  t h e  'equivalence' o f  t h e  two models, i n  terms o f  - 

1 1 1  is  given by computirlg Q and comparinp, t h e  r e s u l t  w i t 1 1  x 2 
- 1 
2 

1.C Q i s  not  l a r g e r  than t h e  appropriate chosen c r i t i c a l  value of x 1  
(3.85 f o r  t h e  usual 95% confidence l e v e l )  we conclude t h n t  t h e  models 

a r e  equivalent i n  these terms. 

I - ln12-"21-112 Cochrnn n lso  g ives  a s t a t i s t i c  'corrected f o r  c o n t i n u i t y ' , o -  
"I:+ "21 

and demonstrates t h e  coxrespondence of t h e  general  procedure with t h e  

simple ' s ign '  t e s t .  



Thus, given n 
12 

and nZ1, we can simply consult tabu la ted values of t h e  

sign t e s t  ( f o r  example see Crow, Davis and Maxwell, Table 9 )  t o  t e s t  the  

hypothesis t h a t  t he  p robab i l i t i es  of an indiv idual  being assigned t o  the 

(1,2)  c e l l ,  and t o  t he  ( 2 , l )  c e l l ,  a re  equal. 

4.3 Some comments on t h e  FPR Cr i ter ion 

4.3.1 The FPR c r i t e r i on  has some i n tu i t i ve  appeal; it is  easy t o  

ca lcu la te  and has an obvious so r t  o f  connection with model performance. 

However, it should be s t ressed t h a t  it is  not i n  i t s e l f  an unambiguous 

indicator  of model r e l i a b i l i t y ;  too  many FPRs should lead  t o  re jec t ing  

t he  model as wel l  as too few. This i s  discussed more ful ly l a t e r .  A 

second point is  t h a t ,  even if t he  t o t a l  numbers of FPRs a re  acceptable, 

a t e s t  which weights each correct  predict ion equal ly  w i l l  not be 

su i tab le  fo r  circumstances where some opt ions a re  more important than 

others.  For example, a mode-split model might speci fy  several  modes 

but be par t i cu la r l y  i n te res t ing  i n  respect of i t s  predict ions of 

patronage o f  a minor mode such as  car-pooling. We would not then judge 

two r i v a l  models equivalent even i f  they had exact ly  t h e  same number 

of FPRs, i f  one model got t he  car-pooling patronage en t i r e l y  'wrong', 

and all other  modes correspondingly s l i gh t l y  more ' r i g h t ' ,  than a 

r i v a l  model which performed adequately f o r  all modes, including 

car-pooling. 

4.3.2 The l a t t e r  point i s  l inked t o  t he  choice of sample fo r  the  

va l ida t ion  exercise. This requires t o  be chosen randomly from t h e  

population being modelled, i n  order t o  allow t h e  desi red inference 

about t he  general s u i t a b i l i t y  of t he  models i n  t h i s  population; 

however, i f  some opt ions a re  more ' important' than o thers ,  it seems 

c l ea r  t h a t  t h i s  importance should be re f lec ted somehow i n  t he  

composition of t h e  va l ida t ion  sample. This quest ion is not explored 

here,  but i n  passing it can be seen t h a t  t h e  need f o r  a va l ida t ion  

process emphasises t he  importance of considerat ions of sample s i z e  and 

design, espec ia l ly  i f  both estimation and va l ida t ion  data  i s  gathered 

at t h e  same time. The accuracy of one stage may the rea f te r  only be 

increased at t h e  expense of t he  accuracy of t h e  other .  

4.4 Sample s i z e  f o r  t h e  comparison of models by t h e  Q s t a t i s t i c  

4.4.1 Given t he  procedure out l ined above, based on t he  number of 

FPRs, we can choose whichever leve l  of confidence seems appropriate 

f o r  t he  asser t ion  t h a t  t he  two models under comparison d i f fe r  i n  

respedt of expected number of FPRs. We thus have contro l  over t h c  
, .. 



fract ion of times that  we w i l l  incorrect ly asser t  a difference between 

similar models. As usual, the aim of select ing a par t icu lar  sample 

s ize  i s  t o  ensure a corresponding control over the  proportion of times 

we w i l l  make the other sor t  of er ror ,  namely incorrect ly concluding 

tha t  there i s  no difference between dif ferent models. 

4.4.2 The actual  calculat ion of the probabil i ty of an error  o f t h e  

second kind depends on the  exact difference between the models, which 

of course, w i l l  not be known a t  the outset. One way around t h i s  

problem i s  avai lable, i f  we are able t o  decide on a minimum difference 

t h s t  we should l i k e  t o  be able t o  detect. If we then calculate the  

sample s ize  needed t o  reduce the  chance of errors of the  second kind t o  

an acceptable leve l  for  models which d i f fer  by exactly t h i s  minimum 

amount, then we have ensured tha t  there w i l l  be even l e s s  chance of 

such an er ror  f o r  discriminating between models which d i f fe r  by more 

than the  minimum of in te res t .  

4.4.3 The actual  s ize  of the  minimum difference tha t  we should aim 

t o  detect w i l l  vary from application t o  appl icat ion, and may i n  many 

cases be a matter for  judgement rather than for  hard and f a s t  ru les,  

although it may be possible t o  develop a decision-theoretic approach 

fo r  problems i n  which the  'cost '  of wrong predict ions can be estimated. 

For the  purpose of i l l us t ra t ion ,  tab le  1 l ists the  probabi l i t ies of 

an e r ro r  of. the second kind corresponding t o  various sample s izes when 

the c r i t e r i a  Q and Q' are used t o  assess the  s t a t i s t i c a l  signif icance 

of the  difference between FPRs of two models, f o r  the  par t icu lar  case 

when Pr(1,2) = 0.05 and Pr(2, l )  = 0.00. (P r ( i , j )  denotes the  

probabil i ty t ha t  an individual drawn a t  random from the val idat ion 

data s e t  w i l l  be assigned t o  c e l l  ( i , j )  i n  the tab le  i n  f ig.1.)  This 

part icular  case corresponds t o  two models such t h a t ,  on average, model 

2 produces 5 ext ra  FPHs per 100 individuals modelled a s  compared t o  

model 1. For the  purposes of the t e s t ,  it does not matter whether t h i s  

a r i ses  as a resu l t  of model 1 having 0% FPRs and model 2 10% FPR, or 

model 1 80% and model 2 90% FPRs. 

4.4.4 For t h i s  case, n w i l l  always be 0, so Q simply becomes n 
21 12' 

and Q' becomes (n12-112 . If we are ensuring 95% confidence tha t  any 

n 12 
difference we establ ish c o d a  not have arisen by chance from ident ica l  



models, we w i l l .  be comparing Q nnd 0.' respec t ive ly  with thc  nppropriatc 
2 

value of X1 , namely 3.85. Thus, i f  we considcr t h e  t e s t  based on Q 

f o r  example, t h e  p robab i l i t y  o f  an e r r o r  of t h e  secondk ind ,  namely 

accept ing t h e  n u l l  hypothesis o f  no d i f fe rence between t h e  two models, 

i s  t h e  probab i l i t y  of  t h r e e  o r  fever  ind iv idua ls  heing'c1a:;:;ified 

t o  t h e  (1 ,2 )  c e l l .  For any given sample s i z e ,  n  say, t h e  probab i l i t y  

t h a t  r i nd iv idua ls  w i l l  bc assigned t o  t h e  (1,') c e l l  i s  simply t h e  
n 

Binomial p robab i l i t y  c, P'(l-p)n-r, where p denotes t h e  probab i l i t y  

o f  an ind iv idua l  chosen a t  random being assigned t o  t h e  ( l , 2 )  c e l l .  

Civcn n ,  und tak ing  p = 0.05, we can cnlculrrte thc  p r o t ~ n \ ~ i l i t i e o  o f  

0, 1, 2 and 3 i nd iv idua ls  being assigned, and S~LTI t hese  t o  ir,ive t h e  

t o t a l  p robab i l i t y  of accept ing t h e  n u l l  hypothesi:;, which i s ,  i n  t h i s  

case,  an e r r o r  of  t h e  second kind. The ca l cu la t i on  fo r  C),' i s  

s im i l a r ,  except t h a t  we must al.so add t h e  p roba l~ i l i . t i es  of  exact ly 4 
and exact ly  5 i nd iv idua ls  i n  t h e  ( 1 , 2 )  c e l l ,  s i n c e  t h e  nu1.l hypothesis 

is  re jec ted  only f o r  n12 2 6. 

11 .I4 . 5 Q' is  n more 'conservnt ive '  s t a t i s t i c  1:hm 9, i n  t h e  !;cr!!;c 

t h a t  it requ i res  s t ronger  proof c f  any d i f fe rence betwee11 n:odel.s. 

Correspondingly, it is  more prone t o  make e r r o r s  o f  t hc  second kind, 

f ~ i i l i n e ,  t o  de.teet d i f f c rcnecs  when they  do occur .  It is  c l c a r  from 

tab1.e 1 t h a t  t h e  required va l ida t ion  san~pla s i z e  rieeds t o  be relative1.y 

qu i te  l a rge ,  given t h a t  t h e  est imat ion data s e t s  a r e  usual ly  only a 

few hundred da ta  po in ts ,  t o  al low .us t o  discrimina.te between t h e  two 

modcls under considerat ion with any degree o f  ce r ta in t y .  

'Pablc 1. Probabilities o f  an e r r o r  of t he  second kind f o r  ~ i v ~  s;unnlc 
s i z e ,  and s tu ted  test ,  t e s t  s i z e ,  and models a:; defin?& 

Sample 
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The method out l ined here can be extended t o  i nd i ca te  recluircd 

va l ida t ion  sample s i zes  f o r  other  l eve ls  of minimum d i f fe rence,  i.ncluding 

cascs where both (1.2) a n d  ( 2 , l )  c e l l s  have non-zero probabi l i t ic : ; .  

5 Remarks about FPRs and 'va l ida t ion '  

Given a modcl M which spec i f i es  a pre fer red  opt ion f o r  each of n 

ind iv idua ls  i n  a given data  s e t ,  and supposing t h a t  t h e  ith ind iv idual  

has c .  opt ions t o  choose among, and t h a t  t h e  ca lcu la ted  (maximum) 
1 

probab i l i t y  assoc ia ted  with h i s  preferred opt ion i s  p. we can e a s i l y  
1' 

der ive t h e  fol lowing: 

a )  t h e  expected number of FPRs i n  t h e  whole d a t a  s e t  which would be 

returned by a random predic t ion of  p re fer red  opt ions would be 
n 

~ = i . -  . The var iance of N is  - 1 (1- - 1 ) ( f o r  individual 
1- i=l 'i r C .  i=l 1 i 

i ,  n FPR i s  nn independent random event occurr ing with probab i l i t y  
1 - . I  
C .  
1 

b t h e  expected number of FPRs from the  spec i f i ed  model M i s  

way a s  above). 

Thus any ac tua l  out-turn t o t a l  numb& of FPRs assoc ia ted  with a 

given model can be compared with N and N . i f  a l l  t h r e e  a r e  reasonably 
r s' 

c lose (given t h e  est imated standard e r r o r s )  t h e  model is  reasonable but 

uninformative; i f  N and N are  similar and l a r g e r  than N t h e  model 
s r ' 

i s  reasonable and informative; if N and Ns a r e  not  s im i la r ,  t h e  model 

does not  expla in t h e  va r ia t i on  i n  t h e  data  and should be re jec ted  

(whether N i s  l a r g e r  than o r  smal ler than N s ) .  

A simple i l l u s t r a t i o n  of t h i s  ~ o i n t  may be made by consider ing a 

model o f  a b inary choice made on t h e  bas is  o f  a s i n g l e  va r iab le  (such 

as t h e  conventional car-ownership/income models). 

Figure 9 a  shows a hypothet ica l  postu lated model; f ig .9 .b  shows 

t h e  da ta  po in ts  t h a t  would correspond t o  a 100% P R .  



FIGURE 9 

Far from confirming the  va l id i ty  of the model, the  data suggests 

tha t  the income co-efficient i n  the model i s  f a r  too low, and tha t  a 

model l i k e  tha t  shdwn i n  f ig .  g'c would be more appropriate. 

4.6 Conclusions 

4.6.1 One suggested procedure for  the comparison of a number of 

models on the basis of a val idat ion sample is thus: 

a )  For each model, compare the expected and observed number of FPRs, 

re ject ing models which are inconsistent with the  data; 

b )  I f  more than one model is l e f t ,  compare models pairwise i n  respect 

of t h e i r  t o t a l  numbers of FPRs by the McNemar/Cochran Q and Q' 

t e s t s ,  re ject ing models which can be shown t o  produce fewer 

FPRs on average. 

c )  If more than one model remains, a l l  have been shown consistent 

with the data and indistinguishable i n  respect of expected number 

of FPRs. Choose one a t  random, unless another cr i ter ion 

( theoret ica l  elegance, ease of application . . . ) seems relevant. 

d )  Compare the  chosen model with the 'random choice of options' model, 

by means of Nr and N i n  the  l i gh t  of var(Nr) t o  assess usefulness 

(Ilauser's (1978) s t a t i s t i c s  are more informative, assuming tha t  

the  model is  indeed be t te r  than a random choice). 

4.6.2. Final ly,  we note tha t  other c r i t e r i a  of model performance have 

been suggested- see for  example i n  Gunn and Bates, 1980. Much work remains 

t o  be done on t h i s  aspcct of model scr i~ t iny .  Ilowever, for  our present 

puruoses, we recommend the use o f t h e  conventional F P R s t a t i s t i c ,  as 

interpreted by the rules we have supnlied above. 



5. EFFICIENT DESIGN 

5.1 Introduction 

5.1.1 The general principles of survey design and sample s ize  

assessment can be described i n  simple terms a s  follows. We suppose 

tha t  a survey i s  t o  be conducted i n  which observations of a variable 

Y a re  t o  be made a t  N points corresponding t o  d i f ferent  values of a 

variable X - say r, X2, .., XN - and tha t  a model is t o  be f i t t e d  i n  

which Y is t o  be related t o  X by a relat ionship involving unknown 

parameters. Suppose tha t  the  distr ibut ion of Y ,  given X and the t rue  

values of the  unknown parameters, i s  known. Then, i n  ant ic ipat ion of 

the  resu l ts  of the survey/experiment, we can wr i te down general forms 

for  t he  estimators of the unknown parameters, and hence of the  f i t t e d  

model, and also write down general forms for  the  variance-covariance 

matrix of the parameters and thus also of function of these pararceters, 

including the  f i t t e d  model. I f  our intention i s  t o  maximise the 

accuracy of estimation of some function of the f i t t e d  parameters for  

given sample s ize ,  o r  t o  minimise sample s ize  for  some required 

accuracy of estimation, we can re fer  t o  these general forms t o  

indicate the relat ionship bettreen t h ?  amount of dato. the  location 

of t h i s  data and the consequent accuracy of t h e  f i t t e d  pwaneters.  

5.1.2 Note tha t  we w i l l  for  now ignore problems of model val idat ion, 

and make the  assumption tha t  we can correct ly specify the  model form 

and the d is t r ibut ion of Y from the outset. I n  pract ice we may have t o  

adopt sequential procedures, and also bui ld i n  val idat ion requirements 

when designing the  survey. Two simple examples may help t o  estab l ish 

the main points of the approach. 

5.1.3 Example 1. 

Suppose we have the model Y = a + 6X X,  and know t h a t  t he  

d is t r ibut ion of Y given a, 6 and X i s  Normal, with known variance 

u2 . Given fixed sample s ize  N ,  and the opportunity t o  observe the  

N values of Y corresponding t o  N selected values of X, how should these 

values (X1 ... XN say) be chosen t o  minimise the  es t i i a t i on  e r ro r  

associated with the maximum l ikel ihood estimates of  B? We can 

wr i te down the  log-likelihood function i n  general terms a s  

(K1 ,K2 constants) 



The maximum l ikel ihood estimators of 4 and /3 are  obtained as solutions 
aa. a a. 

of the  equations - = - = 0 : c a l l  the  solut ions a and b. 
aa at? r 

2 -1 This leads t o  the famil iar form b = .:, (xi-?) (yi-Y){ j, (xi-X) } 

with estimated variance var b = ( ~ - l ) o 2  {N i3 (xi-?)2}-1 
w - 2 

Thus we should pick the  points 5 . .. XN t o  maximise { Z (xi-x) 1 
"I 

i n  order t o  minimise the  estimation e r ro r  associated with b. If we are  

res t r i c ted  t o  experimentation within a par t icu lar  range of  X,  say i n  

the in terva l  (Xmin, Xmax), then we should take hal f  our observations 

at 'min 
and hal f  a t  Xmax . 

5.1.4 Example 2. 

Suppose we have the  model Y = a X, and know t h a t  the  distr ibut ion 

of Y ,  given a and X is Poisson, how many observations Y. a t  chosen 
1 

points Xi should be taken, and how should the Xi be selected, i n  order 

t o  have 95% confidence tha t  the  maximum l ikel ihood estimate of a l i e s  

within + 10% of the t rue  value? - 
In t h i s  case we can wr i te down the  log-likelihood function 

N 
corresponding t o  a sample of s ize  N as = K - Z (-ax. + Y. log(aXi)) 

i=1 1 1 

The maximum l ikel ihood estimator of a i s  a ,  glven as the  solut ion of 
a t  - 0,  i . e .  a = c It yi ( i, xi)-' - - 
aa .1, 

a2a. ,I with associated estimate of the  variance of a given by{-~(T)}-l = a{ E ,  Xi} -1 
au 

Thus i n  t h i s  case the  er ror  associated with the estimate i s  reduced by 

taking a l l  observations a t  a s  high as possible values of X - i .e.  a l l  

at Xmax* 
if observation i s  only possible within a res t r i c ted  interval  

Thus the + 95% confidence l i m i t s  around the  mean a within which 

a i s  expected t o  Lie are given by {a - 1.96S, a + 1.96s } 

where S = / a{ NX I-' obviously depends on a .  max 
The form of t he  confidence in terva l  is  based on the  (asymptotic) 

Normal d istr ibut ion of M.L. estimators. 

5.1.5 Thus, without knowledge of the  value of a She quantity 

we are  se t t ing  out t o  estimate we cannot choose the  required sample 

s ize.  There a re  two ways t o  approach the  problem. F i rs t l y ,  i f  a 

sequential procedure i s  permissable, we may form a first estimate of 

a on the basis of N1 observations ( a l l  a t  xmax) and then estimate 

how many more would be needed for  the  required accuracy on the  assumption 



t h a t  t h e  est imate of d from the N observations is  the t r ue  value. 
1 

Secondly, we might have a r e l i ab l e  est imate o f  t h e  region i n  which o( 

i s  expected t o  l i e ,  and could form a "pessimist ic" est imate of the  

required sample s i z e  on the bas is  of t he  maximum sample needed fo r  

any value of + i n  t h a t  region. 

5.1.6 Both o f  these examples demonstrate t h e  absolute re l iance of 

t he  r e s u l t s  on t he  assumption of known distr ibut ions/models. Obviously 

it would be impossible t o  r e j ec t  the  hypothesis of a l i n e a r  re la t ionsh ip  

between Y and X on t he  bas is  of t he  experimentation at j u s t  two points 

advocated i n  example 1, o r  t h e  proport ional model of example 2 on t he  

bas is  of experimentation at a s ing le  point.  It would be dangerous i n  

t he  extreme t o  in te rp re t  t he  guidel ines fo r  'optimal design' too 

l i t e r a l l y  i n  most p rac t i ca l  appl icat ions.  However, if we a r e  ab le  t o  

speci fy  some acceptable t e s t  o f  model va l ida t ion ,  the  same methods may 

be used t o  prescr ibe t h e  most e f f i c ien t  design and minimum sa.mple s i z e  

requirements f o r  va l ida t ion  and est imation. This problem is  not 

one which appears i n  t he  l i t e r a t u r e ,  and w i l l  involve ca re fu l  thought 

a s  t o  t'ne appropriate c r i t e r i a  fo r  model va l ida t ion .  The remainder of 

t h i s  sect ion  is concerned with 'design f o r  est imation'  alone. 

5.2 'Optimal Design' and Value-of-Time 

5.2.1 An overview of t h e  various approaches t h a t  have been taken 

t o  t h e  design problem is  given by Si lvey (1980). I n  t he  spec i f ic  

context of disaggregate models, see a lso  Daganzo (1980). I n  general,  

t he  so lu t ions depend on t he  object ive. In the examples above, we have 

considered t he  problem of maximising t h e  accuracy of a s ing le  parameter. 

However, t h e  same approach could be used f o r  any general funct ion of 

parameters, provided t h a t  it is  s ing le  valued. This does r a i s e  

d i f f i c u l t i e s  when the re  is no 'natura l '  choice o f  such a funct ion. 

According t o  Si lvey, t he  most commonly adopted (or  at l e a s t ,  fo r  

theore t i ca l  exposit ion, most frequently postu lated)  is  t he  ' c r i t e r i on  

of D-optimality' which amounts t o  minimising t h e  determinant o f  t he  

variance-covariance matrix of the  parameters i n  t h e  model. This 

object ive i s  equivalent t o  minimising t h e  area of any given confidence 

region f o r  t h e  parameters, thus i n  some sense maximising t h e  j o i n t  

accuracy of t he  parameter est imates. 
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5.2.2 Figures10 and11 i l l u s t r a t e  t h i s  concept with reference t o  a 

l og i t  model framed i n  terms of two parameters, a and b . The model .. 
i s  taken from Bates e t  a1 (1978) and refers t o  the proportion of 

households owning a t  l eas t  one car as a function of gross household 

income. Figure10 shows the data and the f i t t e d  model. Figure11 

shows the 95% confidence region associated with the  estimated 

parameters, using the maximum likelihood estimators, f o r  the  given 

data se t .  One use of the  'optimum design' approach would be t o  

determine 'where' ( i . e .  a t  which income points)  the  data should be . 

col lected fo r  populations w i t h  similar expected relat ionships between 

car ownership and income i n  order t o  minimise the  e r ro r  of the f i t t e d  

parameters, as described by the s ize  of the corresponding confidence 

regions. 

5.2.3 The solut ion t o  t h i s  probleni i s  given ly Silvey, quoting from 

Ford (1976); f o r  any given sample s ize,  hal f  the observations should 

be taken a t  one income point ,  and half a t  another. The points a re  

given by a general formula; i n  the case of the relat ionship described 

these turn out t o  be approximately £15 and £62 fo r  the 1972 data, 

and I2 i n  f igure lo  Once again we see how crucial  is  the  assumption 

tha t  the model i s  correct! However, t h i s  sor t  of information does 

provide valuable insights in to  the re la t ive values of taking 

observations a t  dif ferent points, providing we are reasonably cautious 

about the po l ic ies it advocates. 

5.2.4 Inference about 'values-of-time' has usually involved models 

w i t h  a par t icu lar  form of parameter structure;  typ ica l ly ,  there has 

been a function re la t ing  ' u t i l i t y '  t o  observed var iables by an 

expression such as 

i u. = (e  - e M - e T. - e3 zi) 
1 o l i  2 1 (5 

i n  which 55 is some variable l i k e  comfort, 'MI denotes a money cost  and 

'TI denotes time in  an ac t iv i t y ,  and the 0 ' s  are  constants. 

I n  cer ta in  caseserthere - may be advantages-in in terpret ing 

the  f i t t e d  co-efficient of cost variables i n  probabi l is t ic  choice 

models based on random u t i l i t y  theory with the dispersion parameter A ,  

which i s  inversely re la ted t o  the standard deviation of the  random 

component of the  u t i l i t y  function ( the  ef fect  of the  'unobservables' ). 

T h i s  corresponds t o  a choice of money un i ts  for  the  u t i l i t y  expression. 



n 1 For l og i t  models the  relat ionship i s  n = - - 
6 a 

where o denotes the standard deviation of t he  random component. 

5.2.5 Adopting t h i s  convention, we can wr i te the general form of 

the l inear  u t i l i t y  function which i s  used i n  many empirical studies as 

i 
where 

OO 
re fers  t o  the  mean of the  'unobservables', VT t o  the value 

of time and 
v5 

t o  the  value of some other variable, a l l  now 

measured i n  money terms. E i s  assumed Weibull, standard deviation 

1, f o r  ' l og i t '  models, ('it refers t o  option, ' j ' t o  individual. ) 

5.2.6 There is no asymmetry introduced by t h i s  convention. The 

estimate of the dispersion parameter i n  time terms, for  example, i s  

(value of fi i n  money terms). (value of time) = QV 
T 

Thus the co-efficient corresponding t o  the time variable could also be 

described a s  measuring the  dispersion parameter, t h i s  time i n  units 

of time. The bracketed expressions i n  eq.5. ,  a r e  the estimated 

coeff icients recovered from (eg) l o g i t  models. From ' t ransfer  pr ice '  

experiments, we obtain data t o  f i t  the equation (1) 

5.2.7 Note tha t  the dispersion parameter is also measured i n  the  
2 usual f i t t i n g  procedure, (since we also estimate v a r ( e t )  + 20 ), 

and tha t  the  smaller the  dispersion parameter ( the  larger  the  standard 

deviation of the 'uno%servables') the worse the  s t a t i s t i c a l  precision 

of the  f i t t e d  co-efficients VT,VB I n  fac t ,  equation7 has usually been 

estimated by l eas t  squares regression, i n  which with negl igible (and 

removable) inconsistency, the  e r ro r  term that  was conveniently assumed 

Weibull for  the  l og i t  analysis is conveniently assumed Normal f o r  

the regression. With the data i n  t h i s  form, t he  V coeff ic ients 

are estimated independently from the  a co-efficient. 

5.2.8 Returning t o  the notation of equation5 . In t h i s  case, 

there i s  a s ingle function of parameters tha t  i s  of paramount 

importance, namely the r a t i o  e2/01 . the  'value-of-time' i f  

circumstances are appropriate, the accuracy with which a par t icu lar  

design estimates t h i s  ra t ia fo rms a natural c r i te r ion  of optimality. 

'C' a constant. Note A M e tc .  now refer  t o  differences 
between options. C* 



5.2.9 The Taylor series approximation for the variance of a 

function gives 

Thus if we variance-covariance 

matrix of the fitted parameters we can approximate the variance of a 

function of the parameters. If the estimates have been derives as 

likelihood maximising solutions, such an estimate is provided by the 

inverse of the expectation of the matrix of second derivatives of the 

log-likelihood function. In the case of the hypothetical example 

given above, denote this by :! where . - 

Thus the criterion to be minimised is 

Note that the design which 

'00 '01 '02 '03 

'01 '11 '12 '13 

minimisingthe variance of the 'value-of-time' estimate will not in 

general be that which is D-optimal, or optimal under any other criterion. 

Forf(e)= - o 2Io , we have 
1 

5.2.10 To recap then, we can tackle the design problem if (a) we can 

write down expressions for the v. in terms of sample size and location, 
lj 

and if (b) we have some idea about the 'true' values of the parameters. 

Assuming that condition Cb) can be met from previous studies, we 

shall next consider (a). Note in passing that, if there are different 

costs attaching to experimentation at different points, the same 

approach can given 'maximal accuracy for given survey expenditure' 

rather than for given sample size. Similar arguments.wil1 lead to 

'optimal designs' to augment existing data sources. 

5.3 Approximations to the variance-covariance terms 

5.3.1 We have the criterion VR 



where the 13 coefficients are those fitted in a model of the form 

A U = O  - @ A M - @  A T - @  A5 + E  
0 1 2 3 

and 'ij 
is the covariance of 0.  and 0. .  

1 J 

5.3.2 To make the VR expression useful for design purposes, we need 

approximations to the V. which will in generalbe functions of sample lj' 
location (in terms of ( AM, AT, AZ)) and sample size as well as of 

the unknown coefficients 8. 

For simplicity, we shall consider the problem on the assumption 

that replicated observations will be taken. (It is interesting to 

note that optimal design considerations would indeed lead to such 

designs. For the practical purposes of evaluating feasible 

'non-optimal' designs, the conclusions reached in this way should be 

broadly similar to more detailed analyses). 

5.3.3 A suitable approximation to the variance covariance matrix 

of the fitted coefficients for (aggregate) logit models is given in 

Gunn and Whittaker (1981) for the case of Poisson errors. A similar 

approximation for the Binomial case (we shall assume a binary 

choice here) is as follows: 

Write m = AM, t = AT 

Define iii = i W.m. / E Wi] 
i 1 1  i 

where 

i = 1, .., nI the no. of 
points at whlch observations 
are taken 

Wi =nipi (1 - p. ) 
1 n. = no. of observations taken 

a* point i, defined by 
(mi, ti) 

and p. = fi + exp(-0 m - 02t$' 
1 1 i 

(assuming 8 = Q = 0 for 
- illustratiog) 

3 
2 

set v(m,m) = E W. (m.-Zi ) 
i 1 1  

~ ~ ~ ~ ~ ~ - ~ p  - 

(1) NOTE we assume @ =03 :,O here, for illustration: ifA5 is independent 
of A M, AT by %esign, the same result holds.. 



With t h i s  notation, an approximation t o  the  variance-covariance matrix 

of the f i t t e d  el and 9 coeff icients i s  
L 

var (' Q 1 
1. '1 = 

We can now wri te 

e2 
Note tha t  (-1 i s  our estimate of the.value of time. 

8. 
I 

5.3.4 Equation3 allows us t o  say a number of things about t he  

conditions necessary for  'value of time' measurement, as well as  

providing actual  quanti tat ive information about accuracy for  any 

proposed design ( i . e .  select ion of points a t  which t o  experiment), 

and determining the re la t i ve  trade-off between the  number and location 

of the  experimental points and the  survey e f fo r t  t o  apportion t o  each. 

5.3.5 F i r s t l y ,  we can see t h a t  t he  larger  is 8' t h e  more accurate 1' 
our measurement (other things being equal). Having ident i f ied el as 

being inverseley re la ted t o  the standard deviation of the  random 

component of the  u t i l i t y  function, i n  money terms , we can in terpret  

t h i s  as saying tha t  conditions i n  which the  'representat ive' component 

( i  .e. tha t  which is  made exp l i c i t )  dominate the t o t a l  u t i l i t y  expression 

w i l l  be most favourable fo r  accurate value-of-time measurement. In 

other words, where the model explains l i t t l e  of t he  var iat ion,  

measurement w i l l  be poor. 

5.3.6 Secondly, it is easy t o  see tha t  the term ~ ( m , m ) ~ ( t , t ) - ( V ( m , t ) )  

w i l l  be zero if M and T are l inear ly  re lated.  I n  other words, i n  such 
I 

conditions VR would be in f in i te :  no measurement is  possible i f  ' t imet 

and 'cost '  a re  perfect ly correlated, and the  l e s s  they a re  correlated 

the bet ter .  



5.3.7 Thirdly,  we can see i n  general terms t h a t  VR contains a term 

l i n e a r  i n  t he  V (  . , . ) divided by one quadratic i n  t h e  V (  . , . ) . Broadly 

speaking, accuracy w i l l  come from maximising t h e  v ( . , . ) .  From t h e  

def in i t ions  of t he  V terms we can see t h a t  such a maximum w i l l  occur 

a s  a compromise between two opposing t rends:  terms such a s  (m. - m) 
- 1 

and( t i  - t )  w i l l  suggest placing t he  experimental points as f a r  apar t  

as possib le t o  maximise t he  expression; however, at extreme points 

t h e  w. w i l l  tend t o  zero (pi w i l l  tend t o  zero o r  un i ty ,  so p i ( l  - p . )  
1 1 

w i l l  tend t o  zero) and SO a compromise w i l l  occur. (The one dimensional 

example given above produced a solut ion roughly a t  t he  points of 

i n f l ec t ion ,  and t h i s  may general ise.  Using eq.9 together with symmetry 

arguments should lead t o  a straightforward, if tedious,  so lu t ion  

f o r  t he  optimal design i n  the general case. ) 

5.3.8 Fina l ly ,  we can see t h a t  t he  optimal design/accuracy of 

measurement depend on t h e  l eve l  of t he  value-of-time. It is more 

sens ib le  t o  consider t he  r a t i o  of t he  standard e r ro r  o f  measurement 

of t he  vot t o  i t s  absolute l eve l  i n  t h i s  case 
h / P 2 / , J =  RSE, say 

We obtain 

For very small values of t ime, t he  expression i n  cur ly  brackets i s  

dominated by V(m,m), whereas f o r  l a rge  values of t ime t h e  V ( t , t )  

expression dominates. Di f ferent  design s t r a teg ies  w i l l  be appropriate 

f o r  d i f fe ren t  values. 

( 1 )  Note t h a t  Silvey (1980) uses Caratheodory's Theorem.t.0 demonstrate 
t h a t  t h e  optimal design w i l l  involve experimentation at l e s s  than 
5 d i s t i n c t  points,  which must i n  t h i s  case be s i t e d  symmetrically 
about t h e  p = 0.5 l i n e  i n  t he  ( m , t )  space. 



5.4 Conclusions 

5.4.1 The ac tua l  so lu t ions  t o  the  'optimal designt.problems a re  

not easy t o  der ive ,  even f o r  t he  highly s impl i f ied examples we have 

considered. The requirement t o  parameterise a model l a r g e  enough t o  

measure va r ia t i ons  i n  t ime values (as  between modes, f o r  example), 

and t he  poss i b i l i t y  t h a t  non-linear funct ions and randomly d i s t r i bu ted  

parameter models w i l l  be needed, demonstrates t h a t  even more d i f f i c u l t  

areas remain t o  be tack led.  

5.4.2 I n  p rac t i ce ,  however, we w i l l  probably be r e s t r i c t e d  t o  

considerat ion o f  a smal l ish number of  design opt ions. This w a s  t he  

experience gained i n  t he  app l ica t ion  o f  these methods i n  Gunn e t  a1  

(1.980), where t h e  aim was t o  design a survey from which ,an aggregate 

O/D matr ix would be formed as  a bas is  f o r  value-of-time inference from 

aggregate d i s t r i bu t i on  pa t te rns .  P rac t i ca l  considerat ions o f  how t o  

implement the  design g rea t l y  r e s t r i c t e d  t he  ' f eas ib le  region'  i n  which 

a maximum was sought. 



6. TRANSFER PRICING AND REVEALED PREFERENCE - A COMPARISON 

OF MAXIMAL EFFICIENCY 

6.1 Introduction 

6.1.1 From a s t a t i s t i c a l  point of view, t he  difference between 

'revealed preference' approaches and ' t ransfer  pricing' approaches can 

be reduced t o  a question of the information content of t he  data. For 

the  purposes of i l l us t ra t i on  it i s  helpful t o  use the context of a 

data s e t  re la t ing  t o  a choice between options whose outcome has been 

observed, thus avoiding fo r  the moment the  d i f f i cu l t ies  associated 

with e l i c i t i ng  future intentions. Suppose we have observed a sample 

of t rave l le rs  choosing between two options with d i f fer ing time and money 

character is t ics ,  noted the  character is t ics ,  t he  outcome of  the  choice 

AND asked a Transfer Price question. Assuming t h a t  the TP responses 

w i l l  a l l  be of the correct ( i .e .  if we ask by how much the cost 

of the option actual ly selected would'have t o  r i s e  i n  order t o  make 

the  t rave l l e r  indi f ferent  between options, the  answers w i l l  a l l  be 

posi t ive) then the TP data contains at l eas t  as much information as 

the 'revealed' behaviour. We could throw away the  estimate of the 

magnitude of the  TP and estimate the  unknown coeff ic ients i n  a 

representative u t i l i t y  function assuming only t h a t  the u t i l i t y  

difference between chosen and rejected modes was posit ive: i n  fact  

t h i s  is what happens i n  t he  usual models of d iscrete choice. 

6.1.2 More speculatively, we might postulate tha t  the  TP estimates 

were re la ted t o  the u t i l i t y  difference between options, and wr i te ( a f t e r  

DOE Economic and S t a t i s t i c a l  Note 22) 

TPi = hA Ui+ cr + E o l i  
together with 

AU. = 0. 8. + s. 
1 - 1 1 

(10) 

Different assumptions about the  distr ibut ions of l"i , t h e  e r ro r  

introduced by the d i f f i cu l ty  of responding t o  the  TP huestion, would 

lead t o  estimation problems of varying degrees of complexity. The 

simplest of these assumptions would be t h a t  
l'i could be neglected 

altogether; t h i s ,  together with Normality assumptions about E .  
1 

would allow , the use of ordinary l eas t  squares t o  estimate the  model (or  

i te ra t i ve ly  weighted l eas t  squares i f  t he  coeff icients a r e  assumed 

random. 



6.1.3 Final ly,  we might assume from the  outset  tha t  A = 1, i .e .  

tha t  the response t o  the TP question was indeed i n  the same money 

uni ts as those i n  which the t rave l lers  value other cost items. 

6.1.4 As always, a s  the  strength of the assunptions on which the 

analysis i s  based is increased, so the apparent information content 

of the data r i ses ,  and the  uncertainty associated with the f i t t e d  

model appears t o  decrease. For the purposes of t h i s  note we sha l l  

assume that  each successive stage i s  jus t i f ied  i n  order t o  i l l u s t r a t e  

the reasons for  the  increase i n  precision tha t  TP data can allow. 

6.2 Incrementdl information i n  re la t i ve  magnitude of u t i l i t y  
difference over sign 

6.2.1 Let us assume tha t  we have decided t h a t  time and cost alone 

are suf f ic ient  t o  explain choice between the options, and tha t  our 

representative u t i l i t y  function i s  simply 

individual q 

option i 
L 

Suppose tha t  the standard deviation of the random component of each 

u t i l i t y  function is unity* , so tha t  the  difference between u t i l i t i e s  

has expectation - 
AU = -0 AM - Q AT 

9 1 q  2 q  

and variance 2 

where AX is defined as (Xchosen mode -X al ternat ive mode ) 

Let D l  re fer  t o  a data s e t  consisting of the signs of the u t i l i t y  

differences together with t he  character ist ics of t he  options, Eland 

% Assuming the  random components are Weibull d istr ibuted,  we can 

write the  l ikel ihood function for  D l  a s  

where (from the  Weibull assumption) 

where C denotes the choice made by individual q; 
9 

Q denotes the number of decisions observed; 

6 = 1 i f  i nd iv idw l  q chooses option i, and 
q i  

6 = 0 otherwise, and n= n/  
q i  (GI 

* t o  resolve the  indeterminacy. The same resu l ts  follow i f  we set0 t o  unity, 
%.. 1 

and t r e a t  the standard deviation a s  a parameter. 



6.2.2 Now let D2 refer to a data set consisting of the absolute 

magnitudes of the TP responses, and assume that we have the model 

2 
% N(0,2A ) where 

6.2.3 Note that we have interchanged Weibull and IJormal distributions 

for convenience; in this case the differences will be slight. We 

can now write the likelihood function of D2 as 

where Q ( ~ p  - A A ~  
L(D~,~,A) = B 1 =PI- 1 

ZAJT 2 . 2 ~ ~  

Note that the choices are assumed to be independent. 

6.2.4 From inspection of the form of the functions, it is clear 

that we should write 

L(D~, g, n as L(D1, sag), and 

L(D2, B, A) as L(D2, Ag, A) 

6.2.5 The problem of units has been discussed above; in this case 

we are really interested in estimating the ratio 82/0-, which may be 

equivalently expressed as either me / 
2 Re1 or -ie2/A81 

Accordingly, let us rewrite (3) and (4 ) .  as 

Q 2 -8' - gl. Ti 2 -81. Mi -el. 

1 
L(D~, g = 11 { [  Z Ciqi e 9 ] /  e 

1 s 2 q]) 

q=l i=l i=l 
(13) 

I t  

where 8 = A8 
j j 



6.2.6 Note also that b3) can be written as 

6.2.7 Using h4) and 65), and assuming that Maximum Likelihood 

estimators will be adopted, we can now give a simple illustration of 

the increase in precision that can be gained by using the TP estimates 

of the magnitude of the utility difference between options (without 

assuming this to be in the same units as the cost elements associated 

with each option) instead of merely the &of the utility 

difference between options. 

6.2.8 As usual, we would estimate the variance-covariance matrix 

ofthe fitted coefficients by the negative of the inverse of the matrix 

of expectations of second derivatives of the log-likelihood function, 

-(J)-' say. 

6.2.9 In this notation we can write down the uninverted matrices 

where 

corresponding to data sets Dl and D2 as J and J where 1 2 

P9 
= {l + exp (-B'AM - B'AT )I-' 

1 9  2 9  

J, = 

- 

9 9 9 q 9  
Z A 8  ZAM AT - ~ p  (1-p )A$ - zp (1-p 

9 
9 9 

9 

-Zp (1-p )AM AT - 
- 

ZAM AT  CAT^ 
9 9 9 9  9 9 

9 

6.2.10 For simplicity in illustration we shall assume that 9 and g2 1 
are uncorrelated by design, so that 

-1 
-(J1) = 

- - 
1 0 

zpq(l-pq) A< 
9 

0 
1 

2 
Zpq(l-P )ATq 
9 

9 

L - 



2x2 
i . e .  var(8" ) = - I r  2x2 

1 
var(8, )=  - 

Z A M ~  
9 

EAT* 
9 9 9 

6.2.11 A simple example of such a design would be t o  choose 

experimental points (AM ATq) such tha t  when AM #O 
9' 

then AT =O 
9 9 

and conversely when ATq#O then AM =O. . In other words, 
9 

t o  look fo r  options which d i f f e r  i n  speeds, but not i n  costs, and 

options which d i f fe r  i n  costs but not i n  speeds. Note tha t  t h i s  i s  

not necessari ly the best  strategy, merely the eas iest  t o  i l l u s t r a t e  - 
here. In pract ice,  it is  clear from.the VR cr i te r ion  tha t  there i s  

advantage i n  ensuring t h a t  the 0 and 9 coeff icients a re  posit ively 
1 2 

correlated - so tha t  when our data s e t  leads t o  too high an 

estimate of one it also leads t o  too high an estimate of the other, 

working t o  s tab i l i se  the ra t i o  82/8, . 

6.2.12 Returning t o  the i l l us t ra t ions  here, we can write the  VR 

approximation t o  the variance of the r a t i o  8 18 ( the estimated 2 1 
'value of time-') a s  

vare2 
2 

O2 var8 
VR = IT + 4 since cov(B1, B2) = 0 

Thus for  data se t  D l  we obtain 
'2 

1 
2 

Z P ~ ( ~ - P ~ ) A T ~  

and for  data s e t  D!! we obtain 9 I 
6.2.13 The re la t ive precision of the estimates provided by the  

two data s e t s  can thus be re la ted t o  the  ra t i o  VRl/VR2. 

This is of the  form A2 + B2. 
A l  B1 + B1. consider the ra t ios  - and - separately. 
A2 B2 



These are 

e;12 EAT' el "4 e: E A M ~  
A 1  - - 9 B1 P 

- 
2 12 2 

and - = 
A2 2~ el EP ( ~ - P ~ ) A T ~  B2 

9 

6.2.14 We can simplify these t o  

z  AT^ 3 
A 1  9 - = 
A2 2 2 z P ~ ( ~ - P ~ ) A T  n 

9 
9 

1 I3 

subst i tut ing fo r  8 .  8 
J' j 

c  AM^ 3 
B 1  g 9 - = 
B2 Z pq(1-pq)~$ 7 2 I 

9 

thus Tc2 2 Si! z p 1 -  ) - AT s z i2 AT' < EAT 2 

P 
9 9 3  P P 9 

and simi lar ly  

Hence Al is greater than A2, B1 is greater than B2, a l l  A s  and B s  a re  

posi t ive,  so tha t  CAI + B1) i s  la rger  than (A2 + B2). In  other words, 

the  precision of the estimate of e2/e1 from data s e t  D l  is  - l e s s  ( the 

variance i s  higher) than of data s e t  D2. 

6.2.16 The form of the r a t i o  V R l / W  gives some qual i ta t ive indicat ion 

of the importance of the  TP information over and above the sign of the 

u t i l i t y  difference. A t  points (decisions) where the representat ive 

u t i l i t y  di f ference is large (compared t o  the standard deviation of the 

random element) the product p ) i s  very small. Such points 
9 9 

contr ibute l i t t l e  or nothing -to improving the accuracy of the coeff ic ient  

estimates i n  the context of data s e t  D l ,  but a re  especial ly  powerful 



in increasing precision with data set D2. We can note in passing that 

this implies that a design (choice of (AM, AT) points at which to 

observe decisions) aimed at optimising accuracy via an analysis of the 

choices (cf Dl) will be very inefficient from the point of view of an 

analysis based on the TP responses (cf D2). Figure12 illustrates 

FIGURE 12 

6.2.17 The points (pl. xl) and (P2, x2) may be seen to be in 

reasonable agreement with a large number of logistic curves of the 

form P = (1 + exp (a + bX) as compared to the points (p3, x3) and 

(p4, x4). This issue was discussed above; we noted that 'optimal 

design' in the context of linear regression led to placing experimental 

points as far apart as possible, whereas the estimation of a logistic 

curve from data on proportions choosing options led to experimentation 

around the points of inflection of the curve. The same sort of 

results will hold for 'value of time' estimation. 

6.2.18 The result that 'extreme' points contribute little or nothing 

to the accuracy of the estimate of 0 /0 has been emphasised in 2 1 
connection with experimental design; it should also be borne in mind 

when examining the results and conclusions of previous studies which 

were based on data sets collected without any such consideration. It 

is not sensible to extrapolate the relationships between sample size 

and accuracy of estimate from such studies without making some attempt 

to correct for survey design. 

6.3 Incremental information in assuming that TP response is in the same 
units of cost as other cost items 

6.3.1 This assumption involves the assertion that el=l (~8' el = 0)  



In this case, we would have 

9 
s 

Assuming the assertion to be true, the increase in precision may be 

gauged by the difference VR2 - VR3, which is a function of 9 and 9 1 2 

6.3.2 When the experimental points have been chosen so that 9 1 
and 9 are uncorrelated in VR2, it can easily be seen that VR3 is less 2 
than VR2; in the more general case we must also consider the 

covariance terms. 

6.4 Conclusions 

6.4.1 

1) Even when stated in non-mon8y units, TP data can greatly 

improve the precision of coefficient estimates'. 

2) The increase in precision is a function of survey design. 

3) The change in precision on assuming that TF' data- in 

money units (~erhaps subsequent to a test of a counter-hypothesis) 

also depends on survey design. 

4 )  Design Ipointsr (e.g. groups of individuals Pacing options 

with a unique difference in time and in money characteristics) 

which best support inference about 'value-of-time' from 

revealed preference analysis will be very suboptimal for 

TP analysis. 



7. AGGREGATE Methods 

7.1 Introduction 

7.1.1 None of the  approaches t o  VOT estimation based on aggregate data 

(discounting the conventional aggregate choice data,  such as interact ion 

data or aggregate mode s p l i t  data) a re  suf f ic ient ly  wel l  defined t o  

permit the  sor t  of standard s t a t i s t i c a l  appraisal  tha t  we have attempted 

fo r  revealed preference data and t ransfer  pr ice data. The analyses of 

such data i s  normally based on the  usual regression techniques, and the 

usual checks made for any departures from the basic assumptions about 

error structure tha t  would c a l l  for  adaptation of the  approach. 

7.1.2 Of par t icu lar  i n te res t ,  by v i r tue  of being perhaps the  most 

soundly based i n  theory, i s  the ' ra t io  of e l a s t i c i t i e s '  approach. It 

i s  in te res t ing  t o  speculate on the l i ke l y  sources of error i n  such an 

appaoach, and how these can best be controlled. 

7.2 The r a t i o  of e l a s t i c i t i e s  approach 

7.2.1 This approach can be i l l us t ra ted  on the  'Beesleygraph' diagram 

as shown by f igures 13a, b and c. 

FIGURE 13 



The bas ic  assumption is t h a t  t he  population of people choosing some 

given t ranspor t  opt ion ( i n  p rac t i ce ,  usual ly  a pa r t i cu l a r  bus route 

o r  r a i l  l i n e )  have a decis ion t h a t  is  af fected by t he  cos t  and time 

cha rac te r i s t i c s  of t h a t  option. Taking any ind iv idua l ,  were t h e  cost  

t o  r i s e ,  t he re  would come a po in t  a t  which he would no longer use t ha t  

o p t i o n  (whatever h i s  a l t e rna t i ve  might be. Note t h a t  f o r  s impl ic i ty  

we s h a l l  ignore t he  poss i b i l i t y  t h a t  'patrons '  can vary t h e  amounts 

of  t he  opt ion they purchase - f o r  example, by ge t t i ng  of f  sooner 

and walking.) S imi la r ly ,  were the  time taken t o  r i s e ,  the re  would come 

a similar point  at which he would no longer take t h a t  opt ion. Thus a 

point  on a plane with axes AC and .AT could be p lo t ted  f o r  t h a t  

ind iv idua l ,  i f  we knew these  quan t i t i es  (which o f  course we do no t ) .  

Figure 6a i l l u s t r a t e s  the  ,no t iona l  representat ion t ha t ,  might then be 

formed of t he  ex is t i ng  'patronage' of  t h e  opt ion. We might s im i la r l y  

represent a s e t  of 'shadow' po in ts  fo r  a l l  possib le fu tu re  'pa t rons ' ,  

l oca t ing  each a t  points of  cos t  and time decrease i n  the  opt ion j us t  

su f f i c i en t  t o  induce them t o  choose it ( ins tead of whatever e l s e  they 

may be doing). 

7.2.2 Figure 1 3 b i l l u s t r a t e s  what happens when t he  cos t  of t he  opt ion 

i s  increased by :c..::unitS: . .. . al l  'patrons'  i n  t he  a rea  marked wi th ' 0 ' s '  . . 
now s top  using t h e  option. Simi lar ly ,  f i gu re  l 3 c  i l l u s t r a t e s  what 

happens when t he  time cha rac te r i s t i c  of  t he  opt ion increases by . t ~  

 unit^: a l l ' p a t r o n s '  i n  t he  a rea  marked with ' x ' s '  now cease t o  choose 

t h e  opt ion.  

7.2.3 Working Paper 6 has shown t h a t  t he  areas of  t he  regions 

excluded at each s tep  a re  i n  proport ion t o  the  'value of t ime' i n  t h i s  

simple example, and t h a t  more general ly  with a mixed populat ion with a 

range of values of  t ime, the  r a t i o  o f t h e  areas is  some s o r t  of  weighted 

average of t he  various values o f  time i n  t he  population. The ' r a t i o  of 

e l a s t i c i t i e s '  method i s  normally based on e i t h e r  t h e  absolute NUMBER 

of 'patrons '  excluded (o r  a t t r ac ted ,  s ince an i den t i ca l  argument follows 

fo r  t he  shadow ' fu tu re  pat rons ' )  o r  on a WEIGHTED SUM corresponding t o  

these excluded patrons. Commonly, ' m i l e s  t rave l l ed '  by t h e  opt ion  o r  

' f a re  peid '  on t h e  option might be used i n  the case of a publ ic  t ranspor t  

serv ice .  

7.2.4 Thus t he  condit ion f o r  accurate est imat ion of  valueswf-t ime 

from t h i s  method is t h a t  t h e  dens i t i es  o f  e i t h e r  'pa t rons ' ,  o r  'patron 



x miles t rave l led1 or  'patronsx fare paid1 should be ident ica l  i n  the 

two exclusion regions, depending on which def in i t ion is  used. None of 

these seem especial ly l i ke ly ,  although there seems no reason t o  expect 

any par t icu lar  systematic var iat ion in densi t ies e i ther .  In other 

words, t h i s  problem w i l l  be a source of er ror  i n  the  measurement of 

e l a s t i c i t i e s ,  and without any information about the  l i ke ly  s ize of 

t ha t  er ror ,  no one e las t i c i t y  measure would be very useful. On the 

other hand, it seems l i ke l y  tha t  i f  enough of these are  avai lable,  we 

sha l l  be able t o  form consistent estimates by forming an average. 



8. CONCLUSIONS AND RECOMMENDATIONS 

8.1 Introduction 

8.1.1 Amongst h is  nine conditions for  accurate measurement of 

values-of-time, Harrison (1974) gives the following four 

a )  The variables considered relevant must. not be too closely 

correlated. 

b )  The variables affect ing choice must show a f a i r  amount of 

var iat ion i n  the sample. 

c )  The sample analysed must show a reasonable proportion choosing 

each of the  relevant options. 

d)  As a check on va l id i t y ,  the  number of choices explained by the  

analysis must be high. 

8.1.2 In sections 5,  6 and 7, working on the basis of a simple 

model, we have shown tha t  conditions a ) ,  b )  and c )  are a l l  interconnected, 

and outl ined how we may se t  about quantifying the 'not too closely'  of 

a ) ,  the  ' f a i r  amount' of b ) ,  and the  'reasonable proportion' of c ) ,  

a l l  taken simultaneously. In section 4 we have considered what the 

c r i t e r i a  should be t o  judge what i s  a 'high' enough leve l  of explanation 

t o  give assurance on model va l id i t y ,  and outl ined a general approach in 

the context of one par t icu lar  cr i ter ion.  

8.1.3 The factors tha t  are under our control i n  the conduct o f  

any choice experiment a re  

a )  context 

b )  sample s ize  

c )  composition of sample. 

The VR cr i te r ion  provides a guide on a l l  these aspects; for  example, 

it has already been remarked i n  5.3 tha t  contexts i n  which time and 

money differences are  the  most important factors i n  the'choice ( i . e .  

where they dominate any random var iat ion) w i l l  be most su i tab le  and 

tha t  no measurement is possible if time and money differences a re  

perfect ly correlated. These sor t  of considerations mi l i ta te  against 

t r i p  d is t r ibut ion (and for  mode s p l i t )  a s  an experimental context, 

even before any considerations of the d i f f i cu l t i es  i n  properly specifying 

the  model. 

8.1.4 A s  f a r  a s  the  composition of the  sample i s  concerned, it 

seems c lear  from the VR expression that  d i f ferent  decision 'points '  

make very d i f ferent  contributions t o  the estimation accuracy of t he  



model parameters and thus t he  value-of-time. There appears t o  be 

scope for  increasing prec is ion o r  reducing sample s i z e  requirements by 

t he  use of survey techniques which w i l l  r esu l t  i n  a sample r i ch  i n  

observations i n  t h e  appropriate regions of the  decision plane, (us ing 

t he  Beesleygraph representat ion of t he  problem). We have not 

discussed survey techniques i n  t h i s  paper; however, it i s  by t he  use 

of such techniques a s  var iab le  sampling within s t r a t a  defined i n  terms 

of access t o  d i f fe ren t  modes ( i . e .  on a geographical bas i s )  o r  

choice-based sampling s t r a teg ies  (see Manskiand McFaddcn 1 9 ~ 0 )  t h a t  we would 

t r y  t o  achieve t h i s  'sample enrichment.'. 

8.1.5 In Sect ion 5,  we have commented on the f ac t  t h a t ,  under t he  

simple model considered, a design which would provide a sample optimal 

f o r  revealed preference ana lys is  would not be optimal fo r  t r ans fe r  

pr ic ing experimentation. I n  t he  one example we have considered, revealed 

preference data  seems t o  be most powerful i n  es tab l ish ing values of  

time at points a t  which t he  proportions choosing each opt ion s p l i t  around 

20% t o  80% (although we must be cautious about placing too much re l iance 

on t h i s  observation u n t i l  it has been ver i f ied  a s  a general r u l e ) .  

Transfer p r i ce  data ,  on t he  o ther  hand, would increase i n  power as the  

experimental po in ts  became more extreme. 

8.1.6 Note here t h a t  economic real ism would probably discourage us 

from using any one form of funct ion, l e t  alone a simple l i n e a r  one such 

as we have been considering, over too wide a range of charac te r i s t i cs  

of options. The po ten t ia l  advantages of the  t r ans fe r  p r i ce  approach 

would be r e s t r i c t e d  by t h e  range over which our model might reasonably 

apply. 

8.2 Sample s i z e  

8.2.1 It w i l l  be c l ea r  from the  preceding sect ions t h a t  the re  

is no . simple r u l e  fo r  ca lcu la t ing  t he  sample s i z e  t h a t  is required 

t o  g ive  a preset  degree of confidence t ha t  a measurement of value-of-time 

can be made t o  a spec i f ied  precis ion.  The VR c r i t e r i on  could serve 

such a purpose f o r  the  simple model we have been considering, but 

t h a t  could not  be used without p r i o r  information about model 

coe f f i c ien ts  and information about t h e  jo in t  d i s t r i bu t ion  of t i m e  

di f ferences and cost  di f ferences over t h e  population ( t he  ' locat ions '  

on t h e  Beesleygraph) . 
.- 



8.2.2 Both of these items o f  information could be est imated from 

previous s tud ies ;  however, such a process would take  resources which 

a re  beyond those cur rent ly  ava i lab le  t o  us. Accordingly, we would 

recomxend t h a t  such a study be undertaken a t  an e a r l y  s tage of any ' 

fu r ther  work t h a t  i s  undertaken on value-of-time est imat ion. For our 

cur ren t  purposes, we can use t h e  q u a l i t a t i v e  i ns igh ts  provided 

by t h i s  approach t o  guide our i n te rp re ta t i on  o f  such information as i s  

ava i lab le  about sample s i z e  requirements from o the r  sources. 

8.2.3 F i r s t l y ,  we note t h a t  Daly and Zachary (1975) est imate the  

sample s i z e  requirement t o  measure values-of-time t o  + 35% with 90% 

confidence a s  2000 ind iv idua ls ,  ext rapolat ing from t h e  accuracy they 

achieved with some 542 indiv iduals .  Very s im i la r  l e v e l s  of accuracy 

were achieved by O r t u z a r ~ 1 3 0 0 )  on n similiar s ized  data s c t ,  :;o we s h a l l  

t e n t a t i v e l y  assume t h a t  t h i s  s o r t  o f  accuracy i s  representa t ive ,  a t  

l e a s t  of U . K .  mode s p l i t  surveys on the  bas is  of random samples of 

t ravc l l e rs  . 
8.2.4 We can then use t h i s  assumption t o  make rough est imates o f  

accuracy f o r  d i f fe rent  sample s i z e s ;  f o r  example, a t  t h e  90% confidence 

l e v e l ,  we would have measurement t o  wi th in 

+ 70% from a sample of s i z e  500 - 
+ 508 from a sample of s i z e  1000 - 
+ 35% from a sample o f  s i z e  2000 - 

8.2.5 The statement of t h e  confidence l i m i t s  at t h e  90% l e v e l  

fol lows t h e  lead  of Daly and Zachary : using t h e  more fami l i a r  95% 

, l e v e l ,  the  f i gu res  would be 

+ 85% from a sample of s i z e  500 - 
+ 60% from a sample of s i z e  1000 - 
+ 45% from a sample of s i z e  2000 - 

8.2.6 Measurement with t h i s  s o r t  o f  imprecision would make t h e  

task  of d is t inguishing between v a l u e s o f  t ime i n  d i f f e ren t  contexts 

very d i f f i c u l t  indeed, unless we have extremely l a r g e  samples o f  t h e  

va r ia t i on  i n  t h e  values is very l a r g e .  However, as we have seen, 

t h e r e  is  scope fo r  improving t h e  prec is ion  of t h e  est imates f o r  a 

given sample s i z e  by c a r e f u l  choice of survey method, i n  such a way 

a s  t o  concentrate on those ind iv idua ls  facing opt ions o f  a s o r t  most 

informative about r a t e  at-.which time and money would be traded. We 

Ilave now establ ished a way t o  est imate t h e  extent  of t h e  improvement 

give11 accoss t o  cxi::tinr: tlxtn s e t s .  



8.3 Revealed preference and t r ans fe r  pricing, 

8.3.1 I n  t h i s  paper we have contrasted t he  information content i n  

revealed preference data s e t s  with t h a t  i n  t r ans fe r  pr ic ing data sets, 

g lossing over t h e  basic d i f f i cu l t y  t h a t  t he  t r ans fe r  p r i ce  data  may 

simply not represent t he  continuous measure of u t i l i t y  d i f fe rence t h a t  

we have described. It is  ce r ta in l y  c l ea r  from t h e  l i t e r a t u r e  t h a t  

t h e r e  may be grave ~ rob lems  i n  framing t r ans fe r  p r i ce  

questions i n  an unambiguous way 

which can be sensib ly  answered. However, from t h e  viewpoint of 

s t a t i s t i c a l  power, it i s  obvious t h a t  t h i s  s o r t  of data  o f fers  the  

poss ib i l i t y  of reducing t h e  sample s i zes  required from thousands t o  

hundreds; were t h i s  the only advantage of t he  method, t h i s  would 

s t i l l  be a su f f i c ien t l y  compelling reason t o  g ive  p r i o r i t y  t o  t he  

tasks  of developing the art of co l lec t ing  the da ta  and es tab l ish ing 

the degree p f  re l iance t h a t  could be put on the resu l t s .  A s  we have 

seen, when appl ied t o  r e a l  choices the method can be seen a s  adding 

information t o  t h e  basic data  of t h e  revealed preference. This 

add i t iona l  information may be worthless, o r  it may be absolute ly  

r e l i a b l e ,  but most probably it w i l l  be at ne i the r  of these extremes; 

we recommend t h a t  p r i o r i t y  be given t o  es tab l ish ing 

a) sound ways t o  co l lec t  t r ans fe r  pr ice  data  

b )  t he  r e l i a b i l i t y  o f  t h a t  data  

c )  t he  resu l t i ng  requirements i n  terms of methods of 

s t a t i s t i c a l  analys is .  
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