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ABSTRACT

GUNN, Hugh F. (1981) Value of Time Estimation.
Leeds: Univ. Leeds,Inst. Transp, Stud., Work. Pap. 157

The statistical aspects of the procedures by which values
are placed on savings in travel time, on the basis of stated or
revealed preference data, are discussed and analysed. Conclusions
are drawn for the design of such experiments.

This work was undertaken in the course of a larger project on
value-of-time estimation commissioned by the Department of Transport.
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1. THE STATISTTICAL PROBLEM.

1.1 Introduction

1.1.1 There are two principal approaches to the valuabion of travel

time savings:

a) by the analysis of the outcomes of choices made between numbers of

opbions with differing ; travel time and cost characteristics, and

b) by the aqalysis of direct estimates of the difference in attractive-
ness of pairs of options which differ in respect of travel time and

cost characteristices.

When the first approach is based on observed behaviour, i.e. real options
and actual choices as revealed by subsequent actions, it is usually termed
a 'revealed preference' method, When the choices are hypothetical in

the sense of not commifting the chooser to any action, it is usually

termed a 'stated preference' approach. = The second approach had been
called 'transfer pricing', although in principle the measure of difference

‘in attractiveness could be sought in terms of travel time.

We shall not discuss the way in which 'transfer price' estimates are
obbained in any detail; put at its simplest, travellers are invited to
consider changes in the cost and time attributes of options, and to indicate
the amount of variation that would be needed to make the options equally

attractive to them.

1.1.2. The énalysés requiré that the link between behaviour and the
chosen set of explanatory variabies, or the link between the estimates of
the difference in attractiveness and the set of explanatory variables,

be made explicit in parameterised model.  Theory suggests only general
forms for such models; the final choice of a particﬁlar form and of a
particular set of factors by which to characterise the options must be

resolved by empirical means, which is to say by the data themselves.

Liv
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The limitations of the accuracy of the model used in the analysis together
with the amount of data available determine the accuracy with which the
parameters in the models can be determined and thus the accuracy with

which values can be ascribed to travel time savings.

1.1.3 The statistical aspects of the problem can be listed under five
headings:

1. How-should we draw our sample ?

2. How large must the sample be 7

3. How should we estimate the parameters in any model ?
k.,  How should we choose between rival models *?
3

. How can we validate our preferred model 7

. These five issues will arise in any given survey context, and indeed it
will be shown that the accuracy with which we can estimate model parameters,
for given sample size and survey method, varies from context to context,

so that the choice of experimental context itself should be made with

reference to the basic statistical problem.

1.2 Structure of the Working Paper

1.2.1 Throughout most of this paper, we shall assume ourselves in the
position of considering the collection of disaggregate data sets for
value—of-time estimation. The insights gained on the issue of sample
size will then assist in the serutiny of existing data sets, and of course
the conclusions reached on model selection, estimation and validation
apply equally to such deta. 1In principle, the results also apply to the
analysis of aggregate data sets such as conventional mode split or distri-
bution data, where these can be interpreted as the outcome of & discrete
choice process. T‘Some,appxoaehéﬁ'tb-value:offﬁime T T
‘ésbimetion are.: based on analyses of overall travel expenditure, or the
vafiatidns in demand for a particular mode as a result of changes in
Journey times and changes in costs. The statistical problems associated
with the analyses of such data are of a more conventional nature, and

are also described Briefly. '




1.2.2, In contrasting the statistical properties of estimates of
model co-efficients based on transfer-price measures of the size

of the utility difference with those based only on the sign of the
utility difference, we shall talk of 'maximal' accuracy under fairly
strong hypotheses about the accuracy of the transfer price. In
practice, the degree of success of any transfer price study must depend
crucially on the skill with which the transfer priece question 1s posed,
as well as the suitability of the context for such an approach.

These problems presentuissues.whiCE:ean.enly'be.tackled.by empirical

research.

1.2.3. Finally, we emphasize at the outset that this paper sets out

a theoretical analysis of the statistical aspects of value of time
estimation. The methods outlined below, and the formulae given for
simple models, can be elaborated to address specific models and contexts
once certain key facts are made available. Such information should

be acquired during the course of a piloting exercise. In advance

of this information, we provide rough guidelines wherever possible,

based on past studies.

LX)
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2. B ASIC ASSUMPTIONS OF THE MODELS

2.1 Introduction

2.1.1 The concept of 'random utility' allows us to progress from the
unfalsifiable and uninformative assertion that behaviour can be
described in terms of utility maximisation to the stage of postulating
concrete model forms to desciibe and predict behaviour and to establish
a rate at which time saving can be substituted for cost saving to
maintain the same level of satisfaction (the 'compensated marginal value
of travel time saving' as defined by Bruzelius, 1979). The device of
specifying the utility function only up to a random error term with
unknown variance not only allows us to proceed with our (inevitably)
approximate models of behaviour (as Daly, 1980, remarks} but also allows
us to measure the relative importance of the factors omitted from the

model specification in any particular context, by estimating that variance.

2.1.2 Speclflcatlon of the 'representatlve utility fUnctlon ang. -

spec1f1cat10n of the/random error term, defines a complete model whlch

can then be manipulated to yleld,both a probablllty den31ty function for

the dlfTérence betweé; the ut111t1es of any two options (and hence a

distribution for the corresponding Transfer Price estimate, were we to

equate that with the utility differénce) and a corresponding expression

for the probability that a particular one of the options has greater

utility (and hence would be chosen by the 'rational decision maker')

than any other. Both the p.d.f. for the transfer price and the probability

that a particular option is chosen are defined by the 'complete model',

the specified representative utility expression and the specified error term.

Both are functions of the (initially unknown) parameters in both

specifications. Standard statistical techniques can apply to either
transfer price data or to observed outcomes of choices; in

elther case the analysis can be made consistent with the same underlying
model,

S



2.2, Theorxr

2.2.1 Following the now classical account of the theory underlying
discrete choice (see for example in Williams, L980) we can describe
our analysis of the preferences indicated by particular individuals over a

fixed number of options, N say, as being based on the following postulates.,

1} An individusl drawn st random from the_population, with particular
observed characteristi;s, constraints and facing a particular set
of options, is assumed to be drawn from a subpopulation of
individuals with identical observed characteristics, constralrks and
options.,

2) Each of these individuals is assumed to -associate a net utility
with each option, Ui’ i=1,...,N , and to select that option with
the highest value of 1.

3) Individuals within the subpopulation with identical observed
characteristics, ete., are assumed to vary in respect of some _
uncobserved characteristics, in such a way that the net utilities
Ul""’UN each vary randomly across the subpopulation; this
variation can be described by a joint density function, f(Ui"'fUN)
say. Drawing an individual at random from the subpopulation
results iﬁ observing preferences generated by a vector of net

utilities drawn at random from this joint distribution.

2.3 Models

2.3.1 We then postulate that the nature of the variation of each U,
across the sﬁbpoPulation of individuals with identical characteristies

can be represented in the form

1
. : - (1)
(6.2"

0.8M + <

= 1
U =0 (8.27) + =

af .+ -

Uy = Uy N
vhere ﬁi, the 'representative utility',is fixed for all members of the

subpopulation, and is a funetion of observed characteristices g} describing
the option and the supopulation, a pumber of unknowm pammeters_&;iﬁmegg
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is a vector of error terms drawm fromeparticular dgistribution & say,
which itself contains unknown parameters,¢ say, and may also be a
function of the observed characteristiecs E}; on s EN .

We can thus write the distribution function of the disturbance terms
as G (£ 8, L.

The most popular of the models that can be generated by specific
assumptions about the form of U and the form of G are described in
Gunn et al (1980). '

2.4 Data

2.4.1 Revealed preference data sets then consist of the vectors of
observed characteristics for each option available, together with an
indication of which option was selected. Stated preference data sets

can also include a ranking of preferences extending over all or part of
the set of options. TFor transfer pricing data sets, the data refers to
comparisons of pairs of options : for transfer-price

studies (such as those reported by Hensher, 1976, and Lee and Dalvi, 1969
and 1971} only the comparison between the option actually selected and the
next-~best of the available options are compared, although there appears

to be no reason (other than decreasing credibility of the data} why
comparisons should not be made between all possible pairs of options.

For each pair, an estimate of the utility difference is collected, together

with the two vectors of observed characteristiecs.

2.4,2 For the purposes of illustration, it is convenient to consider

a simple case which can be presented graphically. Suppose we had a
population of individuals with identical observed characteristics, choosing
between two options each of which was characterised by only two observed
dimensions. We can consider this as & highly simplified representation of
 the choice between two very similar modes of travel, differing only in
respect of time and cost cheracteristics, For the-two‘modes, let us

make the usual distinction between the positive utility to be gained at
the end of the trip and the disutility incurred during travel itself, and

write the net utility expressions for individual J 8s



'__0_ J1 Jl j
U] =UC -8y 7T -0, Z,TT +omy

een (3)
3 20 _g 792 2
U2 U 6122 92 22 LS
J
k "
usually unknown to the modeller, and about which we would ususlly

where the termsn ! are disturbance terms of a magnitude and sign

only hypothesise that they were drawn from an underlying distribution

whose general form could be-specified, having unit variance.

The net utility difference between the options is then eq. 3

J_wdy o o 1 _ iz, _ i _ ie o
(v] - ©) o, (237 - 23%) 5 (25 Z,7) + (n 2) ... (3)
and as usual, we would assume that mode 1 would be selected if Ul were

larger than U., and U, only selected if U, were smaller than U

2 1 2°
{We shall ignore the possibility of equality!)

2.4.3. For each 1ndlv1dual, we can plot a position on a (Beesley-)

ZJP) and (Z%l = ZJQ) corresponding to the net

graph with axes (Zi
difference in observed characterlstlcs in the options confronting the
individual., Let us assume that (Zi1 ZJE) represents a difference in
Journey times and denote that axis by AT. Similarly, let (ZJl ZJE)
denote difference in costs, and denote that axis by AC.

Working Paper 6 has described the essential indeterminscy in the unit
system appropriate for such expressions, and we have seen that, providing
we take care to make consistent adjustments throughout, we can work -

in any unit we please. For example, if we choose to set(a to unity,
leaving 62 as a parameter to he estlmated we must alsc acknowledge the
need to estlmate the scale parameter in the distribution funetion for

the disturbance term, (The more usual approach is to standardise that
scale parameter to unity and express the problem &s one of estimating
both 61 and 92: in practice, of course, this amounts to,gxactly the same
thing). To illustrate the relationship between the-transfer price and
revealed preference épproach, it is useful to work throughout in money

units, so let us rewrite eq 3 as

T, B g, B Joogod _
AU (yl U2) AC eBAT, + (s; e2) (4)

Where 03 = 92/91 and vare = 1‘/35 In this form

var £ must now be estimated.

A
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For one particular individusl, suppose the centre of the cirecle on
figure 1 denctes the point corresponding to the difference in character-
istics of the options which confront him, and let L denote the distance
of the centre of the circle from the line (AG) = -83(AT), measured
parellel to the (AC) axis as shown. Since we have hypothesised that -
our individual is 'raticnal', he will choose to take mode 2 if and only
if the net utility he will gain is greater than that arising from a
choice of mode 1. This will only happen if the net wvalue of the
unobserved fac¢tors in the utility expressions, E;i _Epg), is - leas

than-L.
AC

FIGURE | A

T

r
O-I-—-'-——"'—-F

- AC = "'93AT

Figure 2a illustrates the sort of pattern we might observe in practice,
denoting the choice of mode 1 by & hollow cirele and the choice of mode
2 by a shaded circle. As a result of the presence of the unobservable
factors, some individuals choose modes which are apparently inferior in
their net time-and-cost characteristies, and indeed some choose modes

which are epparently inferior in each of time-end-cost characteristies.

AC | o | AT E,
FIGURE 2a A ’ __ FIGURE 2b ‘ ) . )

®
® S - o' |
. |l o
© ° ¢ AT ‘ ;. I T| AT
. | s
o o) . O 'Icg
ACF -e,é‘r | (semtats) =By

L
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Now let us suppose that the net effect of the unobservables (gi—ez)

could be determined that weknew 8., and that we could replot each

3!
individual on a graph with axes AT and (A C- ¢ e ). Figure 2b
illustrates the expected result: every individual is now seen to be

making a rational choice.

2.k.4  The transfer price questions described in Working Paper 6 are
intended to-discover the net utility difference between the options
for each individual; in figure 2b, this would correspond to the
distance from the 'location' of each individual to the line
(AC‘gihgz)=—63AT measured parallel to the {(AC - €1 +22) axis,
It is easy to see that IF we d4id have a measure of (El‘ 91), AND the
transfer price data did truly represent the net difference in utility
between the options, we could A(AC_ £, +£;-TF)
replot the points corresponding FIGLRE 3a
to each individusl on a graph C
with axes AT and (AC -~ g, + €, - TH, '

1 2
and that we would then find that . e, AT
all the points lay on the line ~. >
(aC - €y 5~ TP)=—93AT, as
illustrated in figure 3a. ' \\\\

(ac irzg—Tf)rG}AT

e

FIGURE 3b :
LIGURE 3b Al -
? ? +(Lw)
| In practice, we only know AT and AC-TP -
, T) Plotting individuals' locations on these

| AT axes produces a set of points scattered
® é . about the (AC-TP)=-6,
f Figure 3b, where the displacement from

AT line, as on

the line is just that which distinguishes

. M' e - . Iy
E T‘) Dsar figure 2b from figure 2a, i.e. the net
o effect of the unobservables,

The estimation of the slope of the line then becomes a matter for

statistical resolution, given the error distributions of these
unobservebles. For example if they were all normally distributed with

constant variance, we would fit the familiar 'least squares' regression

line.
A
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2.4.5 In practice, of course, it is desirable to allow for the
possibility that the transfer price data does not give an exact measure
of the utility difference between the options, but is itself subject

to certain errors. This possibility is discussed by Daly (1978) who
demonstrates that simple solutions are available for conveniently chosen
error distributions. Daly* has also noted that an elegant distinction
can be made between the distributions of transfer prices in the context
of choices actually made and those for hypothetical options and
contexts, ' in that the former can be restricted to take only
positive values. Thus, at the expense of some extra complexity, we ecan
ensure that the transfer price question can only add to our information

if we actually know the outcome of the choice.

-

* private communication.

L
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3. ESTIMATION

3.1 Introduction

3.1.1 The relative advanteges of the various methods by which
probabilistic choice models can be estimated are by now well known

(see for example Stopher and Meyburg, 1976) and the analysis of transfer
price datae calls only for the straightforwerd application of regression
methods {(Daly 1978). We shall noﬁ discuss these here.

3.1.2 TInstead, in recognition of the historical importance of the
'Beesleygraph' approach in connection with the analysis of binary choice
data for value of time measurement, the interest there is in the
connection between this method and-the more recent probabilistic choice
analyses, and the importance of the related issues of use of data, we
shall use this section to pursue the graphical illustration of the
previous section in demonstration of the essential differences between

the methods.

3.2. Beesleygraph versus Probabilistic Choice Analysis.

3.2.1 The 'Beesleygraph' technique can be simply illustrated as
follows; obtain A sample of outcomes of choices between two options
differing in respect of time and cost characterigtics, and plot these on
net time cost, net money cost axes as on figure la, distinguishing as

before between those points at which the outcome of the choice was that

FIGUR: 48 AA(, FIGURE 4b AAC
« o | /

© ) .. o ) . >AT .o\.o. | / A%'
¢ // o de=-HAT

[R5




- 12 -

mode 1 was selected and those points at which mode 2 was selected.

The problem is then to find that stvaight line drawn through the origin
which minimises the number of points at which the mode chosen is
apparently inconsistent with rational behaviour in terms of timé and

cost alone.

The data points in the first and third quadrants are redundant for this
analysis; were trading to occur on time and cost alone, mode 2 should
always be chosen by those in the first quadrant and mode 1 by those in

the third quadrant, {one mode being better than the other in 'all!

respects in these areas).

3.2.2 Figure Wb illustrates the process with a line drawm which results
in only two apparently 'inconsistent' observatiocns; 'consistency' would
require that all decisions characterised as points plotted above the line
led to mode 2 being selected, since in that area we have AC > 63 AT

or (Cl—C2) > 63 (Tl“T2) i.e., the value of the time saving offered by
mode 2 outweighs its extra cost (above the line in guadrant L) or the
cost saving offered by mode 2 outweighs the extra time taken (above the
line in quadrant 2). Similarly, all 'decision points' below the line

should result in the selection of mode 1.

3.2.3 Now let us consider the corresponding analysis provided by, for
example, logit analysis, using exactly the same model of net utility.

The probabilistig choice analysis supplies, for every point on the decision
plane, a probability that mode 1 would be selected {and of course the
probability that mode 2 would be selected is thus defined at the seme time).
We can illustrate the end fesult

by drawing a series of iso- P ' A
probability-choose-mode-1 lines P=3 7 * FIGURE 5
one the decision plane, a&s in . \\\\\\\\7)\;

figure 5. It can now be seen
quite vividly that the date.

must supply an extra piece of

~ information, for the model
requires not only an orientation
for the iso~probability lines,

but a rate of change also

Pz prob{mnde1)

L%
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For example, in figures 6a and b we have iso-probability lines

corresponding to differences in orientation(value-of-time) but not

rate of change, and in figures Ta and b we show differences in rate-

AC
A 9 FIGURE 6b
e et At

of-change for lines with the same orientation.

Peg Ac
~.. FIGURE &a A
=3 B A v
' "'d * o it .
> L -
T ?- ‘._r_ wy)
o : -+
> | AT
N .
2y :
\
A
4 A w
P A
- kw“'m“
.-ﬂ o b \
L. AL
- k4 e FIGURE 7b
o ' bg
r, - . i
\ 4 Ps 7
> ‘&
e b
v \"\ pk‘
» ™S N
T . AT R, o AT
p ~ ?

RrS - “{
Py
nc.
&

A -
‘f
3.2.h

s . We are free to choose a
system of units for our utility expressions, provided that we remember
that the dispersion of the random element must then be made parametric.
The rate~of-change of the iso-probability lines is determined by just
this dispersion. The requirement that the data determines this rate—of—
change reflects our implicit choice of e particular unit system (money)

in our example.

b
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3.3. Conelusions

3.3.1 The example given above illustrates
choice models are potentially more powerful
the 'Beesleygraph’ spproach. The evidence
equiprobability lines is taken from ALL the

location on the plane. On the other hand,

exactly why the probabilistic
in their use of data than
for the orientation of the
data, regardless of its

it is also clear that

'potential power' and 'lack of robustness' will go hand in hand, and that

the probabilistic choice models will be more sensitive to miscoded data

points, or sections of the data to whieh the model does not apply.

Ignoring the evidence from observations in quadrants 1 and 3, as is

inevitable with the 'Beesleygraph' epproach as outlined and indeed as has

been done in the past in specific transfer price experiments (see Lee and

Dalvi, 1969) does result in the lossg of information that could improve

estimates of co-efficients in probabilistic choice models, or in transfer-

price experiments, {at least if the model and data are both correct).

However, such an -omission should not bias the results, merely reduce their

precision.

3.3.2 The 'Beesleygraph' approach illustrated here is a specific,

highly simplified application of the 'Score Maximisation' technique

developed by Manski (1975); the same principles can be used to extend

the estimation procedure to more than two dimensions.



4., MODEL VALIDATION

b1 Introduction

4.1.1 The general task of model appraisal can be considered under
two headings. Firstly, there is the issue of the internal consistency
of the complete model with the data from which it has been estimated.
This aspect of appraisal includes the well-known tests of significance
and exsminations of residuals from standard statistical theory; for
disaggregate choice models, the various tests that are commonly used are
listed in Gunn et al (1980). To this list we would now add the
Lagrangian Multiplier tests and the range of 'overfitting' tests
described by Horowitz (1980). The second issue concerns the performance
of the fitted models, and the description of behaviour and values that
these embody, in the prediction of choice for data sets other than that

from which the model has been estimated. This we shall call 'validation'.

4L,1.2 In this section, we shall discuss the second of these issues

in the context of one particular test described by Foerster (1979).

In particular, we are interested in the question of the amount of data
that is necessary to 'validate' a model. A separate question concerns
the sort of data that should be used for validation, Most frequently,
the validation data set is actually a randomly selected subsample of

the estimation data set; certainly a validation procedure based on such s
partitioning of the data will guard against some of the dangers of model
misspecification. However, in many cases it will be clear from the
purpose for which the model has been developed that there ié a pasticular
sort of context in which the model should be validated. For example, ’
if the model is derived from data from one set of geographical areas for
general application in other areas, it should be tested specifically for its
performance in a sample of such other areas. Similarly, a forecasting

model should be tested for its performance in other time periods.

4.1.3 The work reported in this section was undertaken to explore the
issues in the context of & tractable example. It will be obvious that
a completely general treatment of the problem is a task far beyond the

scope of this project. 6thhe other hand, the inference that can be made

i
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about 'values—of-time' from revealed preference data is all CONDITIONAL
on the adequacy of the model used to represent behaviour. We Sbould not
underestimate the importance of establishing the adequacy of that

representation.

L.2. The FPR Criterion for Model Validation and for Model Comparison

Using Validation Data Sets

L.2.1 A disaggregate model specifies a set of probabilities attaching
to each of a number of opticns available to an individual. The option
associated with the maximum of these probabilties will be deemed the
individual's *first preference’. In application to a validation data
set, the model may or may not indicate that the option actually selected
was the 'first preference' for the individual. If it does, this is

deemed to be a 'first preference recovery'.

Naturally we would not expect all individuals to select their 'maximum
probability’ option if the model were absolutely correct (unless of course
the model was specifying probabilities of 1 for that option and thus

0 for all others}. In general, the expected number of FPR's will depend
on the actual sizes of the maximum probabilities, assuming a cortrectly
specified model. This is discussed later; Tfirst we shall consider the

comparison of two competing models.

L.2.2 Two different models may be compared in respect of their FPR's by a
method described by Foerster (1979), due originally to McNemar and
generalised by Cochran (1950) to apply to an arbitrary number of models

or weighted averages of models. Only the simple case of two model

comparisons will be considered here.

Consider a 2x2 table layout as shown in fig. 8; for each individual in
the validation sample, a set of probabilities of choosing each option is
calculated for each 6f the two models under investigation. The individual
is assigned to one of the cells of the table according‘to the rules:

assign to cell {1,1) if the actual option chosen is not the ‘'maximum
probability' option for either model;

assign to cell (1,2) if the actual option chosen is the max. prob. option

for model 2 but not for model 1 (the numbering is of course arbitrary);
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assign to cell (2,1} if the actual option chosen is the max. prob,
option for model 1 but not for model 2; )
assign to cell (2,2) if chosen option is the max. prob. option for

each model.

FIGURE 8
M FFR n n. = no, indwjtuals assigned to ceil {i,j )
o no T nI2 jj = o, indwi 9 I3
[#]
E . = (n”+n|2)(n|]+"2])
L FPR 21 n22 J g >
! T UPRLFE LPW

no FPR FFR
MODEL 2

k.2.3 This sort of contingency table layout is most familiar in the
context of a null hypothesis of independence of row and column classi-
fications, which is tested with the x2 distributed statistic
XQ:EC‘Wi-eu’E That hypothesis is not appropriate in this
case:'qufzé apart from being highly implausible for any sensible pair

of models (which should be specifying broadly similar choice
probabilities, thus concentrating the data in the (1,1) and (2,2}
cells). Rather, we are interested in the null hypothesis that the
probabilities with which individuals fall into the (2,1) and (1,2)

cells are equal, for in that case the implication is that the two models
are equivalent in terms of expected number of FPR'S. We can fest this
hypothesis by considering the entries in the (1,2) and (2,1) cells alone.
On the null hypothesis outlined, (after McNemar), the statistic Q,

2 2
Q = (nlu?_ llz‘n12+“2|)) +(n2' _|/2( n|2+ n2[)) 2
Yalmgeng) Ugtn g Ny 1s ¥ distributed with 1+ d.f.

With some easy manipulation, we can show that - ‘ﬂg—"Q;F

: ' (o4 Ny )
L.2.4  Thus, a test of the 'equivalence' of the two models, in terms of
FPR's, is given by computing Q and comparing the result with xf
1£ Q is not larger than the appropriate chosen critical value of xi
(3.85 for the usual 95% confidence level) we conclude that the models

are equivalent in these terms,

2
: . . P (Njgem Ny =]
Cochran also gives a statistic 'corrected for continuity', o'z 12772171
3>

: L e Ny
and demonstrates the correspondence of the general procedure with the

simple ‘'sign' test.

Lo
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Thus, gilven 0, and Ny s WE can simply coﬁsult tabulated values of the
sign test (for example see Crow, Davis and Maxwell, Table 9) to test the
hypothesis that the probabilities of an individual being assigned to the
(1,2) cell, and to the (2,1) cell, are equal. '

4.3 Some comments on the FPR Criterion

h.3.1 The FPR criterion has some intuitive appeal; it is easy to
calculate and has an obvious sort of comnection with model performance.
However, it should be stressed that it is not in itself an unambiguous
indicator of model reliabilityg too many FPRs should lead to rejecting
the model as well as too few, This is discussed more fully later. A
second point is that; even if the total numbers of FPRs are acceptable,
& test which weigﬁts each correct prediction equally will not be
suitable for circumstances where some options are more important than
others, For example, a mode—-split model might specify several modes
but be particularly interesting in respect of its predictions of
patronage of a minor mode such as car-pooling. We would not then judge
two rival models equivalent even if they had exactly the same number
of FPRs, if one model got the car-pooling patronage entirely 'wrong',
and all other modes correspondingly slightly more 'right', than a
rival model which performed adequately for all modes, including

car-pooling.

h.3.2 The latter point is linked to the choice of sample for the
validation exercise. This requires to be chosen randomly from the
population being modelled, in order to allow the desired inference
about the general suitability of the models in this population;
however, if some options are more 'important' than others, it seems
clear that this importénce should be reflected somehow in the
composition of the validation sample, This question is not explored
here, but in passing it can be seen that the need for a validation
process emphasises the importance of considerations of sample size and
design, especially if both estimation and validation data is gathered
at the same fime- The ﬁccuracy of one stage may thereafter only be

increased at the expense of the accuracy of the other.

b,k gemple size for the comparison of models by the Q statistic

L.4h.1 Given the procedure outlined above, based on the number of
FPRs, we can choose whichever level of confidence seems appropriate
for the essertion that the two models under comparison differ in

respect of expected number of FPRs. We thus have control over the

& iw
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fraction of times that we will incorrectly assert s difference between
similar models. As usual, the aim of selecting s particular sample
size is to ensure a corresponding control over the proportion of times
we will make the other sort of error, némely ineorrectly concluding

that there is no difference between different models.

L.k.2 The actual calculation of the probability of an error of the
second kind depends on the exact difference between the models, which
of course, will not be known at the outset, One way around this
problem is available, if we aré able to declide on a minimum difference
that we should like to be able to detect. If we then calculate the
sample size needed to reduce the chance of errors of the second kind to
an acceptable level for models which differ by exactly this minimum
amount, then we have ensured that there will be even less chance of
such an error for discriminating between models which differ by more

than the minimum of interest.

L.h.3 The actual size of the minimum difference that we should aim
to detect will vary from application to application, and may in many
cases be a matter for judgement rather than for hard and fast rules,
although it may be possible to develop a decision~theoretic approach
for problems in which the 'cost' of wrong predictions can be estimated.
For the purpose of illustration, table 1 lists the probabilities of

an error of the second kind corresponding to various sample sizes when
the criteria Q and Q' are used to assesg the statistical significance
of the difference between FPRs of two models, for the particular case
when Pr(1,2) = 0.05 and Pr(2,1) = 0.00. (Pr(i,j) denotes the
probebility that an individual drawn at random from the validation
data set will be assigned to cell (i,j) in the table in fig.l.) This
particular case corresponds to two models such that, on average, model
2 produces 5 extra FPRs per 100 individusls modelled as compared to
model 1. For the purposes of the test, it does not matter whether this
arises as a result of model 1 having 0% FPRs and model 2 10% FPR, or
model 1 80% and model 2 90% FPRs.

Lok ok For this case, will always be 0, so Q simply becomes n,

Dy

2!
and Q' becomes (n12—1)2 . If we are ensuring 95% confidence that any

n
12
difference we establish could not have arisen by chance from identical

b
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models, we will be comparing Q and Q' respectively with the appropriate
value of Xf , namely 3.85. Thus, if we consider the test based on @
for exomple, the probability of an error of the second kind, namely
accepting the null hypothesis of no difference between the two models,
is the probability of three or fewer individuals being classified .

to the (1,2) cell. Tor any given sample size, n say, the probability
that r individuals will be assigned to the (1,2) cell is simply the

Binomial probabilityncr Fr(l—p)n-r

, where p denotes the probability
of an individual chosen at random being assigned to the {(1,2) cell.
Given n, and teking p = 0.05, we can calculate the probabilities of

0, 1, 2 and 3 individuals being assigned, and sum these to give the
total probability of accepting the null hypothesis, which is, in this
case, an error of the second kind. The calculation for Q' is

similar, except that we must also add the probabilities of exactly L
and exactly 5 individuals in the (1,2) cell, since the nuil hypothesis

is rejected only for n,, 3 6.

h.h.5 Q' is n more 'conservative' statistic than §, in the sense
that it requires stronger proof of any differecnce between models,
Correspondingly, it is more prone to make errors of the second kind,
failing to detect differences when they do occur. Tt iz clear from
table 1 that the required validation sample size needs to be relatively
quite large, given that the estimation data sets are usually only a

few hundred data points, to allow us £o.discriminéte between the two

models under consideration with any degree of certainty.

Table 1. Probabilities of an error of the second kind for given sample
size, and stated test, test size, and models as defined.

Sa@ple Pr{error I1)

size Q Q'
50 16 .96
100 .26 .62
150 ' .05 .2k
200 .01 .06
250 .00 .01

a4
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The method outlined here can be extended to indicate required
validation sample sizes for other levels of minimum difference, including

cases where both (1,2) and- (2,1) cells have non-zero probabilities,

.5 Remarks sbout FPRs and 'validation'

Given a model M which specifies a preferred option for each of n
individuals in a given data set, and supposing that the ith individual
has s options to choose among, and that the calculated (maximum)}
probability associated with his preferred option is Py, we can easily
derive the following: )

a) the expected number of FPRs in the whole data set which would be
returned by a random prediction of preferred options would be
o 1
= . The variance of N_ is L = (1- =) (for individual

. Cs r . . C. c;
i=1 "1 i=1 i 1

.5
|

b)  the expected number of FPRs from the specified model M is

n _ n
N = X P - The variance of N_ is ) P (l—pi) {in the same
Toi=l ' =

way as above).

Thus any actual out—turn total number of FPRs associated with a
given model can be compared with Nr and NS; .if all three are reasonably
close (given the estimated standard errors) the model is reasonable but
uninformative; if N and Ns are similar and larger than Nr; the model
is reasonable and informative; if N and N_ are not similar, the model
does not explain the variation in the data and should be rejected

{whether N is larger than or smaller than NS).

A simple illustration of this point may be made by considering a
model of a bipary choice made on the basis of a single variable {such

as the conventional car-ownership/income models).

Figure 9a shows a hypothetical postulated model; fig.9b shows
the data points that would correspond to a 100% FPR.
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FIGURE 9
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Far from confirming the validity of the model, the data suggests
that the income co-efficient in the model is far too low, and that a

model like that shown in fig. 9'c would be more appropriate.

4.6 Conclusions

k.6.1 One suggested procedure for the comparison of a number of

models on the basis of a validation sample is thus:

a) For each model, compare the expected and observed number of FPRs,
rejecting models which are inconsistent with the data;

b) If more than one model is left, compare models pairwise in respect
of their total numbers of FPRs by the McNemar/Cochran Q and Q'
tests, rejecting models whiéh can be shown to prodﬁce fewer
FPRs on average.

e) If more than one model remains, all have been shown consistent
with the data and indistinguishable in respect of expected number
of FPRs. Choose one at random, unless another criterion
(theoretical elegance, ease of application ...} seems relevant.

d) Compare the chosen model with the 'random choice cof options' model,
by means of N_ and N in the light of var(Nr) to assess usefulness
(Hauser's (1978) statistics are more informative, assuming that
the model is indeed better than a random choice).

4.6.2, TFinally, we note that other criteria of model performance have

been suggested~ see for example in Gunn and Bates,IIQBO, Much work remains

to be.done on this aspect of model serutiny. However, for our present
purvoses, we recommend the use of the conventional F P R statistic, as

interpreted by the rules we have supplied above.

A
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2. EFFICIENT DESIGN

5.1 Introduction

5.1.1 The general principles of survey design and sample size
assessment can be described in simple terms as follows. We suppose
that a survey is to be conducted in which observations of a variable
Y are to be made at N points corresponding to different values of a
variable X - say Xl’ X2, .es Xﬁ - and that a model is to be Pitted in
which Y is to be related to X by a relationship involving unknown
parameters. Suppose that the distribution of Y, given X and the true
values of the unknown parameters, ig known. Then, in anticipation of
the results of the survey/experiment, we can write down general forms
for the estimators of the unknown parameters, and hence of the fitted
model, and also write down general forms for the variance—cov&riance
matrix of the parameters and thus also of function of these parameters,
including the fitted model. If our intention is to maximise the
accuracy of estimation of some function of the fitted parameters for
given sample size, or to minimise sample size for some required
accuracy of estimation, we can refer to these general forms to
indicate the relationship between thz smount of date. the location

of this data and the consequent accuracy of the fitted parameters.

5.1.2 Note that we will for now ignore problems of model validation,
and meke the assumption that we can correctly specify the model form
and the distribution of Y from the outset. In practice we may have to
adopt sequential procedures, &and also build in validation requirements
vhen designing the survey. Two simple examples may help to establish

the main points of the approach.

5.1.3 Example.l.
Suppose we have the model Y = g + BX X, and know that the

distribution of Y given a, B and X is Normal, with known variance

02 . Given fixed sample size N, and the opportunity to observe the
N values of Y corresponding to N selected values of X, hoﬁ should these
values (Xl .es XN say) be chosen to minimise the estimation error
associated with the maximum likelihood estimates of 87 We can
write down the log-likelihood fﬁnction in general terms as

N

2
iil (Yi"(a + BXi)) _ (Kl,K2 Qonstants)

L= Kl + K2

LX)
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The maximum likelihood estimators of <. and (® are obtained as solutions

of the equations Eﬁ = ok = 0 : call the solutions a and b,

This leads to theaf;mlllgg form b = ; (X ;f)(Y.—i){ E (XiJE)Q}—l
with estimated variance var b = (N- 1)02 {N E (X -¥)2}1-1

Thus we should pick the points X, wee Xg to maximise { E (X -X) }

in order to minimise the estimation error associated wzth t. If we are
restricted to experimentation within a particular range of X, say in
the interval (X . ), then we should take half our observations

min? max
at X . and half at X
min max

5.1.4 Example 2.

Suppose we have the model Y = @ X, and know that the distribution
of Y, given © and X is Poisson, how many observations Y at chosen
points X should be taken, and how should the X be selected, in order
to have 95% confidence that the maximum 11ke11hood estimate of @ 1lies

within + 10% of the true value?

In this case we can write down the log-likelﬁhood funetion
corresponding to a sample of size Nas § = K - > (—aX + Y 1og(ux )
The maximum likelihood estimator of o« is a, glv%n &8s the solutlon of
04 '

. - _ H 3 -1
s =0, ieca= I Y. (I X i)

with associated estlmate of the variance of & given by{—E( )} = of é.xi}—l
Thus in this case the error associated with the estimate is reduced by

taking all cbservations at as high as possible values of X - i.e. all

at Xmax’ if observation is only possible within a restricted interval

(x. x ).
min, max

. Thus the + 95% confidence limits around the mean o within which

a is expected to lie are given by {o - 1.968, o + 1.96S }

where S = Vo 1\[}(1111&‘}(}“1 obviously depends on a.
The form of the confidence interval is based on the (asymptotic)

Normal distribution of M.L. estimators.

5.1.5 Thus, without knowledge of the value of o the quantity
we are setting out to estimate we cannot choose the required sample
size. There are two ways to approach the problem. Firstly, if a
sequential procedure is permissable, we may form a first estimate of
@  on the basis of N, observations (all at xmax) and then estimate

how many more would be needed for the regquired accuracy on the assumption

L
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that the estimate of = from the Nl observations is the true value.
Secondly, we might have a reliable estimate of the region in which ¢
is expected to lie, and could form a "pessimistic" estimate of the
required sample size on the basis of the maximum sample needed for,

any value of =4 in that region.

5.1.6 Both of these examples demonstrate the absolute reliance of
the results on the assumption of known distributions/models. Obviously
it would be impossible to reject the hypothesis of a linear relationship
'between Y and X on the basis of the experimentation at just two points
advocated in example 1, or the proportional model of example 2 on the
basis of experimentation at a single point. It would be dangerous in
the extreme to interpret the guidelines for 'optimal design' too
literally in most practical applications. However, if we are able to
specify some acceptable test of model validation, the same methods may
be used to prescribe the most efficient design and minimum sample size
requirements for both validation and estimation. This problem is not
one which appears in the literature, and will involve careful thought
as to the appropriate criteria for model validation. The remainder of

this section is concerned with ‘design for estimation' alone.

5.2 'Optimal Design' and Value—of-Time

5.2.1 An overview of the various approaches that have been taken
to the design problem is given by Silvey (1980). In the specific
context of disaggregate models, see also Daganzo {(1980). In general,
the solutions depend on the objective. In the examples above, we have
considered the problem of maximising the accuracy of & single parameter.
However, the same approach could be used for any general function of
parameters, provided that it is single velued. This does raise
difficulties when there is no 'natural' choice of such a function.
According to Silvey, the wmost commonly adopted {or at least, for
theoretical exposition, most frequently postulated} is the 'eriterion
of D-optimelity' which amounts to miniﬁising the determinant of the
variance-covariance matrix of the parameters in the model. This
objective is equivalent to minimising the area of any given confidence
region for the parameters, thus in some sense maximising the joint

accuracy of the parameter estimates.

A
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5.2.2 Figures 10 and1l illustrate this concept with reference to a
logit model framed in terms of two parsmeters, a and b + The model
is taken from Bates et a2l {1978) and refers to the proportlon of
households owning at least one car as a function of gross household
income. FigurelO shows the data and the fitted meodel. Figurell
shows the 95% confidence region associated with the estimated
parameters, using the maximum likelihood estimators, for the given
data set. One use of the 'optimum design' approach would be to
determine 'where' (i.e. at which income points) the data should be
collected for populations with similar expected relationships between
car ownership and income in order to minimise the error.of the fitted
parameters, as described by the size of the corresponding confidence

regions.

5.2.3 The solution to this problem is given ly Silvey, quoting from
Ford (1976); for any given semple size, half the 6bservations should
be taken at one income point, and helf at another. The points are
given by a general formula; in the case of the relationship deseribed
these turn out to be approximately £15 and £62 for the 1972 data, ¥

1
and I, in figurelO0 Once again we see how crucial is the assumption

2
that the model is correct! However, this sort of information does
provide valuable insights into the relative values of taking
observations at different points, providing we are reasonably cautious

about the policies it advocates.

5.2.4 Inference about 'values-of-time' has usually involved models
with a particular form of perameter struecture; typically, there has
been & funetion relating 'utility' to observed varisbles by an
expression such as
U. = (Bi -6,M. -8, T. -0, B.)
i ) 171 2 i 371 (5)
in which % is some variable like comfort, 'M' denotes a money cost and

'T' denotes time in an activity, and the 6's are constants.,

In certain. cases,*there méy. be advantages-in 1nterpret1ng
the fitted co-efficient of cost variables in probablllstlc choice
models based on random utility theory with the dispersion parameter 7 ,
which is inversely related to the standard deviation of the random
component of the utility function (the effect of the 'unobservables').

This corresponds. to a choice of money units for the utility expression.
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where o denotes the stendard deviation of the random component.

For logit models the relationship is Q =

5.2.5 Adopting this convention, we can write the general form of

the linear utility function which is used in many empirical studies as
J - al _ 3 _ J_ 3 3

uy =8 (n)Mi (QVT)Ti (gvg)zi + e} (6)

where 9; refers to the mean of the 'unobservables', V.. to the value

T

of time and V’Z to the value of some other variable, all now
measured in money terms. " ¢ is assumed Weibull, stendard deviation

1, for 'logit' models, ('i' refers to option, 'j' to individual.)

5.2.6 There is no asymmetry introduced by this convention. The

estimate of the dispersion parameter in time terms, for example, is

(value of @ in money terms), {(value of time) = QV&

Thus the co-efficient corresponding to the time variable could also be
deseribed as measuring the dispersion parameter, this time in units
of time. The bracketed expressions in_eq.ﬁ., are the estimated
coefficients recovered from (eg) logit models. From 'transfer price'

(1}

experiments, we obtain data to fit the equation
(TP - ) = ¢ + Vi AT+ Vg amd & (L _ D
5.2.7T Note that the dispersion pafameter is alsc measured in the
usual fitting procedure, (since we also estimate var(e') & 202),

and that the smaller the dispersion paremeter (the larger the standard
deviation of the 'unobservables') the worse the statistical precision
of the fitted co—efficients VT’VZ In fact, egquationT has usually been
estimated by least squares regression, in which with negligible (and
removeble)} inconsistency, the error term that was conveniently assumed
Weibull for the logit analysis is cohveniently assumed Normal for

the regression. With the data in this form, the V coefficients

are estimated independently from the g co—efficient.

5.2.8 Returning to the notation of equation5 , In this case,
there i1s a single function of'parameters that is of paramount
importance, namely the ratio 65/6; , the 'value-of-time' if
circumstances are appropriate, the accuracy with which a particular

design estimates this ratio. forms a natural criterion of optimality.

(1)

'C' a constant. Note A M ete. now refer to differences
between options, - ———
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5.2.9 The Taylor series approximation for the variance of a

funetion gives o
Varf £(X)}5 -a—£ var (X) of
=1 *{a3x ~T3x

Thus if we have a general expression for the variance-covariance
matrix of the fitted parameters we can approximate the variance of a
function of the parameters. If the estimates have been derives as
likelihood maximising solutions, such an estimate is provided by the
inverse of the expectation of the matrix of second derivatives of the
log-likelihood function. In the case of the hypotheticel examp}e

given above, denote this by z‘ where |

Vo V.o V. V.| [ ar r
£(0) = af
v = 00 01 ‘02 03 For £(0) 85/ . we have | 30
= V. V.. V..V 9 ol =0
o1 ‘11 12 "13 51 Lo
i 20. 2/42
V. V.. V.. V 1 1
02 '12 Vop Vo3 . a8 1,
Vo3 V13 Vo3 V33 30, 1
- -t ‘ g; O
_ae3d i |
Thus the criterion to be minimised is
Ly 2% gy . eg v
VB = o Voo = 2. 1Y 2 Yy
Gl 93 eh
1 1

Note that the design which is optimal from the viewpoint of
minimising the variance of the 'value—of-time' estimate will not in

general be that which is D~optimal, or optimal under any other criterion.

5.2.10 To recap then, we can tackle the design problem if (a) we can
write down expressions for the vij in terms of sample size and location,
and if (b) we have some idea about the 'true' values of the parameters.
Aséuming that condition (b) can be met from previous studies, we.

shall next consider {a). Note in passing that, if there are different
costs attgching to experimentation at diffefent points, the same
approach can given 'maximal accuracy for given survey expenditure'
rather than for given sample size. Similar arguments.will lead to

'optimal designs' to augment existing dats sources.

5.3 Approximations to the varisnce-covariance terms

5.3.1 We have the criterion yg
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where the 0 coefficients are those fitted in & model of the form
AU=GO-01AM-92AT—63AE + £

and V.. is the covariance of @, and g..
1] 1 J

5.3.2 To make the VR expression useful for design purposes, we need
approximations to the Vij’ which will in general be functions of sample
location (in terms of ( aM, AT, AZ)) and sample size as well as of

the unknown coefficients 8.

For simplicity, we shall consider the problem on the assumption
that replicated observations will be taken. (It is interesting to
note that optimsl design considerations would indeed lesd to such
designs. For the practical purposes of evaluating feasible
'non-optimal' designs, the conclusions reached in this way should be

broadly similar to more detailed analyses).

5.3.3 A suitable approximation to the variance covariance matrix
of the fitted coefficients for (aggregate) logit models is given in
Gunn and Whittaker (1981) for the case of Poisson errors. A similar

(1)

approximation for the Binomial case (we shall assume a binary
choice here) is as follows:

AM, t = AT

Define m = i Wimi / ;Z- Wi

Write nm

i=1, .., n, the no. of
points at which observations

T = i Wom, / f ¥ are taken
where
LH =nipi (1 - Pi) n. = no,of observations taken
at point i, defined by
. (mis ti)
and p; = [1 + exp(—Glmi— Ogt]ﬂ—l
(assuming 6 = 63 = 0 for
5 illustration)
set V{m,m) = i Wi (miﬁﬁ )
= oy 2
V(t,t) = i W, (t;-%)
Vim,t) = V(t,m) = £ W, (m-m (t;- %)

1

(1) BOTE we assume O =0 = 0 here, for illustration: ifA% is independent
of A M, AT by %e31gn, the same result holds.
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With this notation, an approximation to the variance-covariance matrix

of the fitted 91 and %'coefficients is

v(t,t) - V(m,t)
)

) - 1
var (%, 7)) Er(m,m)v(tst) - Ei(m,tjﬂ ~V{(m,t) V(m,m)

We can now write

VR = 1 ] ]
Vim,m)+2{°2| Vv(m,t) 2{v(t, (8)
2 [vmaviee) - (me)Z] | R e s

8
Note that (ag) is our estimate of the.value of time.
1
5.3.4 Equation8 allows us to say a number of things about the

conditions necessary for 'value of time' measurement, as well as
providing actual guantitative information about sccuracy for any
proposed design {i.e. selection of points at which to experiment),

and determining the relative trade~off between the number and location

of the experimental points and the survey effort to apportion to each.

5.3.5 Firstly, we cen see that the larger is 62, the more accurate
our measurement (other things being equal). Having identified 91 as
being inverseley related to the standard deviation of the random
component of the utility function, in money terms , we can interpret
this as seying that conditions in which the 'representative’ component
(i.e. that which is made explicit) dominate the total utility expression
will be most favourasble for accurate value-of-time measurement. In
other words, where the model explains little of the variation,

measurement will be poor.

5.3.6 Secondly, it is easy to see that the term (E(m,m)v(t;t),(v(m’t))Et]
will be zero if M and T are linearly related. In other words, in such
conditions VR would be infinite: no measurement is possible if 'time'

and 'cost' are perfectly correlated, and the less they are correlsted

the better. '
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5.3.7 Thirdly, we c¢an see in general terms that VR contalns a term
linear in the V(.,.) divided by one quadratic in the V(.,.). Broadly
speaking, accuracy will come from maximising the V(.,.). From the
definitions of the V terms we cen see that such a maximum will occur

as a compromise between two opposing trends: +terms such as (mi - m)
a.nd(ti - t) will suggest placing the experimental points as far apart

as possible to maximise the expression; however, at extreme points

the w. will tend to zero (pi will tend to zero or unity, so Pi(l - pi)
will tend to zero) and s0 a qompromise will occur. (The one dimensional
example given above produced a solution roughly at the points of
inflectionE ?nd this may generalise. Using eq8 together with symmetry
1

arguments should lead to a straightforward, if tedious, solution

for the optimal design in the general case. )

5.3.8 Finally, we can see that the optimal design/accuracy of
measurement depend on the level of the value~of-time. It is more
sensible to consider the ratio of the standard error of measurement

of the vot to its absolute level in this case: o
J /[ 2/9 hx= RSE, say
1 .

We obtain
. 2]
- e e,
RSE = ; 1 5 O_l. V{m,m) + N V(m,t) + V(t,t)
o5 [ (mm)v(e,e)- vim,e) 219{% 2

For very small values of time, the expression in curly brackets is
dominated by V(m,m), whereas for large values of time the V(t,t)
expression dominates. Different design strategies will be appropriate

for different values.

(1) Note .that Silvey (1980) uses Caratheodory's Theorem to demonstrate
thet the optlmal design will involve experimentation at less than
5 distinct p01nts which must in this case be sited symmetrically
about the p = 0.5 line in the (m,t) space.

ke
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5.4 Conclusions

5.5.1 The actual solutions to the 'optimal design' problems are
not easy to derive, even for the highly simplified examples we have
considered. The requirement to parameterise a model large enough“to
measure variations in time values {as between modes, for example),

and the possibility that non-linear functions and randomly distributed
parameter models will be needed, demonstrates that even more difficult

areas remain to be tackled.

5.4.2 In practice, however, we will probably be restricted to
consideration of a smallish number of-design options. This was the
experience gained in the appliecation of these methods in Gunn et al
(1980), where the aim was to design a survey from which an aggregate
0/D matrix would be formed as a basis for value~of-time inference from
aggregate distribution patterns. Practical considerations of how to
implement the design greatly restricted the 'feasible region' in which

a maximum was sought,

L)
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6. TRANSFER PRICING AND REVEALED PREFERENCE - A COMPARISON
OF MAXIMAL EFFICIENCY -

6.1 Introduction

6.1.1 From a statistical point of view, the difference between
'revealed preference' approaches and 'transfer pricing' approaches ecan
be reduced to a question of the information content of the data. TFor
the purposes of illustration it is helpful to use the context of a
data set relating to a choice between options whose outcome has been
observed, thus avoiding for the moment the difficulties associated
with elieiting future intentions. Subpose we have observed a sample
of travellers choosing between two options with differing time and money
characteristics, noted the characteristics, the outcome of the choice
AND asked a Transfer Price question. Assuming that the TP responses
will all be of the correct gign (i.e. if we ask by how much the cost
of the option actually selected would have to rise in order to make
the traveller indifferent between options, the answers will all be
positive) then the TP data contains at least as much information aé
the 'revealed' behaviour. We could throw away the estimate of the
megnitude of the TP and estimate the unknown coefficients in a
representative utility function assuming only that the utility
difference between chosen and rejected modes was positive: in fact

this is what happens in the usual models of discrete choice.

6.1.2 More speculatively, we might postulate that the TP estimates
were related to the utility difference between options, and write (after

DoE Economic and Statistical Note 22)

- = .+ .
TPl Ad Ul ao + 161
together with (9)
AU, = 9. 8. + e, (10)
i =" =i i

Different assumptions about the digtributions of s the error

£.
171
introduced by the difficulty of responding to the TP question, would
lead to estimation problems of varying degrees of complexity. The

165 could be neglected

altogether; +this, together with Normality assumptions about £

simplest of these assumptions would be that

would allow the use of ordinary least squares to estimste the model (or

iteratively weighted least squares if the coefficients are assumed

random, )
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6.1.3 Finally, we might assume from the outset that A =1, i.e.
that the response to the TP question was indeed in the same money

units as those in which the travellers value other cost items.

6.1.h As always, as the strength of the assumptions on which the
analysis is based is increased, so the apparent information content
of the data rises, and the uncertainty associated with the fitted
model appears to decrease. For the purposes of this note we shall
assume that each successive stage is justified in order to illustrate

the reasons for the increase in precision that TP data can allow.

6.2 Incremental information in relative magnitude of utility
difference over sign

6.2.1 Let us assume that we have decided that time and cost alone
are sufficient to explain choice between the options, and that our
representative utility function is simply
7 (0, ) =0_~8 Ml -0 Tl individual q
a g °

g 2'q option 1

Suppose that the standard deviation of the random component of each
utility function is unity* , so that the difference between utilities
“has expectation .
AUq = —@lAMq - GEATq
~ and variance 2

where AX is defined as (Xchosen mode —xalternative mode)'

Let D1 refer to & data set consisting of the signs of the utilit&
differences together with the characteristics of the options, gland
EQ. Assuming the random components are Weibull distributed, we can

write the likelihood function for Dl as

- Q
L(p1, 8, @) = 1 P(cCq, 9)
q=1
(11)
where (from the Weibull essumption)

2 . 2 P B
P(Cq,0) =| & &,; exp(ﬁﬁz) r exo(Ql)

i=1 ¢ 1 ji=1 1

vhere Cq denotes the choice made by individual q;

Q denotes the number of decisions observed;

O
H

1 if individued @ chooses option i, and
0 otherwise, and Q= 'n/ug‘)

o
]

* to resolve the indeterminacy. The same results follow if we setel o unity,
and treat the standard deviation as a pé?émeter.
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6.2.2" Now let D2 refer to a data set consisting of the absolute

magnitudes of the TP responses, and assume that we have the model

=AU = A(AU + &)
TP, = AU, (Cl a
' 1
= - - AM + e
(28,) AT, (re,) " q
o
where €; ~ N(0,237)
6.2.3 Note that we have interchanged Weibull and Normal distributions

for convenience; in this case the differences will be slight. We

can now write the likelihood function of D2 as

Q (TP, = AT )
L(Dz,g_,h) = I _ 1  exp{-
=1 o7 2.0\

where

} (12)
2

Note that the choices are assumed to be independent.

6.2.4 From inspection of the form of the functions, it is clear
that we should write

L{D1, 6,0 ) as L(DL,q8), and

L(Dp2, 8, 1) as L(D2, A8, A)

6.2.5 The problem of units has been discussed above; in this case

we are really interested in estimating the ratio 82/e s Which may be

equivalently expressed as either 992/sz , or 62/161
Accordingly, let us rewrite (3) and (L) as i i i
v 1 1, t v
, Q 2 —el - 62 T 2 -BI M —92 Tq
Lo, 68) = 1 {[ = 8 ° 1 /[ e~ ¢ 1
q=1 i=1 i=1
‘ (13)
Tt-Sj
gt =48, ——=, and
where j J V3 s

' ' 1" "n T 2

o Q (TPq+91 MM, + 6 Aq) ()

L{D2, 8" ', " ) = 1 exp|- 5
q=1 2xvnw L
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6.2.6 Note also that (L3) can be written as
L9 . C g (15)
(D1, 6 ) = N {1 + exp(-6, AM_ - 6, AT }}
- 1" q 2 g
a=1
6.2.7 Using 4) and {5), and assuming that Maximum Likelihood

estimators will be adopted, we can now give a simple illustration of
the increase in precision that can be geined by using the TP estimates
of the magnitude of the utility difference between options {without
assuming this to be in the same units as the cost elements associated
with each option) instead of merely the sign of the utility

difference between options.

6.2.8 As usual, we would estimate the variance—covariance matrix
of the fitted coefficients by the negative of the inverse of the matrix
of expectations of second derivatives of the log-likelihood functien,

—(J)_l say.

6.2.9 In this notation we can write down the uninverted matrices
corresponding to data sets D1l and D2 &as Jl and J2 where
. | ., M2
J, =1{-zp (1-p )AMe - tp (1-p_)aM AT J, =~ —5 | A LAM AT
1 q & e 44 Q' qa g o2 q & 4 ¢ ¢
-zp (1-p )AM AT - tp (1-p )ATi ZAMqATq ZATi
Q q Q Qa aq a q q a a

where ) - E

l

6.2.10 For simplicity in illustration we shall assume that el and 82

are uncorrelated by design, so that

U ; " °
Zpy (1P, )M,
q .
0 1 é
£p {1-p )AT
Py (1P, )AT,
q
i ]
) . L 1
i.e. var(Bi) = L var(aé) =

- 2
—p )AME Ip (1-p JAT
ipq(l pq)A . qpqa pq) .
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-3t = 222 1 0
i
a
0 —=
IAT
! a *
2 2
. A
i.e. var(ﬁi ) = giji var(eg )= 2__5
LAM IAT
q 4 q
6.2.11 A simple example of such a design would be to choose
experimental points (AMq, ATq} such that when AMq#O then AquO
and conversely when AquO then AMq=O. . In other words,

to look for options which differ in speeds, but not in costs, and

options which differ in costs but not in speeds. Note that this is
not necessarily the besf strategy, merely the easiest to illustrate
here. In practice, it is clear from -the VR criterion that there is

advantage in ensuring that the Gl and 8, coefficients are positively

P
correlated - so that when our data set leads to too high an
estimate of one it also leads to too high an estimate of the other,

working to stabilise the ratio 32/81 .

6.2.12 Returning to the illustrations here, we can write the VR
approximation to the variance of the ratic 92/9l (the estimated

'value of time') as

var@ 02 vard
2 2 1 .
VR = +  —— since cov(8,,6.) =0
02 eh 1*72
L 1l 1
Thus for data set D1 we obtain '
1 .ep -
VRl = +
12 2 N
0.2 tp (1-p )AT o't £p (1-p )AM°
81" Ipg(1-p JAT, 1 IRy (1-py JAM,
and for data set Dg'we obtalin a
—_ "
2 2.2 22
VR2 = —mit—— s ot
e 11 L1
912 ZATi Bl zAMz
. q q ‘

6.2.13 The relative precision of the estimates provided by the

two data sets can thus be related to the ratio VRL/VR2. -

. s Al + Bl . . Al Bl
This 1s of the form YDk conslder the ratios A and B2 separately.
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These are
n ) " ¥
912 SAT all‘aé2 TAM?
Al _ q : and BL = ——ﬂ-h :
A2 T 2 12 2 B2 2 Mo 2
2178 z 1- AT 2176, 8 E 1- A
1 pq( pq) a o 0 pq( pq) a
q q
6.2.14 We can simplify these to
b AT2 3
m_gq ¢
A2 2 _2
I 1~ AT 7.
Pq( pq) q
q - v
substituting for Bj’ Bj
I AME 3
BL_gq ¢
B2 M? 2
¥ 1- A kil L
Pq( Pq) q

q

1
0 g 1 1 £
€ p, €1, 50 p (1-p ) € 7/
thus 2
n 2 W .2 o
T -p )= AT g I T AT < ZAT
: pq(l pq) 3 0¥l 10 AT N

and similarly
2
Il 2 2
E 1- -~ AM < IAM
qpq( pg) 3 My g @

Hence Al is greater than AZ, Bl is greater than B2, all As and Bs are
positive, so that (Al + Bl) is larger than (A2 + B2). 1In other words,
the precision of the estimate of 92/91 from date set D1 is less (the

variance is higher) than of data set D2,

6.2.16 The form of the ratio VR1/VR2 gives some qualitative indication
of the importance of the TP information over and sbove the sign of the
utility difference. Af points (decisions) where the representative
utility difference is large (compared to the standard deviation of the
random element) ghe product pq(l-pq) is very smzll. Such points
contribute little or nothing to improving the accuracy of the coefficient

estimates in the context of data set D1, but are especially powerful

g
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in increasing precision with dasta set D2. We can note in passing that
this implies that a design (choice of (&M, AT) points at which to

observe decisions) aimed at optimising accuracy via an analysis of the
choices {ef D1) will be very inefficient from the point of view of an

analysis based on the TP responses (ef D2). Figurel? illustrates

FIGURE 12
1
P& R Tt
- T L (B%9)
f 7 . —
., 50 i
» /
e
s
-r"'/
- 2., X,) a
— EN ’
-
— /‘/,"'
‘pl — R . X
— T .. . »
0

6.2.17 The points (pl, xl) and (p2, x2) may be seen to be in
reasongble agreement with a large number of logistic curves of the

form P = (1 + exp (a * bX) )'l es compared to the points (p3, x3) and
(Ph’ xh). This issue was discussed above; we noted that 'optimal
design' in the context of linear regression led to placing experimental
points as far apart as possible, whereas the estimation of a logistic
curve from data on proportions choosing options led to experimentation
around the points of inflection of the curve. The same sort of

results will hold for 'value of time' estimation.

6.2.18 The result that 'extreme' points contribute little or nothing
to the accuracy of the estimate of 82/91 has been emphasised in
connection with experimental design; it should also be borne in mind
when examining the results and conclusions of previocus studies which
wvere based on data sets collected without any such consideration., I%
is not sensible to extrapolate the relationships between sample size
and accurecy of estimate from such studies without making some attempt

to correct for survey design.

€.3 Incremental information in assuming that TP response is in the same
units of cost as other cost items

6.3.1 This assumption involves the assertion that 8,=1 (var 8, = 0)
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In this case, we would have

A2

var(s,/6,) = VR3 =
21 I ATi

Q
Assuming the assertion to be true, the increase in precision may be

gauged by the daifference VR2 - VR3, which is a function of ©. and 6,.

1 2
6.3.2 When the experimental points have been chosen so that 6,
and 92 are uncorrelated in VR2, it can eesily be seen that VR3 is less
than VR2; in the more general case we must also consider the

covariance terms.

6.tk Conclusions
6.4.1
1) Even when stated in non-monéy units, TP data can greatly
improve the precision of coefficient estimates.
2) The increase in precision is a function of survey design.
3} The change in precision on assuming that TP data ig in
money units (perhaps subseguent to a test of a counter-hypothesis)

also depends on survey design.

4} Design 'points' (e.g. groups of {ndividuals facing options
with 2 unique difference in time and in money characteristics)
vhich best support inference about 'value-of-time' from
revealed preference analysis will be very suboptimsl for

TP analysis.

s
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Te AGGREGATE Methods

T.1 Introduction

7.1.1 Hone of the approaches to VOT estimstion based on aggregate data
{discounting the conventional aggregate cholce data, such as interaction
dats or aggregate mode split data) are sufficiently well defined to
permit the sort of standard statistical appraisal that we have attempted
for revealed preference data and transfer price data. The analyses of
such data 1s normally based on the usual regression techniques, and the
usual checks made for any departures from the basic assumptions about

error structure that would call for adaptation of the approach.

7.1.2 Of particular interest, by wvirtue of being perhaps the most
soundly based in theory, is the 'ratio of elasticities' approach. It
is interesting to speculate on the likely sources of error in such an

approach, and how these can best be controlled.

T.2 The ratio of elasticities approach

7.2.1 This approach can be illustrated on the 'Beesleygraph' diagram

- as shown by figures 13a, b and c.

FIGURE 13

Ay : AC,

L%
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The basic assumption is that the populetion of people choosing some
given transport option (in practice, usually a particuler bus route

or rail line) have a decision that is affected by the cost and time
characteristics of that option. Taking any individual, were the cost
to rise, there would come a point at which he would no longer use £nat
option (whatever his alternative might be. Note fhat for simplicity
we shall ignore the possibility that 'patrons' can vary the amounts

of the option they purchase - for example, by getting off sconer
and walking.) BSimilarly, were the time taken to rise, there would come
a similar point at which he would no longer take that option. Thus a
point on a plane with axes AC  and AY could be plotted for that
individual, if we knew these guantities (which of course we do not).
Figure 6a illustrates the  notional representation that might then be
formed of the existing 'patronage' of the option. We might similarly
represent a set of '"shadow' points for all possible future 'patrons’,
locating each at points of cost and time decrease in the option just
sufficient to induce them to choose it (instead of whatever else they

may be doing).

~T.2.2 Figure 13billustrates what happens when the cost of the option
is inereased by (&..units: all 'patrons' in the area marked with '®'s'
now stop using tﬁeﬁoption. Similarly, figure 13cillustrates what
happens when the time characteristic of thé option increases by .t
units: all 'patrons' in the area marked with 'x's' now cease to choose

the option.

T.2.3 Working Paper 6 has shown that the areas of the regions
excluded at each step are in proportion to the 'value of time' in this
simple example, and that more generally with a mixed population with a
range of values of time, the ratio of the areas is some sort of weighted
average of the various values of time in the population. The 'ratio of
elasticities' method is normally based on either the absolute NUMBER

of 'patrons' excluded (or attracted, since an identical argument follows
for the shadow 'future patrons') or on & WEIGHTED SUM corresponding to
these excluded patrons. Commonly, 'miles travelled' by the‘option or
'fare peid' on the option might be used in the case of a public transport

service.

T.2.4 Thus the condition for accurate estimation of values—of;time

from this method is that the densities of either 'patrons', or 'patron
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x miles trévelled' or 'patronsx fare paid' should be identical in the
two exclusion regions, depending on vwhich definition is used. HNone of
these seem especislly likely, although there seems no reason to expect
any particular systematic variation in densities either. In other
words, this problem will be a source of error in the measurement of
elasticities, and without any information about the likely size of
that error, no one elasticity measure would be very useful. On the
other hand, it seems likely that if enough of these are available, we

shall be able to form consistent estimates by forming an average.

LS
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8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Introduction

8.1.1 Amongst his nine conditions for accurate measurement of

values-of-time, Harrison (19T4) gives the following four .

a) The variables considered relevant must not be too closely
correlated.

D) The variables affecting choice must show a falr amount of
variation in the sample.

c) The sample analysed must show a reasonable proportion choosing
each of the relevant options. '

d) As a check on validity, the number of choices explained by the

analysis must be high.

8.1.2 In sections 5, 6 and 7, working on the basis of a simple

model, we have shown that conditions a), b) and c) are all interconnected,
and outlined how we may set about quantifying the 'not too closely' of

a), the 'fair amount' of b}, and the 'reasonable proportion' of c),

all taken simultaneously. In section b we have considered what the
criteria should be to judge what is a 'high' enough level of explanation
to give assurance on model validity, and outlined a general approach in

the context of omne particuiar criterion.

8.1.3 . The factors that are under our control in the conduct of
any choice experiment are

a) context

B) samplé size

c) composition of sample,
The VR criterion provides a guidé on all these aspects; for example,
it has already been remarked in 5.3 that contexts in which time and
money differences are the most important factors in the choice (i.e.
where they dominate any random variation} will be most suitable and
that no measurement is possible if time and mbney differences are
perfectly correlated. These sort of cénsideratioﬁs militate against
trip distribution (and for mode split) as an experimental context,
even before any considerations of the difficulties in properly specifying
the model. )

8.1.k As far as the composition of the sample is concerned, it
seems ¢lear from the VR expression that different decision 'points'

meke very different contributions to the estimation accuracy of the

e
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model parameters and thus the value~of-time. There appears to be

scope for increasing precision or reducing sample size requirements by

the use of survey technigues which will result in a sample rich in
observations in the appropriate regions of the decision plane, (us%ng

the Beesleygraph representation of the problem). We have not

discussed survey techniques in this paper; however, it is by the use

of such technigues as variable sampling within strata defined in terms

of access to different modes (i.e. on a geographical basis) or

choice-based sampling strategies (see Manski and McFadden 1990) that we would

try to achieve this 'sample enrichment’'.

8.1.5 In Section 5, we have commented on the fact that, under the
simple model considered, a design which would provide a sample optimai
for revealed preference analysis would not be optimal for transfer

* pricing experimentation. In the one example we have considered, revealed
preference data seems to be most powerful in establishing values of

time at points at which the proportions choosing each option split around
20% to 80% (although we must be cautious about placing too much reliance
on this observation until it has been verified as a general rule).
Transfer price data, on the other hand, would increase in power as the

experimental points became more extreme.

B8.1.6 Note here that economic realism would probably discourage us
from using any one form of function, let alone a simple linear one such
as we have been considering, over too wide a range of characteristics
of options. The potential advantages of the transfer price approach
would be restricted by the range over which our model might reasonably

apply.

8.2 Sample size
8.2.1 It will be clear from the preceding sections that there

is no . simple rule for calculating the sample size that is required

to give a preset degree of confidence that a measurement of value-of—time
can be made to a specified precision. The VR eriterion could serve

such a.purpose for the‘simple ﬁbdel we haverbeen considering, but

that could not be used without prior information about model

coefficients and information about the joint distribution of time
differences and cost differences over the population (the 'locations’

on the Beesleygraph).
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8.2.2 Both of these items of information could be estimated from
previous studies; however, such a process would take resources which
are beyond those currently available to us. Accordingly, we would
recommend that such a& study be undertaken at an early stage of aﬁy‘
further work that is undertaken on value-of-time estimation. For our
current purposes, we can use the qualitative insights provided
by this approach to guide our interpretation of such information as is

available about sample size requirements from other sources.

8.2.3 Firstly, we note that Daly and Zachary (1975) estimate the
sample size requirement to measure values-of-time to * 35% with 90%
confidence as 2000 individuals, extrapolating from the accuracy they
achieved with some 542 individuals. Very similar levels of accuracy
vere achieved by Ortuzar{1980) on n similiar sized data sect, so we shall
tentatively assume that this sort of accuracy is representative, at
least of U.K. mode split surveys on the basis of random samples of

travellers.

_8.2.h We can then use this assumption to make rough estimates of
accuracy for different sample sizes; for example, at the 90% confidence
level, we would have measurement to within

+ T0%  from a sample of size 500

+ 50% from a sample of size 1000

+ 35% from a sample of size 2000

8.2.5 The statement of the confidence limits at the 90% level
fellows the lead of Daly and Zachary : using the more familiar 95%
level, the figures would be '

+ 85% from a sample of size 500

+ 60% from a sample of size 1000

+ 45%  from a sample of size 2000

8.2.6 Measurement with this sort of imprecision would make the

task of distinguishing between values of time in different contexts

very difficult indeed, unless we have extremely large samples of the
variation in the values is very large. However, as we have seen,

there is scope for improving the precision of the estimates for a

given sample size by careful choice of survey method, in such a way

as to concentrate on those individuals facing options of a sort most
informative about rate at_which time and money would be traded. We

have now established 8 way o estimate the extent of the pocsible improvement

given access to exiastinmg data sets.

L



8.3 Revealed preference and transfer pricing

8.3.1 In this paper we have contrasted the information content in
revealed preference data sets with that in transfer pricing data séts,
glossing over the basic difficulty that the transfer price data may
simply not represent the continuous measure of utility difference that
we have described. It is certainly clear from +the literature that
there may be grave problems in framing transfer price
- questions in an unambiguous way

which ecan be sensibly answered. .Howefer, from the viewpoint of
statistical power, it is obvious that this sort of data offers the
possibility of reducing the sample sizes required from thousands to
hundreds; were this the only advantage of the method, this would
still be a sufficiently compelling reason to give priority to the
tasks of developing the art of collecting the data and establishing
the degree of reliance that could be put on the results. As we have
seen, when applied to real choices the method can be seen as adding
information to the basic data of the revealed preference. This
additional information mey be worthless, or it may be absolutely
reliable, but most probably it will be at neither of these extremes;
we recommend that priority be given to establishing

a) sound ways to collect transfer price data

b} the reliability of that data

e} the resulting requirements in terms of methods of

statistical analysis.

LY
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