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elLife Assessment

This study presents valuable findings regarding the basic molecular pathways leading to the cysto-
genesis of Autosomal Dominant Polycystic Kidney Disease, suggesting BICC1 functions as both a
minor causative gene for PKD and a modifier of PKD severity. Solid data were supplied to show the
functional and structural interactions between BICC1, PC1 and PC2, respectively. The characteriza-
tion of such interactions remains to be developed further, which renders the specific relevance of
these findings for the etiology of relevant diseases unclear.

Abstract Autosomal-dominant polycystic kidney disease (ADPKD) is primarily of adult-onset
and caused by pathogenic variants in PKD1 or PKD2. Yet, disease expression is highly variable and
includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding
molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. To study the inter-
action between BICC1, PKD1, and PKD2, we combined biochemical approaches, knockout studies
in mice and Xenopus, genetic engineered human kidney cells carrying BICC1 variants, as well as
genetic studies in a large ADPKD cohort. We first demonstrated that BICC1 physically binds to the
proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore,
PKD was aggravated in loss-of-function studies in Xenopus and mouse models, resulting in more
severe disease when BiccT was depleted in conjunction with Pkd1 or Pkd2. Finally, in a large human
patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very
early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with
PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypo-
morphic in nature and impacted disease-relevant signaling pathways. These findings support the
hypothesis that BICC1 cooperates functionally with PKD1 and PKD2, and that BICC1 variants may
aggravate PKD severity, highlighting RNA metabolism as an important new concept for disease
modification in ADPKD.
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Introduction
Autosomal-dominant polycystic kidney disease (ADPKD) is the most frequent life-threatening genetic
disease and one of the most common Mendelian human disorders with an estimated prevalence of
1/400-1000 (Harris and Torres, 2009; Ong et al., 2015). This equates to around 12.5 million affected
individuals worldwide. About 5-10% of all patients requiring renal replacement therapy are affected
by ADPKD. The majority of ADPKD patients carry a pathogenic germline variant in the PKD1 or PKD2
gene and present with the disease in adulthood (Ong et al., 2015; Torres et al., 2007, Bergmann
et al., 2018). However, occasionally, ADPKD can manifest in infancy or early childhood (<2 years, very-
early onset ADPKD [VEO-ADPKD]), and in late childhood or early teenage years (2-16 years, early-
onset ADPKD [EO-ADPKD)) (Bergmann and Zerres, 2007, Ogborn, 1994). VEO patients and fetuses
often present with a Potter sequence and significant peri- or neonatal demise, which can be clinically
indistinguishable from a typical autosomal-recessive polycystic kidney disease (ARPKD) presentation
caused by PKHD1 mutations (Rossetti et al., 2009; Vujic et al., 2010). However, in contrast to VEO/
EO-ADPKD, ARPKD kidneys invariably manifest as fusiform dilations of renal collecting ducts and
distal tubules that usually remain in contact with the urinary system (Bergmann et al., 2018). Co-in-
heritance of an inactivating PKD1 or PKD2 mutation with an incompletely penetrant minor PKD allele
in trans provides a likely explanation for VEO-ADPKD (Bergmann, 2015). In fact, we recently reported
that the majority (70%) of VEO-ADPKD cases in an international diagnostic cohort had biallelic PKD1
variants (i.e., a pathogenic variant in trans with a hypomorphic, low penetrance variant), while cases of
biallelic PKD2 and digenic PKD1/PKD2 were rather rare (Durkie et al., 2021) in line with the dosage
theory for PKD (Ong and Harris, 2015). Several other genes, including GANAB, DNAJB11, ALGS,
ALG?9, and IFT140, have been associated with a dominant, but late-onset atypical adult presentation
and sometimes incomplete penetrance (Bergmann et al., 2018; Senum et al., 2022; Besse et al.,
2019; Cornec-Le Gall et al., 2018; Porath et al., 2016). However, not all VEO/EO-ADPKD patients
can be explained by monogenic inheritance, suggesting digenic or oligogenic inheritance causes.
Previous data from mouse, Xenopus, and zebrafish suggest a crucial role for the RNA-binding
protein Bicc1 in the pathogenesis of PKD, although BICC1 mutations in human PKD have not been
previously reported (Nauta et al., 1993; Flaherty et al., 1995; Cogswell et al., 2003; Maisonneuve
et al., 2009; Bouvrette et al., 2010; Tran et al., 2007; Tran et al., 2010; Kraus et al., 2012, Fu et al.,
2010; Gamberi et al., 2017). BICC1 encodes an evolutionarily conserved protein that is characterized
by 3 K-homology (KH) and 2 KH-like (KHL) RNA-binding domains at the N-terminus and a SAM domain
at the C-terminus, which are separated by a disordered intervening sequence (IVS) (Dowdle et al.,
2022; Wessely et al., 2001; Wessely and De Robertis, 2000; Mahone et al., 1995; Rothé et al.,
2023; Gamberi and Lasko, 2012). The protein localizes to cytoplasmic foci involved in RNA metabo-
lism and has been shown to regulate the expression of several genes such as Pkd2, Adcydé, and Pkia
in the kidney (Tran et al., 2010; Piazzon et al., 2012). We now present data providing a mechanistic
model linking BICC1 with the three major cystic proteins. We show that BICC1 physically interacts
with the PKD1 (PC1) and the PKD2 (PC2) proteins in human kidney cells. We also demonstrate that
Pkd1 and Pkd2 modify the cystic phenotype in Bicc1 mice in a dose-dependent manner and that Bicc1
functionally interacts with Pkd1, Pkd2, and Pkhd1 in the pronephros of Xenopus embryos. Finally, this
interaction is supported by human patient data where BICC1 alone or in conjunction with PKD1 or
PKD2 is involved in VEO-PKD.

Results
Interaction of BICC1 with PC1 and PC2

Loss of Pkd1 has been associated with lower Bicc1 expression in a murine model (Lian et al., 2014).
Furthermore, Bicc1 has been shown to regulate Pkd2 expression in cellular and animal models (Tran
et al., 2010; Lemaire et al., 2015; Mesner et al., 2014). However, whether this is due to direct
protein-protein interactions between BICC1, PKD1 (PC1), and PKD2 protein (PC2) has not been inves-
tigated. In pilot experiments, BICC1 was detected by mass spectrometry in a pulldown assay from
cells stably expressing a Polycystin-1 PLAT domain (Polycystin-1, Lipoxygenase, Alpha-Toxin)-YFP
fusion (Xu et al., 2016). The direct binding between the PC1-PLAT domain and mBicc1 was confirmed
using in vitro binding assays, but we also detected binding to the PC1 C-terminus (CT1) (Figure 1—
figure supplement 1a, c, d).
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Figure 1. mBicc1 forms a complex with Polycystin-1 and Polycystin-2. Full-length and deletion myc-tagged constructs of mBicc1 were co-expressed
with either full-length HA-tagged PC1 or PC2 in HEK-293 cells and tested for their ability to interact by co-IP. (a) Schematic diagram of the constructs
used in this experiment. (b) Western blot analysis following co-IP experiments, using GST tagged constructs as bait, identified protein interactions
between PC1 or PC2 domains and mBiccl. pcDNA3 was included as a negative control. CT = C-terminus, NT = N-terminus, GST = glutathione S-
Transferase. Co-IP experiments (n=3) were quantified in (e). (c) Western blot showing expression of recombinant myc-tagged mBicc1 generated by in
vitro translation or myc-tagged mBicc1 transfected in HEK-293 cells. (d) Western blot analysis following in vitro pulldown experiments, using purified
GST tagged constructs as bait, identified direct protein interactions between PC1 or PC2 domains and in vitro translated myc-Bicc1. In vitro binding
experiments (n=3) were quantified in (f). (g) Western blot analysis following co-IP experiments, using a rabbit PC1 antibody (2b7) as bait, identified
protein interactions between endogenous PC1 and BICC1 in UCL93 cells. A non-immune rabbit IgG antibody or no antibody was included as a negative
control; * denotes a non-specific IgG band which is not present in the no antibody control lane. (h) Western blot analysis following co-IP experiments,
using an anti-BICC1 or anti-PC2 antibody as bait, identified protein interactions between endogenous PC2 and BICC1 in UCL93 cells. Non-immune goat
and mouse |gG was included as a negative control.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Original western blots for Figure 1, indicating the relevant bands.

Source data 2. Original files for western blot displayed in Figure 1.

Figure supplement 1. In vitro binding assays showing direct binding between Bicc1, PC1-PLAT, and PC1-CT1, but not PC2-CT2.

Figure supplement 1—source data 1. Original western blots for Figure 1—figure supplement 1, indicating the relevant bands.

Figure supplement 1—source data 2. Original files for western blot displayed in Figure 1—figure supplement 1.

Utilizing recombinant GST-tagged domains of PC1 and PC2, we demonstrated that mBicc1 binds
to both proteins in GST-pulldown assays (Figure 1a and b). In the case of PC1, myc-mBicc1 strongly
interacted with its C-terminus (GST-CT1), but its interaction was abolished by a PC1-R4227X trun-
cation mutation (GST-CT1-R4227X) (Figure 1b and c). In the case of PC2, myc-mBicc1 associated
with both recombinant GST N-terminal (GST-NT2) and C-terminal (GST-CT2) fusions. To investigate
whether binding was direct or indirect, we performed in vitro binding assays using in vitro translated
myc-mBicc1 and recombinant PC1 and PC2 domains. GST-pulldowns confirmed a direct interaction
between myc-mBicc1 and GST-CT1 but not GST-CT1-R4227X (Figure 1d and e). Similarly, myc-mBicc1
interacted directly with GST-NT2. While binding was stronger with the distal sequence (NT2 aa101-
223), both N-terminal fragments contributed to the overall binding to mBicc1 (Figure 1d and f).
Interestingly, no direct interaction between mBicc1 and GST-CT2 was detected (Figure 1—figure
supplement 1b), suggesting that the observed in vivo interaction with mBicc1 is indirect. Finally,
immunoprecipitation using lysates from human kidney epithelial cells (UCL93) to assay endogenous,
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Figure 2. Interactions between mBicc1 and Polycystin1/2 require different binding motifs. Full-length and deletion myc-tagged constructs of mBicc1
were co-expressed with either full-length HA-tagged PC1 or PC2 in HEK-293 cells and tested for their ability to interact by co-IP. (a) Schematic diagram
of the constructs used in this set of experiments with the amino acid positions of full-length mBicc1 or the different deletions indicated. (b, ¢) Western
blot analysis following co-IP experiments, using a PC1-HA-tagged construct as bait, identified protein interactions between PC1 and mBicc1 domains.
pcDNA3 was included as a negative control (b). co-IP experiments (n=3) were quantified in (c). (d, ) Western blot analysis following co-IP experiments,
using a PC2-HA tagged construct as bait, identified protein interactions between PC2 and mBicc1 domains (d). pcDNA3 was included as a negative
control. Quantification of the co-IP experiments (n=3) is shown in (e). (f, g) Western blot analysis following co-IP experiments, using a PC1-HA-tagged
construct as bait. The interaction between PC1 and PC2 was not altered in the presence of either full-length mBicc1 or its deletion domains. pcDNA3
was included as a negative control. Asterix represents non-specific interaction with mouse IgG. (f). co-IP experiments (n=3) were quantified in (g). One-
way ANOVA comparisons were performed to assess significance, and p values are indicated. Error bars represent standard error of the mean.

The online version of this article includes the following source data for figure 2:

Source data 1. Original western blots for Figure 2, indicating the relevant bands.

Source data 2. Original files for western blot displayed in Figure 2.

non-overexpressed proteins showed that PC1, PC2, and BICC1 form protein complexes in vivo
(Figure 1g and h).

Different interaction motifs for the binding of mBicc1 to the
Polycystins
To define the PC1/PC2 interaction domain(s) in mBicc1, we generated deletion constructs lacking
the SAM domain (myc-mBicc1-ASAM, aa1-815) or the KH/KHL domains (myc-mBicc1-AKH, aa352-
977) (Figure 2a) and studied them by co-IP. Full-length PC1 co-immunoprecipitated with full-length
myc-mBicc1 (Figure 2b and c). Deleting the SAM domain did not significantly reduce the associa-
tion to PC1 (~55%, p=0.79) compared to full-length myc-mBicc1. However, an eightfold stronger
interaction was observed between full-length PC1 and myc-mBicc1-AKH compared to myc-mBicc1
or myc-mBicc1-ASAM. These results suggested that the interaction between PC1 and mBicc1 may
involve the SAM but not the KH/KHL domains (nor the first 132 amino acids of mBicc1). Potentially,
the N-terminus (aa1-351) could have an inhibitory effect on PC1-mBicc1 association.

Similar experiments were performed to define the mBicc1 interacting domains for PC2 (Figure 2d
and e). Full-length PC2 (PC2-HA) interacted with full-length myc-mBicc1. Unlike PC1, PC2 interacted
with myc-mBicc1-ASAM, but not myc-mBicc1-AKH, suggesting that PC2 binding is dependent on the
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Figure 3. Cooperativity of Biccl and PKD genes in Xenopus. (a—d) mRNA expression of Pkd1, Pkhd1, Pkd2, and Bicc1 in the Xenopus pronephros

at stage 39. (e-i") Knockdown of Bicc1 (f—f"), Pkd1 (g-g"), Pkd2 (h-h"), and Pkhd1 (i-i") by antisense morpholino oligomers (MOs) results in a PKD
phenotype compared to uninjected control Xenopus embryos (e—e"). The phenotype is characterized by the formation of edema due to kidney
dysfunction (e, f, g, h, i; stage 43), the development of dilated renal tubules (', f', g*, h’, i’; stage 43), and the loss of NbcT in the late distal tubule

by whole mount in situ hybridizations (arrowheads in ", f, g”, h", i”; stage 39). (j, k) To examine cooperativity, Xenopus embryos were injected with
suboptimal amounts of the MOs, either alone or in combination, and analyzed for edema formation at stage 43 (j) and the expression of Nbc1 at stage
39 (k) with gray bars showing reduced and black bars showing absent Nbc1 expression in the late distal tubule. Data are the accumulation of multiple
independent fertilizations with the number of embryos analyzed indicated above each condition.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Validation of Xenopus knockdowns and BICC1 knockout.

N-terminal domains (aa1-351) but not the SAM domain or distal C-terminus (aa816-977). Co-expres-
sion of mBicc1 deletion constructs lacking the SAM domain (myc-mBicc1-ASAM) or the KH domains
(myc-mBicc1-AKH), however, had no effect on the interaction of PC1 with PC2 in co-immunoprecipita-
tion assays (Figure 2f and g), suggesting that these interactions are not mutually exclusive.

Cooperativity of BICC1 with other PKD genes

Since our biochemical analysis indicated a direct interaction between BICC1, PC1, and PC2, we
wondered whether this is biologically relevant. If this were the case, BICC1 should cooperate with
other PKD genes, and reducing BICC1 activity in conjunction with reducing either PKD1 or PKD2
activity should still cause a cystic phenotype. We first addressed this question in the Xenopus system
(Figure 3), which is an easily manipulatable model to study PKD. The PKD phenotype in frogs is
characterized by dilated kidney tubules, the loss of the expression of the sodium bicarbonate cotrans-
porter 1 (Nbc1) in the distal tubule, and the emergence of body-wide edema as a sign of a malfunc-
tioning kidney (Tran et al., 2007; Tran et al., 2010; Xu et al., 2016; Naert et al., 2021). Knockdown
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of Bicc1, Pkd1, Pkd2, or the ARPKD protein Pkhd1 caused a PKD phenotype (Figure 3e-i” and
Figure 3—figure supplement 1a). The latter, Pkhd1, was included to assay not only ADPKD but also
ARPKD, which is generally thought to disturb the same cellular mechanisms. To test whether xBicc1
cooperated with the PKD genes, we then performed combined knockdowns. We titrated each of
the four MOs to a concentration that on its own resulted in little phenotypic changes upon injec-
tion into Xenopus embryos (Figure 3], k, Figure 3—figure supplement 1b). However, combining
Bicc1-MO1+2 with Pkd1-sMO, Pkd2-MO, or Pkhd1-sMO at suboptimal concentrations resulted in the
re-emergence of a strong PKD phenotype. While injections with individual MOs developed edema
in about 10% of the embryos, co-injections caused edema formation in almost 100% of the embryos
(Figure 3j, last three columns). A similar result was seen for the expression of Nbc1 in the late distal
tubule, where individual MO injections showed some changes in gene expression, but double MO
injections had a highly synergistic effect resulting in a near complete loss of Nbc1 (Figure 3k).

We next investigated whether a similar cooperation between Bicc1 and Pkd1 or Pkd2 can be
observed in genetic mouse models. We initially focused on Bicc1 and Pkd2. Both BiccT and Pkd2
knockout mice develop cystic kidneys as early as E15.5 (Tran et al., 2010; Wu et al., 2000). As this is
the earliest time point cystic kidneys can be observed, crossing those strains did not allow us to assess
cooperativity (data not shown). Moreover, like in the case of compound Pkd1/Pkd2 mutants (Wu
et al., 2002), kidneys from Bicc1*:Pkd2" not exhibit cysts (data not shown). Thus, we instead used
mice carrying the Bicc1 hypomorphic allele Bpk, which develop a cystic kidney phenotype postnatally
(Cogswell et al., 2003; Nauta et al., 1993). To assess cooperativity, we removed one copy of Pkd2 in
the Bpk mice. Comparing the kidneys of Bicc18°¥5°k:Pkd 2" to those of Bicc1%°¥EP*:Pkd2** at postnatal
day P14 revealed that the compound mutant kidneys were larger and more translucent (Figure 4a)
and the kidney/body weight ratios (KW/BW) were significantly increased (Figure 4b). Moreover,
analyzing survival, the compound mutants showed a trend towards an earlier demise (Supplementary
file 1a). We did not detect sex differences in the phenotype (Figure 4—figure supplement 1c). Yet,
the reduction in Pkd2 gene dose affected the progression of the disease, but not its onset. Performing
the same analysis at postnatal day P4 did not show any differences (Figure 4c).

Next, we performed a similar mouse study for Pkd1 using the Pkd17:Pkhd1-Cre line as previously
described (Williams et al., 2014) (in the following referred to as Pkd1%). This mouse line eliminates
Pkd1 postnatally in the collecting ducts. Similar to the Bicc1/Pkd2 scenario, when removing one copy
of Pkd1 in the collecting ducts, the Bicc18¥EPk:Pkd1*/“P- appeared larger when comparing kidneys
from littermates (Figure 4d) and littermates exhibited statistically significant differences in KW/BW
ratio (Figure 4e). Yet, the phenotype was rather subtle, and aggregating all the data did not show
differences in KW/BW ratios between Bicc15°¥Ek:Pkd1** and Bicc18°<EPk:Pkd1+/“P- mice (Figure 4—
figure supplement 1d). Thus, to further corroborate the genetic interaction, we determined the cystic
index for proximal tubules and collecting ducts using LTA and DBA staining, respectively. This showed
an increase in collecting duct cysts upon removal of one copy of Pkd1 (Figure 4g). Like in the case of
Pkd2, the phenotype seems to be correlated with cyst expansion and not the onset, as there was no
difference at postnatal day P7 (Figure 4f) and we did not detect increased mortality in the compound
mutants (Supplementary file 1b). It is noteworthy that neither the Bicc1/Pkd2 nor the Bicc1/Pkd1
compound mutants showed an aggravated kidney function based on blood urea nitrogen (BUN) levels
(Figure 4—figure supplement 1a, b, e), likely due to the aggressive nature of the Bicc15°“%° pheno-
type. Of note, due to the different genetic approaches using a Pkd2 null allele and a conditional Pkd1
allele, the outcomes of the two crosses cannot be directly compared. Yet, these in vivo data support
our biochemical interaction data and demonstrate that Bicc1 cooperates with Pkd1 and Pkd2.

Finally, to better understand how Bicc1 would exert such a phenotype, we analyzed the expres-
sion of the PKD genes in the Bicc15°“®? mice. We have previously demonstrated that Pkd2 levels
are reduced in a complete Bicc1 null mice (Tran et al., 2010). Performing qRT-PCR of kidneys from
wildtype and Bicc 18P¥E°% at P4 (i.e. before the onset of a strong cystic phenotype) revealed that BiccT,
Pkd1, and Pkd2 were statistically significantly down-regulated (Figure 4h-j). The effect on Pkd2 mRNA
was confirmed by protein analysis for PC2 (Figure 4k, Figure 4—figure supplement 1f).
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Figure 4. Cooperativity of BiccT and PkdT and Pkd2 in mouse. (a—c) Bicc1 and Pkd2 interact genetically. Offspring from Bicc1;Pkd2 compound mice at
postnatal day P4 and P14 are compared by outside kidney morphology at postnatal day P14 (a, scale bar is 2 mm), and kidney to body weight ratio (KW/
BW) at P14 (b) and P4 (c). (d-g) Bicc1 and Pkd1 interact genetically. BiccT,;Pkd1 compound mice are compared by outside kidney morphology at P14
showing a kidney from Bicc18°¥5°:Pkd1** and a Bicc15°¥5k:Pkd1+/P" littermate (d, scale bar is 2 mm, as no wildtype littermate was present in the litter,
no wildtype kidney is shown), estimation plot of KW/BW ratio comparing littermates at P14 with a p-value=0.092 (e), and cystic index, that is, percent of
proximal tubules (PT) and collecting ducts (CD) cysts in respect to the total kidney area at P7 (f) and P14 (g). Two-sided paired t-tests were performed to
assess significance, and the p-values are indicated; error bars represent standard deviation. (h-k) gRT-PCR analysis for Bicc1, Pkd1, and Pkd2 expression
(h—j) and quantification of the PC2 expression levels by western blot (k) in kidneys at P4 before the onset of a strong cystic kidney phenotype. Data
were analyzed by t-test, and the p-values are indicated. Please note that the y-axes of the different panels are intentionally different to best visualize the
changes between the groups analyzed.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Kidney parameters of Bicc1:Pkd2 and Bicc1:Pkd1 compound mutants.

Figure supplement 1—source data 1. Original western blots for Figure 4—figure supplement 1, indicating the relevant bands.

Figure supplement 1—source data 2. Original western blots for Figure 4—figure supplement 1, indicating the relevant bands.
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BICC1 variants in patients with early and severe Polycystic Kidney
Disease

To evaluate whether these interactions are relevant for human PKD, we analyzed an international
cohort of 2914 PKD patients by massive parallel sequencing (MPS) (Devane et al., 2022; Lu et al.,
2017) focusing on VEO-ADPKD patients with the hypothesis that BICC1 variants may lead to a more
severe and earlier PKD phenotype. While variants in BICC1 are very rare, we could identify two patients
with BICCT variants harboring an additional PKD2 or PKD1 variant in trans, respectively. Moreover,
besides the variants reported below, the patients had no other variants in any of the other PKD genes
or genes which phenocopy PKD including PKD1, PKD2, PKHD1, HNF13, GANAB, IFT140, DZIP1L,
CYS1, DNAJB11, ALG5, ALGS8, ALG9, LRP5, NEK8, OFD1, or PMM2. The first patient was severely
and prenatally affected, demonstrating a Potter sequence with huge echogenic kidneys and oligo-/
anhydramnios. Autopsy confirmed VEO-ADPKD with absence of ductal plate malformation invariably
seen in ARPKD. The fetus carried the BICCT variant (c.2462G>A, p.Gly821Glu) inherited from his
father, who presented with two small renal cysts in one of his kidneys, and a PKD2 variant (c.1894T>C,
p.Cys632Arg) that arose de novo (Figure 5a). Individual in silico predictions (SIFT, Polyphen2, CADD,
Eigen-PC, FATHMM, GERP++RS, and EVE), meta scores (REVEL, MetaSVM, and MetalR) and other
protein function predictions (PrimateAl, ESM1b, and ProtVar) indicate that this PKD2 missense variant
is likely pathogenic (Supplementary file 1c). Moreover, structural analysis suggests that the hydro-
philic substitution may interfere with the Helix S5 pore domain of PKD2 and change its ion channel
function (Figure 5b and c). Finally, PKD2 p.Cys632Arg has been previously reported as part of a PKD2
pedigree and implicated as a critical determinant for Polycystin-2 function (Magistroni et al., 2003;
Feng et al., 2011). On the other hand, the BICC1 p.Gly821Glu variant is located in an intrinsically
disordered domain of BICC1 between the KH and the SAM domains (Figure 6). To address whether
the variant is hypomorphic, we used CRISPR-Cas9-mediated gene editing to generate HEK293T cells
lacking BICC1 or harboring the p.Gly821Glu mutation (BICC1-G821E). These cells were analyzed for
their impact on the translation of PKD2, a well-established target of Bicc1 (Tran et al., 2010). As
shown in Figure 5d and e, PC2 protein levels were strongly reduced in two independent HEK293T
BICC1-G821E cells when compared to unedited HEK293T cells. Most notably, the PC2 levels were
comparable to the levels found in HEK293T carrying a BICC1 null allele (HEK293T BICC1-KO)
(Figure 3—figure supplement 1c, d). Based on these data, we hypothesize that the major disease
effect results from the pathogenic PKD2 variant but is aggravated by the BICC1 variant.

The second patient presented perinatally with massively enlarged hyperechogenic kidneys, while
the parents, both in their thirties, and the remaining family members were reported to be healthy
(Figure 5f-h). He carried a paternal canonic BICC1 splicing variant (c.1179+1G>T), which is likely patho-
genic as the protein is truncated after exon 10, and a novel heterozygous PKD1 variant (c.11942C>T,
p.Ala3981Val) which has not been previously reported (Figure 5f). While the PKD1 variant appears
minor in its amino acid change (i.e., Ala to Val), in silico analyses using individual predictions (SIFT,
Polyphen2, CADD and EVE), Meta scores (REVEL) and other protein function predictions (PrimateAl
and ESM1b) indicate that the missense variant is likely pathogenic (Supplementary file 1c). Structural
analyses suggest that although the Ala3981Val variant does not destabilize the Helix structure, its
contact with the TOP domain could interfere with domain flexibility and PC1 complex assembly.

A sibling pair of PKD patients with a homozygous BICC1 variant

The most insightful finding for a critical role for BICC1 in human PKD was the discovery of a homozy-
gous BICC1 variant in a consanguineous Arab multiplex pedigree, two siblings, a boy and a girl, diag-
nosed with VEO-ADPKD (Figure 6a-e). The affected female presented at a few months of age with
kidney failure and enlarged polycystic kidneys that lacked corticomedullary differentiation. Histology
after bilateral nephrectomy showed polycystic kidneys more suggestive of ADPKD than ARPKD
without any dysplastic element (Figure 6c). Her younger brother exhibited enlarged hyperechogenic
polycystic kidneys antenatally by ultrasound (Figure 6b). In addition, during early infancy, arterial
hypertension and a Dandy-Walker malformation with a low-pressure communicating hydrocephalus
were noted (Figure 6d and e). By customized MPS, we identified the homozygous missense BICC1
variant (c.718T>C, p.Ser240Pro) (Figure 6a). This variant was absent from gnomAD and fully segre-
gated with the cystic phenotype present in this family. It results in a non-conservative change from
the aliphatic, polar-hydrophilic serine to the cyclic, apolar-hydrophobic proline located in the second
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Figure 5. [dentification of human BICCT variants. (a—c) BICC1 p.G821E/PKD2 p.C632R patient with pedigree and the electropherograms (a), the
structural analysis of the PKD2 showing the local structure around the cysteine at position 632 (indicated in red) and its putative impact in the variant
including the REVEL score (b) as well as its location within the global PC2 structure highlighting the potential of the variant impacting the PC2 ion
channel function (c). (d, e) Western blot analysis for PC2 comparing wildtype HEK293T, HEK293T BICC1 p.Gly821Glu (BICC1-G821E), HEK293T BICC1
p.Ser240Pro (BICC1-S240P) and HEK293T BICC1 knockout (BICC1-KO) cells and quantification thereof. y-Tubulin was used as loading control. (f-i) BICC1
c.1179+1G>T/PKD1 p.Ala3981Val patient with pedigree and the electropherograms (f), the ultrasound analysis of the left and right kidneys (g, h) and
the structural analysis of the PC1 showing the local structure around the alanine at position 3981 (indicated in red) and its putative impact in the variant

including the REVEL score (i).

The online version of this article includes the following source data for figure 5:

Source data 1. Original western blots for Figure 5, indicating the relevant bands.

Source data 2. Original files for western blot displayed in Figure 5.

beta sheet of the first KHL1 domain and very likely disrupts the beta sheet and thus the RNA-binding
activity of Bicc1 (Figure 6f and g and Supplementary file 1d). In the more severely affected younger
brother, we also detected an additional heterozygous PKD2 variant (c.1445T>G, p.Phe482Cys), which
results in a non-conservative change from phenylalanine to cysteine (Supplementary file 1c). It was
previously reported that this PC2 Phe482Cys variant exhibited altered kinetic PC2 channel proper-
ties, increased expression in IMCD cells, and a different subcellular distribution when compared to
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Figure 6. The homozygous BICC1 p.Ser240Pro variant is a hypomorphic cystic disease-causing variant. (a—e) Consanguineous multiplex pedigree

with two siblings affected by VEO-ADPKD identified the homozygous BICC1 missense variant ¢.718T>C (BICC1 p.Ser240Pro) absent from gnomAD

and other internal and public databases. Electropherogram is shown in (a). The affected girl presented at a few months of age with renal failure and
enlarged polycystic kidneys that lacked corticomedullary differentiation (c). Histology after bilateral nephrectomy showed polycystic kidneys more
suggestive of ADPKD than ARPKD without any dysplastic element. Her younger brother exhibited enlarged hyperechogenic polycystic kidneys
prenatally by ultrasound (b). In addition, in his early infancy, arterial hypertension and a Dandy-Walker malformation with a low-pressure communicating
hydrocephalus were noted (d, e). (f) Ribbon diagram and schematic diagram of BICC1 showing the KH, KHL, and SAM domains. The two BICC1 variants
identified in this study, BICC1 p.Ser240Pro (5S240P) and BICC1 p.Gly821Glu (G821E) are indicated in red. (g) Solid boxes correspond to local impacts of
p.Ser240Pro (p.S240P) on BICC1 structure, interactions are labeled as dashed lines (pseudobonds). GXXG motifs colored in magenta, representative
missense variant residues colored in red and residues adjacent to selected variant (<5 A) colored in tan. (h) Rescue experiments of Xenopus embryos
lacking BicC1 by co-injections with the wild type or mutant constructs. Embryos were scored for the re-expression of Nbc1 in the late distal tubule by
whole mount in situ hybridizations. Quantification of at least 3 independent experiments is shown. (i, j) HEK293T cells were transfected with Flag-tagged
constructs of wild type or mutant Bicc1 and the subcellular localization of Bicc1 was visualized (red). Nuclei were counterstained with DAPI (blue). (k)
Protein stability analysis using tetracycline-inducible HEK293T cells comparing the expression levels of Bicc1 and Bicc1-S240P 24 hours after removal

of tetracycline and addition of cycloheximide. y-Tubulin was used as loading control. The percentage of protein destabilization because of protein
synthesis inhibition by cycloheximide is indicated. (I) Western Blot analysis of wildtype HEK293T, cells lacking BICC1 (BICC1-KO) and isogenic cells with
the BICC1 p.Ser240Pro (BICC1-S240P) variant for PC2 expression. GAPDH was used as loading control. (m, n) Bar graph of the mRNA-seq transcriptomic
analysis comparing BICC1 wildtype, knockout, and S240P isogenic HEK293T cells showing the eight most significantly upregulated transcripts (based on
their Padj levels) in the BICC1 KO cells (m). For each gene, the normalized expression levels from each of the 6 samples (2 wildtype, KO, and 240 P each)
are shown. (n) GSEA plot showing the enrichment of the Hallmark Epithelial_Mesenchymal_Transition data set in the BICC1-KO cells vs. the BICC1-
S240P cells.

The online version of this article includes the following source data and figure supplement(s) for figure 6:
Source data 1. Original western blots for Figure 6, indicating the relevant bands.

Source data 2. Original files for western blot displayed in Figure 6.

Figure supplement 1. Transcriptomic analysis of BICCT wildtype, BICC1KO, and BICC1-5240P HEK293T cells.

wild-type PC2 (Dedoussis et al., 2008). These features suggested altered properties of this PC2
variant, yet its contribution to the case reported here remains untested.

Unfortunately, both siblings passed away, and besides DNA and the phenotypic analysis described
above, neither human tissue nor primary patient-derived cells could be collected. Thus, to validate
the pathogenicity of this point mutation, we turned to the amphibian model of PKD (Tran et al.,
2007, Tran et al., 2010). In Xenopus, knockdown of Bicc1 using antisense morpholino oligomers
(Bicc1-MO1+2) causes a PKD phenotype, which can be rescued by co-injection of synthetic mRNA
encoding Bicc1 (Tran et al., 2007). To test whether BICC1 p.Ser240Pro had lost its biological activity,
we introduced the same mutation into the Xenopus gene where the Ser is located at position 236 of
the Xenopus gene (in the following referred to as xBicC1*-S236P). Xenopus embryos were injected
with BiccT-MO1+2 at the two- to four-cell stage followed by a single injection of 2 ng wild type
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or xBicc1*-S236P mRNAs at the eight-cell stage. At stage 39 (when kidney development has been
completed) embryos were analyzed by whole mount in situ hybridization for the expression of Nbc1
in the late distal tubule of the pronephric kidney, one of the most reliable readouts for the amphibian
PKD phenotype (Tran et al., 2007). As shown in Figure 6h, wild-type BiccT mRNA restored expres-
sion of Nbc1 on the injected side in 63% of the embryos. However, xBicc1*-S236P did not have any
effect, and the embryos were indistinguishable from those injected with the Bicc1-MO1+2 alone. This
suggested that xBicc1*-S236P was functionally impaired. To address this hypothesis, we first assessed
the subcellular localization of Biccl to foci that are thought to be involved in mRNA processing
(Maisonneuve et al., 2009, Tran et al., 2010; Rothé et al., 2023; Stagner et al., 2009). Transfection
of Flag-tagged Bicc1 (xBicc1*-S236P-Flag) into HEK293T cells reproduced this pattern (Figure 6i).
Surprisingly, xBicc1*-S236P-Flag was no longer detected in these cytoplasmic foci but rather homog-
enously dispersed throughout the cytoplasm (Figure 6j). Western blot analysis demonstrated that
this was accompanied by a reduction in protein levels (Figure 6k). In vitro transcription/translation
detected no differences between the proteins, suggesting that the wildtype and xBicc1 S236P-Flag
are translated equivalently (data not shown). Yet, in an in vivo pulse-chase experiment, the mBicc1
p.Ser240Pro variant was less stable than its wildtype counterpart (Figure 6k). However, whether the
reduced protein level was due to an inherent instability of the mutant protein or a consequence of its
mislocalization remains to be resolved. Finally, as in the case of BICC1 p.Gly821Glu, we engineered
HEK293T cells to harbor the BICC1 p.Ser240Pro variant (BICC1-S240P). Western blot analysis demon-
strated a reduction in PC2 levels in the BICC1-S240P cells when compared to unedited cells and that
this reduction was comparable to PC2 levels in BICC1-KO cells (Figures 5d, e and 6l).

Finally, to determine to what extent the BICC1 p.Ser240Pro variant differs from a BICC1 loss of
function, we performed mRNA sequencing (NRNA-seq) of the genetically engineered HEK293T cells.
Differential gene expression analysis identified several genes that were differentially up- or down-
regulated in the BICC1-S240P and the BICC1-KO cells compared to their unedited counterpart
(Figure 6—figure supplement 1a and e). Approximately 24% and 18% of the differentially expressed
genes were shared between BICC1-S240P or the BICC1-KO cells, respectively (Figure 6—figure
supplement 1). Yet, a substantial number of genes were specific to either cell line. The BICC1-5240P-
enriched/depleted transcripts were generally also enriched/depleted in the BICC1-KO cells but did
not reach statistical significance (Figure 6—figure supplement 1). Conversely, many of the BICC1-KO
enriched transcripts were specifically enriched/depleted in the BICC1-KO cells and not in the BICC1-
S240P cells (Figure 6—figure supplement 1). This suggested that there are qualitative differences
between a null phenotype and the BICC1 p.Ser240Pro variant, supporting our hypothesis that BICC1
p.Ser240Pro acts as a hypomorph. Indeed, Gene Set Enrichment Analysis (GSEA) using the hallmark
gene sets and comparing BICC1-KO and BICC1-S240P cells revealed a statistically significant enrich-
ment for the Hallmark_Epithelial_Mesenchymal_Transition set (Figure 6n), a pathway previously impli-
cated in ADPKD (Kim et al., 2019; Formica and Peters, 2020).

Discussion

BICC1 has been extensively studied in multiple animal models, which have suggested a critical role
for BICC1 in several different developmental processes and in tissue homeostasis (Dowdle et al.,
2022). This study functionally implicates it to human disease in general and PKD in particular by iden-
tifying the homozygous BICC1 p.Ser240Pro variant, which was sufficient to cause a cystic phenotype
in a sibling pair of human PKD patients. It is noteworthy that another study identified heterozygous
BICC1 variants in two patients with mildly cystic dysplastic kidneys (Kraus et al., 2012). Yet, both
variants were also present in one of the unaffected parents. While such a situation is extremely rare
and does not significantly contribute to the mutational load in ADPKD or ARPKD, it demonstrated
that loss of BICC1 is sufficient to cause PKD in humans. In addition, variants in BICC1 and PKD1 and
PKD2 co-segregated in PKD patients from an International Clinical Diagnostic Cohort. While we have
not yet shown the impact of each variant when introduced in a compound heterozygous situation,
we postulate that PKD alleles in trans and/or de novo exert an aggravating effect and contribute to
polycystic kidney disease. A reduced dosage of PKD proteins would severely disturb the homeostasis
and network integrity, and by this correlates with disease severity in PKD. ADPKD is quite heteroge-
neous and — even within the same family — shows quite some phenotypic variation (Milutinovic et al.,
1992, Harris and Rossetti, 2010). It is thought that stochastic inputs, environmental factors, and
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genetics influence PKD (Harris and Rossetti, 2010). The demonstrated interaction of BICC1, PC1,
and PC2 now provides a molecular mechanism that can explain some of the phenotypic variability in
these families. Of note, while our mouse studies support cooperation between Bicc1, Pkd1, and Pkd2,
genetic proof for Bicc1 acting as a disease modifier, i.e. reduction of Bicc1 activity in a homozygous
Pkd1 or Pkd2 background in mice remains outstanding.

The second important aspect of this study is that BICC1 emerges as central in the regulation of
PKD1/PKD2 activity. Functional studies reported here and previously (Tran et al., 2010; Lemaire
et al., 2015; Mesner et al., 2014) demonstrate that Bicc1 regulates the expression of Pkd1 and Pkd2.
Moreover, we now show that mBicc1 and PC1/PC2 physically interact and that lowering the expres-
sion levels of both proteins is sufficient to cause a PKD phenotype in frogs. Finally, the reduction of
the gene dose for Pkd1 or Pkd2 in a hypomorphic mouse allele of Bicc1 results in a more severe cystic
kidney phenotype. These results in the kidney are paralleled and augmented in studies of left/right
patterning, where Pc2 can activate Bicc1 and where Bicc1 triggers critical aspects in establishing later-
ality (Maisonneuve et al., 2009; Rothé et al., 2023; Minegishi et al., 2021; Maerker et al., 2021).
Thus, it is tempting to speculate that BICC1/PC1/PC2 are components of a critical regulatory network
in maintaining epithelial homeostasis.

BICC1 has emerged as an important posttranscriptional regulator modifying gene expression
through modulating the effects of microRNAs (miRNAs), regulating mRNA polyadenylation and trans-
lational repression and activation (Tran et al., 2010; Dowdle et al., 2022; Piazzon et al., 2012,
Wang et al., 2002; Chicoine et al., 2007, Zhang et al., 2014; Zhang et al., 2013). While PKD2
is the most appealing target in respect to ADPKD (Tran et al., 2010), there are undoubted others
(e.g., adenylate cyclase-6) (Piazzon et al., 2012) that may be equally critical. Lastly, Bicc1 has been
implicated in the regulation of miRNAs such as those of the miR-17 family (Tran et al., 2010). This is
of particular interest as a connection between miR-17 activity and PKD is well-established (Chu and
Friedman, 2008; Patel et al., 2013; Pandey et al., 2008; Pandey et al., 2011; Patel et al., 2012;
Nagalakshmi et al., 2011; Yheskel et al., 2019). Both Pkd1 and Pkd2 mRNA are targeted by miR-17
(Lakhia et al., 2022), and an anti-miR-17 oligonucleotide is being developed as a PKD therapeutic
(Lee et al., 2019). While we have shown that mBicc1 and miR-17 targets Pkd2 mRNA (Tran et al.,
2010), a similar scenario for Pkd1 is possible, but not yet shown. Thus, a tempting hypothesis is that
the interaction between BICC1, PC1, PC2, and miRNAs - even though not examined in this study —
compartmentalizes BICC1's activity where BICC1 is post-transcriptionally inactive when complexed
to PC1/PC2 but modulates PKD1 and PKD2 translation when unbound. Such a regulatory complex
could be responsible for several of the aspects of human ADPKD. In the future, it would be interesting
to see how BICC1 and its posttranscriptional targets are integrated and together contribute towards
preventing kidney epithelial cells from developing a cystic phenotype.

Materials and methods

Additional

resource Designation Source or reference Identifiers information
Cell line HEK-293 ETCC and ATTC
(Homo sapiens)
Cell line UCL-93 Streets et al., 2003 PMID:12819240
(H. sapiens) Parker et al., 2007
PMID: 17396115
Antibody Anti-Polycystin-1 (7e12, mouse Santa Cruz Biotechnologies sc-130554, Used @ 1:5000
monoclonal) Ong et al., 1999 RRID:AB_ 2163355
PMID:10504485
Antibody Anti-Polycystin-1 (2b7, rabbit Newby et al., 2002 PMID: 11901144 5 g used for IP
polyclonal)
Antibody Anti-Polycystin-2 (YCC2, rabbit Kind gift from Dr. S. Somlo  PMID:9568711 Used @ 1:1000

polyclonal)

Continued on next page
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Reagent type (species) or Additional
resource Designation Source or reference Identifiers information
Antibody Anti-Polycystin-2 (D-3, mouse Santa Cruz Biotechnologies sc-28331, Used @ 1:1000
monoclonal) RRID:AB_672377
Antibody Anti-Polycystin-2 (G20, goat polyclonal) Santa Cruz Biotechnologies sc-10376, Used @ 1:1000
RRID:AB_654304
Antibody Anti-myc (JAC6, rat monoclonal) Bio-Rad MCA1929, Used @ 1:2000
RRID:AB_322203
Antibody Anti-GST (rabbit polyclonal) Santa Cruz Biotechnologies sc-459, Used @ 1:5000
RRID:AB_631586
Antibody Anti-BICC1 (A-12, mouse monoclonal)  Santa Cruz Biotechnologies sc-514846, Used @ 1:2000
RRID:AB_3717417
Antibody anti-BICC1 (rabbit polyclonal) Sigma-Aldrich HPA045212, Used @ 1:2000
RRID:AB_10959667
Antibody Anti-y-Tubulin (mouse monoclonal) Sigma-Aldrich T6557, Used @ 1:1000
RRID:AB_477584
Antibody Anti-HA (3F10, rat monoclonal) Roche 11867423001, Used @ 1:2000
RRID:AB_390918
Antibody Anti-V5-Tag Bio-Rad MCA1360, RRID:AB_322378 Used @ 1:5000
(clone SV5-Pk1, mouse monoclonal)
Antibody Anti-MBP (rabbit polyclonal) NEB E80305S, Used @ 1:5000
RRID:AB_1559728
Antibody Anti-GST (mouse monoclonal) Santa Cruz Biotechnologies sc-138, Used @ 1:5000
RRID:AB_627677
Antibody Anti-GAPDH (rabbit monoclonal) Cell Signaling 2118, RRID:AB_561053 Used @ 1:1000
Antibody Goat Anti-Rabbit IgG(H+L), Mouse/ Southern Biotech 4050-05 Used @ 1:20,000
Human ads-HRP
Antibody Mouse IgG1-human ads HRP Southern Biotech 1070-05 Used @ 1:20,000
Antibody Anti-Rat IgG(H+L) Mouse ads Southern Biotech 3050-05 Used @ 1:20,000
Antibody Anti-Goat Ig HRP Dako P0449 Used @ 1:20,000
Peptide, recombinant protein anti-HA mouse conjugated magnetic ~ Thermo Fisher Scientific 88836
beads
Peptide, recombinant protein Protein G Magnetic Beads Thermo Fisher Scientific 10003D
Recombinant DNA reagent ~ myc-mBICC1 pcDNA3 Wessely lab
PMID:20215348
Recombinant DNA reagent  myc-mBICC1-AKH pcDNA3 Ong lab
PMID:20168298
PMID:26311459
Recombinant DNA reagent  myc-mBICC1-ASAM pcDNA3 Ong lab
PMID:20168298
PMID:26311459
Recombinant DNA reagent ~ GST-NT2-1-100 pEBG Ong lab
PMID:20168298
PMID:26311459
Recombinant DNA reagent ~ PC1-HA pcDNA3 Ong lab
PMID:20168298
PMID:26311459
Recombinant DNA reagent ~ HA-PC1-R4227X pcDNA3 Ong lab

PMID:20168298
PMID:26311459
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Additional

Source or reference Identifiers information

Recombinant DNA reagent

PC2-HA pcDNA3 Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent

GST-NT2 101-223 PEBG Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent

GST-CT1 pEBG Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent

GST-CT1-4227X pEBG Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent

GST-NT2 pEBG Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent

GST-CT2 pEBG Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent

MBP-CT1 pMAL-c2x Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent

MBP-CT2 pMAL-c2x Ong lab

PMID:20168298
PMID:26311459

Recombinant DNA reagent ~ MBP-PLAT pMAL-c2x Ong lab
PMID:20168298
PMID:26311459

Commercial assay or kit Omega E.Z.N.A. Plasmid DNA Mini Kit Omega Bio-Tek D6942-01

Cell culture and biochemical studies

The characterization of the interaction between BICC1, PC1, and PC2 as well as the analysis of the
human BICC1 variants were performed using standard approaches detailed in the Appendix 1. The
UCL93 kidney epithelial and HEK293T embryonic kidney cells were chosen because of their kidney
origin and relevance to the study.

Animal studies

Mouse and Xenopus laevis studies were approved by the Institutional Animal Care and Use Committee
at the Cleveland Clinic Foundation (CCF) and LSU Health Sciences Center (LSUHSC), which are the
present and the former employer of Dr. Wessely under the following IACUC numbers: 2014-1191
(CCF, mouse study), 2014-1221 (CCF, Xenopus study), 2017-1780 (CCF, mouse study), 2017-1802
(CCF, Xenopus study), 2019-2307 (CCF, mouse study), 2020-2311 (CCF, Xenopus study), 00003071
(CCF, mouse study), 00003105 (CCF, Xenopus study) and #2861 (LSUHSC, mouse and Xenopus study),
#BCO0101 (LSUHSC, mouse study) and #2760 (LSUHSC, mouse and Xenopus study). Both facilities
adhere to the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Exper-
imental design and data interpretation followed the ARRIVE1 reporting guidelines (Kilkenny et al.,
2010).

International diagnostic clinical cohort
Research was performed following written informed consent and according to the declaration of
Helsinki and oversight was provided by the Medizinische Genetik Mainz. It was performed in
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accordance with the German genetic diagnostics act for primarily diagnostic purposes, and consent
was given for scientific research and publishing results in a pseudonymized manner. DNA extraction
and analysis were performed according to standard procedures (see Appendix 1 for details).

Statistical analysis

Data are presented as mean values + SEM. Paired and unpaired two-sided Student’s t-test or ANOVA
were used for statistical analyses with a minimum of p<0.05 indicating statistical significance. Measure-
ments were taken from distinct biological samples. Analyses were carried out using GraphPad Prism
10 (RRID:SCR_000306).
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individuals were not consented for data sharing. Primary data associated with the study is available at
Dryad Digital Repository (https://doi.org/10.5061/dryad.vmcvdndé5).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
Tran U, lzem L, 2025 BICC1 is a genetic modifier https://www.ncbi. NCBI Gene Expression
Schweickart RA, for Polycystic Kidney nlm.nih.gov/geo/ Omnibus, GSE262417
Wessely O Disease query/acc.cgi?acc=

GSE262417

Wessely O, Tran U, 2026
Streets A, Smith D,

Decker E, Kirschfink

A, lzem L, Hassey J,
Rutland B, Valluru

M, Brésen J, Ott E,

Epting D, Eisenberger

T, Ong A, Bergmann

C

BICC1 interacts with https://doi.org/
PKD1 and PKD2 to drive 10.5061/dryad.
Cystogenesis in ADPKD vmevdndéb

Dryad Digital Repository,
10.5061/dryad.vmecvdndé5
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Appendix 1

Supplementary methods

Cell culture studies

UCL93 kidney epithelial cells were immortalized from primary cultures of tubular cells isolated from
normal human kidneys removed for clinical indications as previously described (Parker et al., 2007,
Streets et al., 2003). Cells were grown in Dulbecco’s modified Eagle’s medium-Ham'’s 12 (DMEM-F12,
Invitrogen) supplemented with 1% I-glutamine (Invitrogen), 5% NuSerum (Becton Dickinson), and 1%
antibiotic/antimycotic solution (Invitrogen) at 33°C/5% CO,. HEK-293 cells were obtained from ATTC
(#CRL1573, RRID:CVCL_0045) and were cultured in Dulbecco’s modified Eagle’s medium-Ham'’s 12
(DMEM-F12, Invitrogen) supplemented with 1% I-glutamine (Invitrogen), 10% FCS and 1% antibiotic/
antimycotic solution (Invitrogen) at 37°C/5% CO,. Cells were transfected using Lipofectamine 3000
(Life Technologies) for 48 hours before the cell assays. Both cell type identities were validated by STR
analyses and regularly tested for mycoplasma contamination.

CRISPR/Cas?-mediated knockout and the BICC1 p.Gly821Glu (BICC1-G821E) and BICC1
p.Ser240Pro (BICC1-S240P) knock-in clones in HEK293T cells were generated by Synthego
Corporation (Redwood City, CA, USA) with the specifics outlined below. The BICC1 knockout was
confirmed by qRT-PCR (Figure 3—figure supplement 1c) and, like in the mouse, resulted in a
loss of Pkd2 expression that could be rescued by re-expression of mouse Bicc1 (Figure 3—figure
supplement 1d). In addition, two other genes lost upon elimination of BICC1, NEFL and LAMB3,
were also restored upon re-expression of mouse Bicc1 (Figure 3—figure supplement 1e and f). For
each engineered cell, two independent clones were generated and analyzed. Data were compared
to the mock-transfected parental cell line. Clonal identity was confirmed at regular intervals using
the PCR primers indicated below.

Details on gene editing of HEK293T cells

Bicc1 KO

Cell line HEK293

Gene name BICC1

Transcript ID ENST00000373886.8

Guide RNA sequence GAGCGAGGAGCGCUUCCGCG

Guide RNA cut location Chr10:58,513,298

Exon targeted 1

PCR and sequencing primers FOR primer (5'-3) TGCAGGGGGACGAGCT
QEV primer (5'-3") TGGAGCTAAACCGGCCG

Sequencing primer ;OR primer (5'-3) TGCAGGGGGACGAGCT

Genotype analysis

1. Clone E1

Indel: +1

Description: homozygous KO clone
2. Clone B8

Indel: =8/+1
Description: compound heterozygous KO clone

Continued on next page
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BICC1 carrying p.Ser240Pro (BICC1-S240P)

Cell line HEK293

Gene name BICC1

Transcript ID ENST00000373886.8

Guide RNA sequence UGACAGUAGCACCAUACAUU

Guide RNA cut location Chr 10: 58,789,402

Donor sequence AACCGGTTCCTGATCCTAATTCCCCCTCTATTCAGCA TATATCACAAAC

GTACAATATTTCAGTACCATTTAAA CAGCGTTCACGAATGTATGGTGCT
ACTGTCATAGTAC GAGGGTCTCAGAATAACACT

PCR and sequencing primers FOR primer (5'-3") TGCTTTAACTCTCTGCTTTGGA
REV primer (5'-3') ACGGGGAAAGATTCTATTGCA

Sequencing primer FOR primer (5'=3) TGCTTTAACTCTCTGCTTTGGA

Genotype analysis

1. Clone C8
Modification: BICC1 p.Ser240Pro (TCA >CCA)
Description: homozygous Kl clone

2. Clone F7

Modification: BICC1 p.Ser240Pro (TCA >CCA)
Description: homozygous Kl clone

BICC1 carrying p.Gly821Glu (BICC1-G821E)

Cell line HEK293

Gene name BICC1

Transcript ID ENST00000373886.8

Guide RNA sequence GACCGAAAUGGAAUUGGACC

Guide RNA cut location Chr10:58,813,922

Donor sequence AGCACTTGGGAGGTGGAAGCGAATCTGATAACTGGAGAGACCG AAATGAAA
TTGGGCCTGGAAGTCATAGTGAATTTGCAGCTTCTATT GGCAGCCCTAA

PCR and sequencing FOR primer (5'-3"): AAAGGCTGTAGGCAGGTTCC

primers REV primer (5'-3"): TCAGAGAGGCCACAGTCAGT

Sequencing primer FOR primer (5'-3"): AAAGGCTGTAGGCAGGTTCC

Genotype analysis

1. Clone A2
Modification: BICC1p.Gly821Glu (GGA >GAA)
Description: homozygous Kl clone

2. Clone E5

Modification: BICC1 p.Gly821Glu (GGA >GAA)
Description: homozygous Kl clone

Transcriptome analysis

For mRNA-sequencing, mRNA was extracted using Trizol followed by DNAse treatment. Each cell
line/clone was analyzed in triplicates as true technical replicates. Library generation was performed
using TruSeq RNA Library Prep Kits (lllumina, San Diego, CA, USA) and sequenced NovaSeqé6000
S4 150PE using the services of Psomagen. Primary sequence analysis was performed using Galaxy
(Afgan et al., 2022). Sequence reads were aligned to the human genome (GRCh38) using STAR
(RRID:SCR_004463) in Galaxy (Galaxy Version 2.7.10B+galaxy4, RRID:SCR_006281) with default
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parameters. Read counts were obtained using FeatureCounts (Galaxy Version 2.0.3+galaxy2,
RRID:SCR_012919) with the default parameters and normalized using DESeqg2 (Galaxy Version
2.11.40.8+galaxy0, RRID:SCR_015687) to identify differentially expressed genes (DEGs) and calculate
their fold changes (FC), p-values, and false discovery rate (FDR)-adjusted p-values (Love et al.,
2014). Gene Set Enrichment Analysis (GSEA, RRID:SCR_003199) was used to identify normalized
enrichment scores of 50 human hallmark gene sets (Subramanian et al., 2005).5 The sequences
data are deposited into the Gene Expression Omnibus (GEO, RRID:SCR_005012) database under
the accession number GSE262417 and are available online.

Plasmids

Full-length PC1 and PC2 plasmids used in this article have been previously reported (Xu et al., 2016).
Polycystin fusion proteins NT2 (PKD2 aa1-223), NT2 1-100 (PKD2 aa1-100), NT2 101-223 (PKD2
aa101-223), CT2 (PKD2 aa680-968), PLAT (PKD1 aa3118-3223), and CT1 (PKD1 aa4107-4303) were
subcloned into pGEX-6P-1, pEBG, or pMAL-c2X vectors to express N-terminal bacterial, mammalian
GST-fusion proteins, or MBP-fusion proteins respectively (Xu et al., 2016; Giamarchi et al., 2010).
myc-mBicc1-ASAM (BICC1 aa1-815) and myc-mBicc1-AKH (BICC1 aa352-977) truncations were
generated by PCR cloning from full-length myc-mBicc1 plasmid. All plasmids were verified by Sanger
sequencing. Of note, we have adapted a spelling of Bicc1, where BICC1 is the human homologue,
mBicc1 is the mouse homologue, and xBicc1 the Xenopus one.

Antibodies

Primary antibodies used in this study were mouse anti-BICC1 mAb (clone A12, Santa Cruz
Biotechnologies, sc-514846), rabbit anti-BICC1 (Sigma-Aldrich, HPA045212, RRID:AB_10959667),
mouse anti-PC1 mAb (clone 7e12, Santa Cruz Biotechnologies, sc-130554, RRID:AB_2163355) (Ong
et al., 1999), rabbit anti-PC1 (clone 2b7) (Newby et al., 2002), goat anti-PC2 (sc-10376, Santa
Cruz), rabbit anti-PC2 Ab (YCC2, a kind gift from Dr. S. Somlo or Santa Cruz Biotech, SC-28331,
RRID:AB_672377), rat anti-HA (clone 3F10, Roche, 11867423001, RRID:AB_390918), mouse anti-
GST mAb (Santa Cruz Biotechnologies, sc-138, RRID:AB_627677), rat anti-Myc (clone JAC6, Bio-
Rad, MCA1929, RRID:AB_322203), mouse anti-V5-Tag mAb (clone SV5-Pk1, Biorad, MCA1360,
RRID:AB_322378), rabbit anti-GAPDH mAb (clone 14C10, Cell Signaling, 2118, RRID:AB_561053)
and mouse anti-y-Tubulin mAb (clone GTU-88, Sigma-Aldrich, T6557, RRID:AB_477584). All primary
antibodies were used at 1:1000 unless otherwise stated. Secondary antibodies used in this study
include goat anti-mouse IgG (1030-05, Southern Biotech), goat anti-rabbit IgG (4050-01, Southern
Biotech), goat anti-rat IgG (3050-01, Southern Biotech), and rabbit anti-goat IgG (P0449, Dako). All
secondary antibodies were used at 1:10,000, unless otherwise stated in the results section.

Protein biochemistry

Cells were lysed by extraction at 4°C using the IP lysis Buffer (25 mM NaCl, 150 mM EDTA, 1 mM
0.5% NP40, 1% Triton X-100, pH 7.0) supplemented with a protease inhibitor cocktail (Roche).
Immunoblotting and immunoprecipitation were performed as previously described (Newby
et al., 2002). Biorad ChemiDocXRS+ and Image Lab 5.1 software were used for visualization and
quantification of proteins of interest. All quantification was carried out on non-saturated bands as
determined by the software from three independent experiments.

Recombinant protein preparation

Plasmids were transformed into the Escherichia coli strain BL21-RIPL, and recombinant protein
expression was induced at 37°C for 3 hours with 0.5 mM IPTG. MBP-tagged, GST fusion, and His-
tagged proteins were purified with Amylose, Glutathione-Sepharose, or Nickel columns, respectively,
as previously described (Giamarchi et al., 2010).

Preparation of in vitro translated Bicc'

Myc-tagged mBicc1 was in vitro transcribed and translated with a reticulocyte lysate system TnT SP6
(Promega, USA). Briefly, the plasmid DNA (1 pg) and 50 pl of the reaction mixture were incubated for
90 minutes at 30°C. Expression of myc-mBicc1,; was determined by western blotting.
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GST pull-down assays

1-2 pg of the bacterial GST fusion protein and 10 pl myc-mBicc1 ,r were incubated in 300 pl binding
buffer (1xTBST with 0.2% Tween20) for 1 hour at room temperature (RT) with gentle rotation. 40 pl
of 50% Glutathione Sepharose 4B beads (GE Healthcare) were then added and the mixture was
incubated with rotation for an additional hour. The beads were sedimented by centrifugation at
6000 rpm for 2 minutes and washed up to six times with 1 ml volumes of ice-cold PBS. Bound
proteins were eluted either using 25 pl of elution buffer or by boiling for 5-10 minutes in reducing
sample buffer.

Xenopus embryo manipulations

Xenopus laevis (RRID:NCBITaxon_8355) embryos obtained by in vitro fertilization were maintained
in 0.1x modified Barth medium (Sive et al., 2000) and staged according to Nieuwkoop and
Faber, 1994. Xenopus experiments, we performed injections using at least three independent
clutches per experimental group. Final numbers of animals/experimental group varied as survival
was clutch-dependent, and animals that did not gastrulate properly or were severely malformed
were excluded from subsequent analysis. Microinjections were performed on randomly selecting
cleaving embryos at the two- to four-cell stage for a given antisense MO/MO combination. Data
analysis was performed in a blinded fashion, and groups were only revealed post data acquisition.
The sequences of the antisense morpholino oligomers (GeneTools, LLC) used in this study were
5'-GGG ACA AAG ATG CTC ATT TTA ACA G-3' (BicC-MO1) (Tran et al., 2007), 5'-GCC ACT ATC
TCT TCA ATC ATC TCC G-3' (BicC-MO2) (Tran et al., 2007), 5'-TCC TTA TGG TCC GAG TTA
CCT TGG G-3' (Pkd1-sMO) (Xu et al., 2016; Zhang et al., 2011), 5'- GGT TTG ATT CTG CTG
GGA TTC ATC G-3' (Pkd2-MOQ) (Tran et al., 2010), and 5'- TAT TGT GTT CTA TTC TTA CCT TTC
T-3' (Pkhd1-sMO). For complete knockdown, a total of 3.2 pMol of Std-MO, Pkd1-sMO, Pkd2-MO,
Pkhd1-sMO, or a mixture of 3.2 pMol Bic-C-MO1 and 3.2 pMol Bic-C-MO2 (Bic-C-MO1+2) was
injected radially at the two- to four-cell stage into Xenopus embryos. Note that Xenopus laevis
is allotetraploid, and while we normally target both the L and S allele with one MO, in the case
of Bicc1, it requires two. For suboptimal knockdowns, 0.8 pMol of the Bic-C-MO1, Bic-C-MO2,
Pkd1-sMO, or Pkd2-MO and 0.4 pMol Pkhd1-sMO were used. Knockdown of Pkd1 and Pkhd1 was
performed using MOs targeting 3’ splice donor sites (Pkd1-sMO and Pkhd1-sMO). Microinjection
assays and RT-PCR demonstrated that both splice MOs are functional and prevent proper splicing of
the two genes (Figure 3—figure supplement 1a and Supplementary Figure S12 in Xu et al., 2016).
Suboptimal concentrations were determined by injecting serially diluted MOs and determining the
concentration-dependent induction of the edema phenotype (Figure 3—figure supplement 1b). Of
note, the combinatorial knockdown approach is based on a sensitized biological readout, but not on
reducing expression levels to a fixed amount such as, for example, 50%.

For synthetic MRNA, pCS2-xBicC’ (Tran et al., 2007) and its derivatives carrying the corresponding
point mutations (generated by Quikchange Il Mutagenesis kit from Stratagene) were linearized
with Notl and transcribed with SP6 RNA polymerase using the mMessage mMachine (Ambion).
Rescue experiments, whole mount in situ hybridizations, and histology were performed as previously
described (Tran et al., 2007). To generate antisense probes, the plasmids were linearized and
transcribed as follows: pSK-Bicc1 (Wessely and De Robertis, 2000) — Notl/T7, pCMV-SPORT6-Nbc1
(Zhou and Vize, 2004) — Sall/T7, pGEM-T-Easy-Pkd1 — Ncol/Spé, pCRII-TOPO-Pkd2 (Tran et al.,
2010) - Notl/Sp6, pGEM-T-Easy-Pkhd1 — Ncol/Spé.

Mouse studies

For the mouse studies, the sample sizes for the experimental groups were not determined a priori
using a power analysis as we did not know the effect sizes for the phenotypes under investigation.
Thus, we collected multiple litters until the number of the mutant phenotypes was statistically
significantly different from the controls and the number of animals in the experimental groups of
interest exceeded 10. Genotyping was performed after collecting the biological data; thus, the
investigator was blinded during the data acquisition phase. No outliers were removed unless mice
were moribund before sacrifice. In addition, we parsed the data based on sex as a biological variable
but did not detect any differences. The Pkd2/Bicc1 mouse crosses were performed using two mouse
strains, one carrying the hypomorphic Bicc1 allele Bpk (Nauta et al., 1993) and one of a Pkd2
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null allele (Wu et al., 1998). As the two mice strains were of different genetic background, that is,
BALB/c (RRID:MG1:2683685) and C57BL/6 (RRID:IMSR_JAX:000664), we utilized a breeding scheme
minimizing the influence of the genetic background. Bicc1*®** and Pkd2*'mice were crossed to
generate Bicc1*®*%:Pkd2""compound heterozygotes as F1 generation. These mice were then
intercrossed to generate the experimental animals in the F2 generation. Mice were genotyped by
PCR and analyzed at postnatal day P4, P14, and P21. Kidneys were examined as previously described
(Tran et al., 2010) for kidney function using BUN (QuantiChrom Urea Assay Kit, BioAssay Systems),
morphometric parameters (body and kidney weight) as well as histology and immunofluorescence
analyses (i.e., Lotus tetragonolobus agglutinin [LTA] and Dolichos biflorus agglutinin [DBA] to
determine cyst origin). Cystic index was calculated as percent of the kidney occupied by proximal
(LTA-positive) or collecting duct (DBA-positive) cysts.

The Pkd1/Bicc1 mouse crosses were performed using the same BiccT hypomorphic allele Bpk,
which was transferred into the C57BL/6 background by backcrossing for more than 10 generations.
The Bpk allele displayed the same cystic kidney phenotype in this background as the one described
for BALB/c (Akbari et al., 2022). These mice were intercrossed to the Pkd1"":Pkhd1-Cre mice (a
kind gift from Drs. Somlo and Igarashi), an allele we refer to as Pkd1°® in this study. Kidneys were
analyzed at postnatal day P7 and P14 for kidney function, morphometric parameters, histology, and
immunofluorescence, as described for the Bicc1/Pkd2 mutants.

Of note, the choice of the mouse strains was based on the availability of mice at the time of
the experiments and not due to scientific reasons. As we had not finished backcrossing the Bicc1-
Bpk strain from Balb/c into C57BL/6, it would have been scientifically unsound to assume genetic
homogeneity and cross them with the Pkd2 mutant mice in an uncontrollable fashion. Thus, the
interaction between Bicc1 and Pkd2 was performed by generating breeders (Bicc1*®°*:Pkd2** and
Bicc1*8°k:Pkd2*") in the F1 generation and the experimental animals in the F2 generation. Yet, when
we started exploring the interaction between Bicc1 and Pkd1, all three mouse strains (Bicc1%,
Pkd1%" and Pkhd1-Cre) were available in the C57BL/6 strain and the Bicc1*/®°< had been backcrossed
into C57BL/6 more than 10 generations. Thus, the Bicc1/Pkd1 study was performed using traditional
breeding schemes.

International diagnostic clinical cohort

Next Generation Sequencing (NGS) technologies and comprehensive bicinformatic analyses utilized
in this project are described in detail elsewhere (Devane et al., 2022; Lu et al., 2017). In brief,
we performed different NGS-based approaches utilizing a customized sequence capture library
with curated target regions — currently comprising more than 650 genes described and associated
with cystic kidney disease or allied disorders — as well as corresponding flanking intronic sequence
according to the manufacturer's recommendations. The panel design is enriched by targets in
non-coding regions for described variants listed in well-accepted databases like HGMD or ClinVar
(RRID:SCR_006169) and optimized for low-performance and disease-critical regions (e.g., PKD1).
DNA samples were enriched using sequence capture, multiplexed, and in most cases sequenced
using lllumina sequencing-by-synthesis technology with an average coverage of more than 300x.
Raw data were processed following bioinformatics best practices. Mapping and coverage statistics
were generated from the mapping output files using standard bioinformatics tools (e.g., Picard).
Statistical analysis was conducted on our internal database currently comprising >20,000 datasets.
The total of this data pool is summarized over samples analyzed by NGS-based customized panel
testing or whole exome sequencing (WES) analysis. Customized panel setups have been regularly
updated. Sub-cohorts of patients were categorized based on clinical, ultrasound, and/or histologic
data. Control cohorts were selected by ruling out any involvement of kidney-related symptoms.
This approach yielded high and reproducible coverage enabling copy number variation (CNV)
analysis. The performance of the wet-lab and bioinformatic processes is validated and controlled
according to national and international guidelines (Chicoine et al., 2007, Zhang et al., 2014)
reaching high sensitivity for SNV, Indels, and CNVs using well-established reference samples,
as well as a large cohort of positive controls, especially for CNVs (Matthijs et al., 2016; Rehm
et al.,, 2013). For interpretation of identified variants, we established a bioinformatic algorithm
automatically calculating ACMG classification based on existing and updated guidelines (Ellard
et al., 2020; Richards et al., 2015) and was conducted according to specific standardized internal
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procedures. Bioinformatically called variants were classified according to ACMG/AMP and ACGS
guidelines in respect to current literature and database entries (internal and external mutation and
frequency databases, public clinical and functional studies) as well as family history and - if available
- segregation results. Variant prioritization was based on this classification and on the frequency of
the respective variants in public databases. Variants e.g., in the genes PKD1, PKD2, and BICC1 were
filtered and prioritized for very rare variants in external (gnomAD) and internal databases in our
cohort of patients with PKD, classified as pathogenic, likely pathogenic, or VUS, not present in the
overall control cohort of all patients in our database and/or patients not affected by PKD or a similar
phenotype. Sequence variants of interest were verified by Sanger sequencing, if NGS results failed
internal validation guidelines.

For statistical analyses of our patient data, we screened our entire internal database. In a
control sub-cohort rigorously screened against any clinical involvement of kidney symptoms
(>10,700 patients), neither a BICC1 variant (class Ill-V) in combination with a PKD1 or PKD2 variant
nor a relevant monoallelic BICC1 variant could be identified using the workflow used for variant
prioritization described above. We also repeated both queries on cohorts of patients clinically
presenting as glomerular disease/focal segmental glomerular sclerosis (FSGS) or atypical hemolytic
uremic syndrome (aHUS) with 957 and 1889 cases and datasets, respectively. Again, we did not
detect a single patient with any of the variants described in the article.

In silico studies

The 3D structure of BICC1 (UniProt: Q9H694), PKD1 (UniProt: P98161) and PKD2 (UniProt:
Q13563) was downloaded from PDB (6GY4, 4RQN, Bicaudal-C ortholog GLD-3 ‘3N89’, 6A70 and
6WB8), modeled by AlphaFold (RRID:SCR_025454) and the PHYRE2 automated protein homology
modeling server (Nakel et al., 2010, Rothé et al., 2018, Kelley et al., 2015, Jumper et al., 2021).
Because no experimentally mutant BICC1 structures have been determined, we generated mutant
structures by individually introducing the missense mutations in silico; missense mutations were then
computationally modeled in UCSF Chimera 1.14 (Pettersen et al., 2004) by first swapping amino
acids using optimal configurations in the Dunbrack rotamer library (Shapovalov and Dunbrack,
2011) and by taking into account the most probable rotameric conformation of the mutant residue.
All kinds of direct interactions, that is, polar and nonpolar, favorable and unfavorable, including
clashes, were analyzed using the contacts command in UCSF Chimera 1.14 (Pettersen et al., 2004).
The evolutionary conservation score of each amino acid of BICC1 in its conserved domains (KH,
KHL, and SAM domains) was determined using the ConSurf algorithm, based on the phylogenetic
relationships between sequence homologues (Ashkenazy et al., 2016). To determine the effects
of the mutations in flexible conformations of the protein, we used DynaMut, a consensus predictor
of protein stability based on the vibrational entropy changes predicted by an elastic network
contact model (ENCoM) (Rodrigues et al., 2018). Pathogenicity of the variants was predicted using
Ensembl Variant Effect Predictor (VEP, RRID:SCR 007931) (McLaren et al., 2016) to calculate a
REVEL score (loannidis et al., 2016) and the structural impact of missense variants analyzed using
VarSite (Laskowski et al., 2020). The pathogenicity score of BICC1, PKD1, and PKD2 variants was
also determined using different predictors with the scores collated from Argus dbNSFP and ProtVar
(Schroter et al., 2023; Liu et al., 2020).
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