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A B S T R A C T   

Radiative cooling of electron beams interacting with counter-propagating electromagnetic waves is analyzed, 
taking into account the quantum modification of the radiation friction force. Central attention is paid to the 
evolution of the energy spectrum of electrons accelerated by the laser wake field acceleration mechanism. As an 
electron beam loses energy to radiation, the mean energy decreases and the form of the energy distribution also 
changes due to quantum-mechanical spectral broadening.   

1. Introduction 

It is well known that radiation friction can impose constraints on the 
highest attainable energy of charged particles accelerated by standard 
accelerators [1]. Additionally, it leads to radiative cooling of the 
accelerated electron beams and affects the electron beam emittance [2, 
3]. Radiation losses determine the energy of cosmic rays accelerated in 
various objects in space [4–7], in particular, the energy of ultra-high 
energy cosmic rays. It also plays an important role in charged particle 
interactions with crystals [8]. The effects of radiative cooling on the 
dynamics of electrons interacting with strong electromagnetic waves 
have attracted significant attention, specifically in the interaction of 
high power laser radiation with matter [9–12]. These effects can be 
neglected in the case of relatively low radiation-intensity and small 
electron-energy. However, in the limit of extremely high wave-intensity, 
radiation friction effects dominate the dynamics of the charged particles 
[13–19] resulting in the radiation friction force approaching the 
strength of the driving force. As a result, the electron dynamics become 
highly dissipative with fast conversion of the electromagnetic wave 
energy to hard electromagnetic radiation. In the pulsar magnetosphere 
theory this regime called as “Aristotelian Electrodynamics” because due 
to radiation over-damping, the velocity–rather than the acceleration–of 
a charge is determined by the local electromagnetic field [20,21]. For 

more information on Aristotelian physics, e. g. see [22] and literature 
cited therein. For laser radiation with a 1 μm wavelength, the radiation 
friction force modifies the electromagnetic wave interaction with matter 
at intensities above IR = 1023W/cm2. Reaching this laser intensity will 
bring us to regimes that are almost completely unexplored experimen-
tally. This will enable high efficiency generation of gamma flares, which 
is considered as one of the primary goals for high-power laser facilities 
[23–34]. 

Radiation friction plays a significant role in the acceleration of 
charged particles using lasers [33–36]. However, the above-mentioned 
intensity, 1023W/cm2, corresponds to the interaction geometry where 
the electromagnetic wave simultaneously accelerates charged particles 
and provides the strong field for radiation reaction effects. Typical 
laser-target configurations for studies of these conditions include laser 
pulse irradiation of a solid foil and penetrating the overdense foil target 
[10]. The intensity of 1023W/cm2 was demonstrated recently [37]. 
Another experimental configuration that allow for the study of radiation 
friction force effects is the collision of a high energy electron beam and a 
high intensity laser pulse. It was recently studied at the Gemini laser 
facility, with the results reported in [38,39]. Already at a moderate in-
tensity of approximately 1020W/cm2 significant radiation friction effects 
were observed. 

It is well known that an electron beam colliding with a strong 
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electromagnetic pulse and interacting with a strong magnetic field un-
dergoes fast cooling and fast energy depletion [40–44], which changes 
the beam energy distribution. In regard to the study of strong field 
quantum electrodynamics [10,45–47], it raises the question of whether 
an electron radiating its energy away during the interaction with a laser 
can reach the region of highest intensity with sufficient energy to make a 
number of different phenomena observable [48–52]. 

Below, we present the calculation and analysis of the electron energy 
distribution that results from an electron beam interacting with a strong 
counter-propagating electromagnetic wave. In the analysis, we take into 
account different initial (before interaction) energy distributions and 
quantum effects modifying the radiation friction force. We additionally 
address the evolution of the energy spectrum of electrons accelerated by 
the laser wakefield acceleration (LWFA) mechanism. 

The article presents three aspects: being a brief overview of the 
previously published theory of the evolution of an electron beam during 
its interaction with a strong laser field, it also contains original results 
related to the stochastic behavior of a charged particle in the quantum 
limit, and also presents a collection of useful formulas and relationships 
for planning, carrying out and analysis of experiments on the interaction 
of ultrarelativistic electrons with laser radiation. 

The paper is organized as follows. In Section 2 we retrieve the 
formalism used for description of the radiation friction force in the 
Landau-Lifshitz form with the quantum effects implemented in the form 
of the Gaunt factor. The equations from this Section are applied in the 
next Sections 3 and 4 for calculating the energy spectrum of the electron 
beam cooled in the interaction with strong electromagnetic pulse 
neglecting the stochastic broadening of electron distribution function. 
The electron spectrum evolution in this case presents momentum aver-
aged energy distribution. In Section 5 electron energy spectrum broad-
ening due to quantum mechanical stochasticity effects is described 
within the framework of the Fokker-Plank equation. In order to bench-
mark the Fokker-Planck equation approach used in Section 5 to account 
for quantum mechanical stochasticity effects, in Section 6, we present 
the results of a Monte Carlo simulation modeling electron beam collision 
with a laser pulse. Section 7 summarizes the conclusions. 

2. Radiation friction force 

In order to self-consistently describe the trajectory of an emitting 
electron, the Minkowski equations should be modified by adding the 
radiation friction force, gμ: 
dpμ

ds
= −e

c
Fμ

νuν + gμ, (1)  

dxμ

ds
= uμ. (2) 

The radiation friction force in the Landau–Lifshitz form [53] is given 
by 

gμ = − 2e3

3mec3

{

∂Fμν

∂xλ
uνuλ +

e

mec2

[

FμλFνλuν −
(

Fνλuλ
)

(Fνκuκ)uμ
]

}

. (3) 

Here pμ, uμ, and xμ are the electron momentum, velocity and coor-
dinate; e and me are the elementary charge and the electron mass; c is the 
speed of light in vacuum. The 4-tensor of the electromagnetic field Fμν is 
defined as 
Fμν = ∂μAν − ∂νAμ, (4)  

where Aμ = (φ,A)is the four-vector potential with scalar φand vector A 
potentials. 

Retaining the high-order terms in the limit of γe >> 1, where γe is the 
electron Lorentz factor, the three-dimensional form of the radiation 
friction force can be presented in the form [53] 

gLL = − 2e4

3m2
ec4

γ2
e

v

c

(

Fμνuν
)

(Fμνuν). (5)  

where v is the electron velocity. This expression can be rewritten via the 
relativistic and gauge invariant parameter χe given by 

χe =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−(Fμνpν)2

√

ESmec
(6)  

where 

ES = m2
ec3

eℏ
. (7)  

is equal to critical electric field of quantum electrodynamics. This field, 
equal to 1.32 × 1018V /cm is also known as the Schwinger field. It 
produces over the distance equal to the Compton wavelength, ƛC = ℏ/

mec ≈ 3.86× 10−11cm, work equal to mec2. 
The parameter χe can be expressed via the electric and magnetic 

fields and electron momentum as 

χe =
1

ES

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(

γeE + 1

mec
p × B

)2

− 1

m2
ec2

(p⋅E)2

√

. (8) 

For an electron counter-propagating with respect to the electro-
magnetic wave, this parameter is approximately equal to χe ≈ 2γea0/aS, 
where aS = eES/meωc = mec2/ℏω is the normalized Schwinger field. For 
1-μm wavelength laser radiation, the normalized Schwinger field 
equalsaS ≈ 4.1× 105. 

Using the expressions written above we can cast the radiation fric-
tion force as 

gLL = −2

3

(

e

ƛC

)2

βχ2
e = −2αm2

ec3

3ℏ
βχ2

e , (9)  

where α = e2/ℏc ≈ 1/137 is the fine structure constant and β = v/c is 
the normalized electron velocity. In the ultra-relativistic limit, when the 
momentum of the electrons colliding head-on with the electromagnetic 
wave is well above mec, the square of the invariant parameter is 
approximately equal to 

χ2
e ≈ γ2

e

(E + β × B)2

E2
S

. (10) 

The quantum effects that lead to a reduction in the rate of energy 
being lost to radiation can be taken into account by modifying expres-
sion (5) as 
g = gLLG(χe), (11)  

where the Gaunt factor G(χe) is equal to the ratio of the full radiation 
intensity to the intensity emitted by a classical electron. 

Using the results published in [54], we can write the Gaunt factor 
G(χe) as 

G(χe) = −3

4

∫

∞

0

[

4 + 5χex
3/2 + 4χ2

ex3

(1 + χex3/2)4

]

Ai′(x)xdx, (12)  

where, Ai(x) is the Airy function [55]. In the following sections, we 
neglect the effects of the discrete nature of photon emission in quantum 
electrodynamics [56–58], which results in stochastic behavior of the 
radiating electron (see [59] and review articles [10,19] and literature 
cited therein). These effects will be addressed at the end of the paper. 

In the limit χe << 1, the form-factor G(χe) tends to unity as 

G(χe) = 1 − 55
̅̅̅

3
√

16
χe + … = 1 − 5.9χe + …. (13) 

S.V. Bulanov et al.                                                                                                                                                                                                                              



Fundamental Plasma Physics 9 (2024) 100036

3

For χe >> 1, it tends to zero as 

G(χe) =
32π

27 × 35/6Γ(1/3)χ4/3
e

+ … = 0.56

χ
4/3
e

+ …. (14) 

In what follows, we shall use the approximation [60] 

G(χe) =
1

(

1 + 18χe + 69χ2
e + 73χ3

e + 5.806χ4
e

)1/3
. (15) 

Within the interval 0 < χe < 20, the accuracy of approximation is 
better than 1 % as it follows from the comparison of expressions (12) and 
(15). 

Expressions (9) and (11) for the radiation friction force can be 
rewritten as 

g = −2

3

(

e

ƛC

)2
χ2

e
(

1 + 18χe + 69χ2
e + 73χ3

e + 5.806χ4
e

)1/3
β. (16) 

We note that the leading term in the Landau-Lifshitz equation with a 
quantum correction, Eq. (11), appears from the Fokker-Planck equation 
obtained by [48]. 

3. Ultrarelativistic electron beam slowing down 

Here we consider the head-on collision of an ultrarelativistic electron 
with a laser pulse. The laser ponderomotive pressure pushes the electron 
perpendicular to the pulse propagation direction and changes the lon-
gitudinal component of the electron momentum. The reduction in mo-
mentum due to radiation friction can be either weaker or stronger than 
the ponderomotive force action depending on the laser pulse amplitude, 
inhomogeneity, and the electron energy. In the case where the radiation 
friction force is negligibly weak, assuming that the electromagnetic 
configuration can be described by a 1D-plane wave laser pulse propa-
gating along the x-axis with constant velocity, the electron dynamics are 
determined by the conservation of the integrals of motion [53]. They are 
the generalized transverse momentum 

p⊥ − e

c
A⊥(x− ct) = constant (17)  

and 

mec
2γe − cp‖ =

(

m2
ec4 + p2

⊥c2 + p2
‖c

2
)1/2 − p‖c = constant. (18) 

If the electron before interaction with the laser pulse has longitudinal 
and transverse momentum components equal to p0‖ = −|p0‖| and 0, 
respectively, corresponding to a head-on collision, Eqs. (17) and (18) 
show that 

p‖ = −|p0‖| + mec
a2mec

2
[

(

m2
ec2 + p2

0‖
)1/2 +

⃒

⃒

⃒p0‖

⃒

⃒

⃒

]. (19) 

Here a= e|A⊥|/mec2 is the normalized vector-potential of the elec-
tromagnetic wave. As follows from Eq. (19), the longitudinal component 
of the electron momentum decreases. If |p0‖| is small, 

|p0‖| <mec
a2

2(1 + a2)1/2
, (20)  

the electron stops and is reflected back by the ponderomotive force. We 
note that the electron energy, 

mec
2γe = mec

2γe0 + mec2 a2mec

2
[

(

m2
ec2 + p2

0‖
)1/2 +

⃒

⃒

⃒p0‖

⃒

⃒

⃒

], (21)  

does not vanish. 
The transverse scattering of the electron is taken into account in the 

electron rest frame, where the laser pulse duration is τlas ≈ τlas
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + a20
√

/2γe. The electron is not significantly scattered aside by the laser pon-
deromotive force provided that its energy is large enough, 
γe0 > cτlasa0/2w⊥, (22)  

where w⊥ is the laser width at focus and a0 is the laser pulse amplitude. 
For a 1 μm wavelength, 10 PW pulse focused into a one-lambda focal 
spot, the normalized laser amplitude is a0 = 103. For a 30-fs duration 
laser pulse this condition requiresγe > 5000, i.e., an electron energy 
above 2.5 GeV. According to the condition (22) the electron is not re-
flected back provided that its momentum is higher than approximately 
|p0‖| ≈meca0, i.e. γe > 1000, Further, we assume that these conditions 
are respected. 

The electron energy changes due to the radiation losses. In the limit 
χe << 1, where the form-factor G(χe) tends to unity, one can obtain from 
Eq. (1) an equation for the x-component of the electron momentum 
dpx

dt
= −4εradω0a2(2t) p2

x

mec
, (23)  

where it is assumed the head-on relativistic electron collision with the 
laser pulse depending on time and coordinate as a(t− x/c). Here and 
below we use the dimensionless parameter 

εrad = 2e2ω

3mec3
= 4πre

3λ
(24)  

with classical electron radius re = e2/mec2 ≈ 2.82 × 10−13cm and the 
laser wavelengh λ. For one-micron laser wavelength the parameter εrad 
approximately equals 1.18× 10−8. The solution of Eq. (23) is given by 

px(t) =
px(0)mec

mec + 4εradω0px(0)
∫ t

0
a2(2t′)dt′

. (25) 

From this expression it is seen that the radiation time of the electron 
energy loss is 

τrad,1 = mec

4εradω0px(0)a2
0

. (26) 

It can be written in the form τrad,1 = T0/8πεradω0γ0a2
0, where T0 = 2π/

ω0 is the electromagnetic wave period, γ0 ≈ px(0)/mec is the electron 
gamma-factor, and a0 is the laser pulse amplitude. For one-micron 
wavelength laser pulse the radiation time is approximately equal to τ1 ≈
3T0106/a2

0γb,0 with T0 ≈ 3fs. The radiation loss effects are relatively 
weak if a2

0γ0 < 3× 106, e. g. if the 500 MeV electron interacts with the 
laser pulse with the intensit lower than I = 4× 1021W /cm2. 

If we assume an a(t) dependence of the form a(t) = a0exp(−
t2 /2Δt2), the expression for px(t) can be rewritten as 

px(t) =
px(0)mec

mec +
̅̅̅

π
√

εradpx(0)ω0Δta2
0erf (2t/Δt). (27) 

Here erf(x) is the error function equal to [54] 

erf (x) = 2
̅̅̅

π
√
∫ x

0

exp
(

− t2
)

dt. (28) 

Eq. (25) shows that for large enough px(0)τa2
0, the electron mo-

mentum tends to the limit of 

px(t) →
t→∞

mec
̅̅̅

π
√

εradω0Δta2
0

(29)  

in accordance with the theory formulated in the book by L. D. Landau 
and E. M. Lifshitz [53]. For a0 = 102 and ω0Δt = 6, where the frequency 
ω0 corresponds to the wavelength λ0 = 2πc/ω0 = 1 μm, the normalized 
electron momentum px(∞) is approximately equal to 500mec, i.e. for a 
single-cycle one-micron wavelength laser with an intensity of 
≈ 1022W /cm2 the electron energy is approximately equal to 250 MeV. 

In the limit where quantum corrections weaken radiation friction, i. 
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e., when according to Eq. (15) the Gaunt factor is approximately equal to 
G(χe) ≈ 0.56/χ

4/3
e , the equation of the electron motion with the radia-

tion friction force given by Eq. (1) can be written in the form 
dpx

dt
= −η εradω0meca

2/3

0 (2t)a4/3

S

(

px

mec

)2/3

(30)  

with the dimensionless coefficient approximately equal to η ≈ 0.888. 
Here, the dimensionless parameter aS = eES/meω0c = mec2/ℏω0 is the 
normalized Schwinger field. The solution to the Eq. (30) is 

px = px,0

⎡

⎣1 − η εradω0m1/3
e c1/3a

4/3

S

3p
1/3

x,0

∫

t

0

a
2/3

0 (2t)dt

⎤

⎦

3

. (31) 

For a constant amplitude laser pulse the electron momentum 
formally tends to zero during the radiation time 

τrad,2 =
3p

1/3

x,0

η εradω0m
1/3
e c1/3a

4/3

S a
2/3

0

, (32)  

which can be written as τrad,2 = 4τrad,1χ
−4/3
e /η. 

4. Change of the electron energy spectrum 

Radiation losses lead to a change in the energy spectrum of the 
electrons interacting with a strong localized electromagnetic field. The 
evolution of the electron energy distribution can be described by the 
kinetic equation 
∂tf + ∂px

(A(t, px)f ) = 0, (33)  

where 
A(t, px) = ṗx, (34)  

with the radiation friction force,ṗx, given by either Eq. (23) in the limit 
χe << 1 or by Eq. (30) when χe >> 1. The solution to Eq. (33) is the 
function f(t,px). This function is constant on the characteristics (e.g., see 
[61]). The equations for the characteristics of Eq. (33) are 

dt = dp

ṗx

= −df

f ∂px
ṗx

. (35) 

In the cases of the radiation friction force given by Eqs. (23) and (29), 
the radiation friction force can be represented in the form 
ṗx = υ(t)ϖ(px). (36) 

Here, the functions υ(t) and ϖ(px) are 

υ(t) = −4εradω0meca2(2t) and ϖ(px) =
(

px

mec

)2

(37)  

in the case corresponding to Eq. (23) and 

υ(t) = −η εradω0meca2/3(2t)a4/3

S and ϖ(px) =
(

px

mec

)2/3

(38)  

for the radiation friction force given by Eq. (30), respectively. Intro-
ducing the function 
F = ϖf (39)  

and changing the variables to 

s = −
∫

t

.

υ(t′)dt′ and w =
∫

px

.

dp

ϖ(p) (40)  

we rewrite the kinetic Eq. (33) as 

∂sF − ∂wF = 0. (41) 
The initial value problem solution of this equation is 

F(s,w) = F0(w− s) (42)  

with F0(w) determined by the initial conditions at s = 0. For the dis-
tribution function f(t, px) this yields the expression 

f (t, px) =
ϖ
(

px,0

)

ϖ(px)
f0

(

px,0

)

, (43)  

where f0(px,0) is the distribution function at t = 0. 
As an example, we consider the electron distribution function prior 

to the electron beam interacting with an electromagnetic field of the 
super-Gaussian form 

f0

(

px,0

)

= 1

2Γ(1 + 1/m)Δp0

exp

[

−
(

px,0 − pb,0

Δp0

)m]

(44)  

with positive index m. Here Γ(x) is the Gamma function [55]. This dis-
tribution function describes an electron beam with average momentum 
pb,0 and a width in the momentum space equal to Δp0. Fig. 1 shows 
electron beam distribution functions for m = 2,4, 6,8 andpb,0 = 3, 
andΔp0 = 1. Here, we use the momentum normalization to 

Π1 =
mec

4εrada2
0

. (45) 

Using the relationships presented above, we obtain in the case where 
the radiation friction force ṗx is given by Eqs. (36,37), that the electron 
distribution function depends on time as 

f1(t, px) =
1

2Γ(1 + 1/m)Δp0Π1(1 − pxs1t)2
exp

{

−
[

px − pb,0(1 − pxs1t)
Δp0(1 − pxs1t)

]m}

,

(46)  

where 

s1 =
ω0

Π1

(47)  

with Π1 given by Eq. (45). According to this expression, the average 
electron momentum and the distribution width decrease as 

pb(t) =
pb,0

1 + pb,0s1t
and Δp(t) ≈ Δp0

1 + pb,0s1t
(48) 

Fig. 2 shows the electron beam distribution functions given by Eq. 
(46) for m = 8 at s1t = 0.0,0.1,0.2,0.3,0.4,0.5. For the sake of simplicity, 
here we assume that the normalized wave amplitude is constant and 
equal to a0, thereby corresponding to circularly polarized radiation. As 
is clearly seen, the radiation friction effects result in a reduction of the 

Fig. 1. Electron beam distribution functions (44) for m = 2, 4,6, 8 and pb,0 = 3, 
and Δp0 = 1. Here we use the momentum normalization to Π1 given by 
Eq. (45). 
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average electron momentum and narrowing of the distribution. 
We note that in this case the characteristic time of the energy loss is 

approximately equal to the time given by Eq. (26). Fig. 2 corresponds to 
relatively short energy loss time, i. e. to strong radiation friction effects. 

In Fig. 3 we show the electron beam distribution functions given by 
Eq. (46) for m = 8, pb,0 = 0.75 and Δp0 = 0.5 at s1t = 0.0,0.1,0.2,0.3,
0.4,0.5,0.6,0.7, which corresponds to relatively long energy loss time, i. 
e. to weak radiation friction effects. 

In the case where the radiation friction force is given by Eqs. (36), 
(38), the electron distribution function is 

f2(t, px) =
1

2Γ(1 + 1/m)Δp0Π2

(

1 + s2t

p
1/3
x

)2

exp

{

−
[

(

p1/3
x + s2t

)3 − pb,0

Δp0

]m}

(49)  

where the electron momentum is normalized by 

Π2 =
3

ηεradm
1/3
e c1/3a

2/3

0 a
4/3
s

. (50)  

and 

s2 = ω0

Π2

(51) 

For the sake of simplicity here we assume that the normalized wave 
amplitude is constant and equal to a0, again corresponding to circularly 
polarized radiation. Fig. 4 shows the electron beam distribution func-
tions, f2(t,px)Π2, given by Eq. (49) for m = 8, at s2t = 0.0,0.1,0.2,0.3,0.4,
0.5. Here, we have again assumed that the normalized wave amplitude is 
constant and equal to a0. In this case, radiation friction effects also result 
in a reduction of the average electron momentum and narrowing of the 
distribution. 

In the case of distribution function f1(t, px) shown in Fig. 2, the 
spectral narrowing is faster than in the case of the function f2(t, px)
presented in Fig. 4. The characteristic time of the energy loss is 
approximately equal to the time given by Eq. (32). 

To further exemplify these effects, we consider an initial electron 
distribution function having a form typical for laser wake field accel-
erated electrons. As shown in [62,63] the shape of the energy spectrum 
of electrons accelerated by wake-fields [64] can be approximated by the 
formula 
dN

dE

⃒

⃒

⃒

⃒

E →E m−0

= 2N0

π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
2

m − E
2

√ , (52)  

where E m is the electron maximal energy assuming that E m > E . 
Correspondingly, the electron distribution function prior to interaction 
with the electromagnetic field is 

f0

(

px,0

)

= 2

π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
m,0 − p2

x,0

√ . (53)  

with pm being the maximal electron momentum. This distribution has an 
integrable singularity at p = pm. 

In the case where ṗx is given by Eqs. (36, 37) the electron distribution 
function depends on time as 

f (px, t) =
2

π Π1(1 − pxs1t)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
m,0(1 − pxs1t)2 − p2

x

√ . (54) 

It is plotted in Fig. 5 for s2t = 0.0, 0.1, 0.2,0.3, 0.4, 0.5 and pm,0 = 2.5. 
In this case, the radiation friction effects also result in decreasing 

Fig. 2. Electron beam distribution functions (46) versus time for m = 8, pb,0 =
3 and Δp0 = 1 at s1t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. The electron momentum is 
normalized to Π1. 

Fig. 3. Electron beam distribution functions (46) versus time for m = 8, pb,0 =
0.75 and Δp0 = 0.5 at s1t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The electron 
momentum is normalized to Π1. 

Fig. 4. Electron beam distribution function given by Eq. (49) versus time for 
m = 8, pb,0 = 10 and Δp0 = 1 ats2t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. The electron 
momentum is normalized on Π2. 

Fig. 5. Electron beam distribution function given by Eq. (54) versus time for 
pm,0 = 2.5 ats1t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. The electron momentum is 
normalized on Π1. 
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maximum electron momentum as 
pm(t) = pm,0

/(

1+ pm,0s1t
)

. (55) 
In Fig. 6 we show the electron distribution function when radiation 

friction is described by equations (36, 38). It is given by 

f (px, t) = 2
(

1 + s2t
/

p1/3
x

)2

π Π2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
m,0 −

(

p
1/3
x + s2t

)6
√ . (56) 

The electron beam distribution is presented for pm,0 = 15 ats2t = 0.0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6. According to expression (54), the maximum 
electron momentum decreases as 

pm(t) =
(

p
1/3

m,0 − s2t
)3

. (57) 

As we see in the case of the electron beam with an initial energy 
spectrum described by the super-Gaussian function (44), radiation 
cooling results in an overall reduction in the mean energy of the electron 
distribution, however, asymmetry arises in the distribution because the 
energy loss is greater for the higher energy part of the spectrum. This is 
clearly seen in Figs. 2 and 4. When the pre-collision electron energy 
spectrum has the form typical for a LWFA electron beam (it is inversely 
proportional to the square root of ̅̅̅̅̅̅̅̅̅̅̅̅̅̅pm − p√ as given by Eq. (53)), radi-
ation cooling does not change the type of singularity, leading to a 
reduction of the maximum electron momentum according to expressions 
(55)–(57). 

5. Electron energy spectrum broadening due to quantum 
mechanical stochasticity effects 

As we discussed above, within the framework of the approximation 
based on classical electrodynamics, the expressions for the radiation 
friction force, including the case when the quantum effects are taken 
into account with the Gaunt factor G(χe), radiation losses for electrons 
interacting with the electromagnetic wave result in a drift of the electron 
distribution function towards lower electron momentum with additional 
narrowing of the momentum distribution function. The quantum me-
chanical stochasticity leads to the appearance of diffusion in the mo-
mentum space. The Fokker-Planck equation implementing energy drift 
and diffusion takes the form [65] 

∂tf = ∂px

{

A(px)f +
1

2
∂px

[B(px)f ]
}

. (58) 

It is convenient to write the energy drift and diffusion coefficients as 

A(px) =
2αm2

ec3

3ℏ
βχ2

e and B(px) =
55

8
̅̅̅

3
√ αm3

ec4

ℏ
γχ3

e (59) 

Estimating characteristic energy drift and diffusion time as 
τdrift = px

/

A(px) and τdiff = 2p2
x

/

B(px) (60)  

we find that the energy drift evolves faster than the energy diffusion, 
τdrift << τdiff , at relatively low electron energy: 
γ < 8/55 ̅̅̅3√

)(aS /a0) ≈ 8 × 105/a0 (see also discussion in [59,65,66]). If 
the normalized field amplitude equals a0 = 103, which can be reached 
with multi-petawatt lasers, electron energy 8 × 102mec2 corresponds to 
400 MeV. Taking into account that the QED parameter equals 
χe = (a0 /aS)γ we find that the energy diffusion is faster than the energy 
drift for χe > 1/3. 

Introducing normalized time and momentum, t/T = τ and px/Π = p, 
with 

T = 33/255

128

ℏ

αmec2

(

aS

a0

)

and Π = 16

55
̅̅̅

3
√ mec

(

aS

a0

)

(61)  

we can rewrite Eq. (58) in the form 

∂τf = ∂p

{

(p + γ)2p

γ
f + ∂p

[

γ(p + γ)3
f
]

}

(62)  

with 

γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(mec

Π

)2

+ p2

√

. (63) 

In Fig. 7 we show the results of the electron beam evolution with an 
initial distribution function given by Eq. (44) with m = 8, p0 = 5, Δp0 =
1. In frame a) we present the function f(τ,p). Frame b) shows equal value 
contours of f(τ, p) on the plane (τ, p). From this, we observe an overall 
drift of the energy spectrum towards lower energies. Diffusion then leads 
to asymmetric spectral broadening, which is stronger in the high-energy 
wing of the distribution. At the very late stage, radiation friction results 
in energy distribution narrowing. 

Fig. 8 presents the results of the electron beam evolution for the 
initial distribution function given by Eq. (53) with p0 = 0.0625. Frame 
a) shows the function f(τ,p). In Frame b) we plot constant value contours 
of f(τ, p) on the plane (τ, p). We again observe a systematic drift of the 
energy spectrum towards low energies due to radiation losses. Diffusion 
effects result in a smoothing of the distribution in the region of vicinity 
of the maximum electron momentum and broadening of the whole 
momentum distribution. 

Asymptotically at late times, the electron distribution tends to a 
stationary state described by the solution of the Eq. (61) i.e. of the 
equation 
∂p(B(p)fs) + 2A(p)fs = 0. (64) 

The right-hand side of this equation is assumed equal to zero which 
corresponds to vanishing momentum flux. Its solution has the form 
fs(p) = U(p)exp[Ψ(p)] (65)  

with 

U(px) =
ε4

1

(

p
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2
1 + p2

√

+ ε2
1 + p2

)3

(ε2
1 + p2)2

(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2
1 + p2

√

+ p
)6
, (66)  

where ε1 = mec/Π, and 

Ψ(p) = p −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2
1 + p2

√

ε2
1

+ ArcTan(p/ε1)
ε1

. (67) 

In the limit p→0 for these functions we have 

U(px) =
1

ε7
1

− 5p

ε8
1

+ 11p2

ε9
1

+ O[p]3, (68) Fig. 6. Electron beam distribution function given by Eq. (56) versus time for 
pm,0 = 15 ats2t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The electron momentum is 
normalized on Π2. 
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Ψ(p) = − 1

ε1

+ 2p

ε2
1

− p2

2ε3
1

+ O[p]3. (69) 

When p→∞ the functions have the order 

U(px) =
ε1

32p8
+ O

[

1

p

]10

, (70)  

Ψ(p) = π

2ε1

+ 3

2p
+ O

[

1

p

]3

. (71)  

6. Simulation results from the Monte Carlo code 

In order to benchmark the Fokker-Planck equation approach used in 
the previous section to account for quantum mechanical stochasticity 
effects, we employ a Monte Carlo code Ptarmigan [67,68] to model 
electron beam collision with a laser pulse. The Ptarmigan code is a single 
particle code, which takes into account SFQED effects (multi photon 
Compton and Breit-Wheeler processes) when charged particles propa-
gate in strong electromagnetic fields. These effects are described using 
either a local constant field approximation (LCFA) or local mono-
chromatic approximation (LMA). The photon emission and pair pro-
duction are treated as point-like events, which modify particle 
4-momentum and create new particles. Between these events, the 

particle motion is treated according to classical equations of motion in 
electromagnetic field. The Ptarmigan code takes into account the 
angular distribution of secondary particles in multi-photon Compton 
and Breit-Wheeler processes, which is different from the distribution 
that can be observed in typical PIC-QED codes, where the collinear 
emission approximation is used (see [10] for details). The results of the 
Ptarmigan modeling of an electron beam with the same momentum 
distribution as used in Fig. 8 (using 104 particles) with a circularly 
polarized electromagnetic wave with a0 = 10 are shown in Fig. 9. 

Here, we employed the local constant field approximation (LCFA), 
since the energy of electrons and electromagnetic field strength allow 
this [67]. Fig. 9 shows the evolution of the electron distribution, which 
has been smoothed to reduce noise. The electron beam evolution is very 
similar to the numerical results obtained by solving the diffusion 
equations, which are shown in Fig. 8. The distribution initially broadens, 
followed by narrowing at late times. This indicates the validity of using 
the diffusion equation approach to analyze the evolution of electron 
beam distribution during the interaction with an intense laser pulse. 

7. Conclusion 

Analysis of radiation friction effects shows an overall drift of the 
electron momentum distribution function towards lower momentum. 
This down-drift results in a narrowing of the momentum distribution 

Fig. 7. Electron beam evolution for initial distribution function given by Eq. (44) with m = 8, p0 = 5, Δp0 = 1; a) function f(τ,p); b) equal value contours of f(τ, p)
on the plane (τ, p). The electron momentum is normalized on Π given by Eq. (61). 

Fig. 8. Electron beam evolution for initial distribution function given by Eq. (53) with p0 = 0.0625; a) function f(τ,p); b) equal value contours of f(τ, p) on the plane 
(τ, p). The electron momentum is normalized on Π. 
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accompanied by formation of an asymmetric momentum distribution. 
The stochastic nature of electron radiation in the quantum limit is 
demonstrated by a broadening of the electron distribution. The diffusion 
effects result in a smoothing of the distribution in the region near the 
maximum electron momentum, and broadening of the whole mo-
mentum distribution when the radiation losses are balanced by diffusion 
in the momentum space, as is the case of standard accelerators of 
charged particles [2,3]. 
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