

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/237913/>

Version: Accepted Version

Article:

Walsh, G., South, J., Woodford, D.J. et al. (Accepted: 2026) Trophic diversity in aquatic food webs along a tropical coastal river continuum in west-central Africa. *Freshwater Biology*. ISSN: 1365-2427 (In Press)

This is an author produced version of an article accepted for publication in *Freshwater Biology*, made available via the University of Leeds Research Outputs Policy under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
<https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 **Trophic diversity in aquatic food webs along a tropical coastal river**
2 **continuum in west-central Africa**

3 **Gina Walsh^{1,2,3}, Josie South^{4,5*}, Darragh J. Woodford^{1,4}, Melanie L.J Stiassny², Jérôme Y.**
4 **Gaugris^{3,6}, Valdie N. Boukaka-Mikembi⁷, Allison A. Pease⁸**

5 ¹ School of Animal Plant and Environmental Sciences, University of the Witwatersrand,
6 Johannesburg, South Africa

7 ² Division of Vertebrate Zoology, Department of Ichthyology, American Museum of Natural History,
8 New York, New York, USA

9 ³ Flora Fauna & Man Ecological Services Ltd., Road Town, British Virgin Islands

10 ⁴ South African Institute for Aquatic Biodiversity, Makhanda, South Africa

11 ⁵ School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK

12 ⁶ Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the
13 Witwatersrand, Johannesburg, South Africa

14 ⁷ Institut National de Recherche en Sciences Exactes et Naturelles, Brazzaville, Republic of the
15 Congo

16 ⁸ School of Natural Resources, University of Missouri, Columbia, Missouri, USA

17

18 ^{*}Correspondence: Josie South, j.south@leeds.ac.uk

19 **Keywords:** Stable isotopes, fish assemblages, river continuum, Congo Brazzaville, food webs

20

21

22 **Abstract**

23 1. In the understudied wet Afrotropics, information on trophic diversity and resource use in
24 freshwaters is extremely limited.

25 2. Here we used stable isotope ratios ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$) from food webs along the continuum of a
26 coastal river in the Republic of the Congo to examine seasonal and spatial patterns of trophic
27 diversity. We estimated assemblage-wide isotopic metrics and compared relative proportions
28 of fish trophic positions along a fluvial gradient including a range of stream orders in the dry
29 and wet seasons.

30 3. Headwater fish assemblages exhibited relatively high trophic niche breadths comparable to
31 those in larger downstream sites, which deviates from the pattern expected based on widely
32 accepted lotic models. Benthic algae was not visibly available at study sites across seasons,
33 and fish, macroinvertebrate, and particulate organic matter $\delta^{13}\text{C}$ values were consistently
34 depleted (< 25‰), suggesting predominance of forest C3 plants as a basal resource. However,
35 we also observed $\delta^{13}\text{C}$ values in some fish and macroinvertebrate consumers which were well
36 below riparian or particulate organic matter values, perhaps reflecting methane-derived
37 sources from anoxic detritus.

38 4. Knowledge of trophic diversity and forest connections supporting stream food webs in this
39 region is critical for conservation and maintenance of freshwater biodiversity and ecosystem
40 services.

41 **Introduction**

42 Tropical stream ecosystems support highly diverse fish and macroinvertebrate assemblages with
43 complex, seasonally shifting resources (Pease et al. 2020; Soto et al. 2019; Winemiller 1990).
44 Understanding of the trophic diversity and resources fuelling these complex food webs is crucial for
45 their long-term conservation, as alterations to food web resources can compromise healthy ecosystem

46 functioning and provisioning of services (Cadotte et al. 2011; Wilkinson et al. 2021). Existing
47 knowledge of trophic diversity and seasonal resource use in consumer communities of Afrotropical
48 freshwaters is scarce (Sponseller et al. 2013; Thompson et al. 2012; Venarsky et al. 2020; Winemiller
49 et al. 2011), and despite increasing knowledge of the diversity and functional ecology of fishes in the
50 region (Cutler et al. 2019; Mamonekene and Stiassny 2012; Munene and Stiassny 2011; Stiassny et
51 al. 2021; Walsh et al. 2014, 2022), literature on food web dynamics in freshwater ecosystems in the
52 central African tropics is almost entirely absent, with just a single study of the Congo River
53 published to date (Soto et al. 2019).

54 Established river ecosystem models such as the River Continuum Concept (Vannote et al.
55 1980), the Riverine Productivity Model (Thorp and DeLong, 1994), and the Flood Pulse Concept
56 (Junk et al. 1989) guide expectations of how longitudinal gradients and seasonality affect aquatic
57 food webs through changes in availability of basal resources which subsequently shape consumer
58 assemblages. Based on these concepts, it is possible to speculate on changes to trophic diversity
59 along river networks (e.g., Power and Dietrich 2002, Hoeinghaus et al. 2007; Pease et al. 2019). In
60 small headwater streams, less light penetrates the canopy of the riparian forest which results in
61 relatively low in-stream productivity and large inputs of leaf litter and detritus. These low-order
62 systems are also temporally variable (Coyle et al. 2014) with smaller habitat volumes and thus are
63 expected to harbor more generalist consumers (lower trophic diversity) with shorter food chain
64 lengths (Horwitz, 1978; Vannote et al. 1980; Woodward and Hildrew, 2002). Longitudinal studies in
65 temperate streams have shown that headwaters have relatively low trophic diversity and higher
66 trophic redundancy (Hette-Tronquart et al. 2016; Maitland and Rahel, 2023). Larger river systems
67 have greater habitat volumes, higher productivity, and higher resource diversity, which is expected to

68 result in higher trophic diversity, more trophic specialists (Thorp et al. 2008), and longer food chains
69 (Power and Dietrich 2002; Thorp et al. 2006; Hette-Tronquart et al. 2016;).

70 In the tropics, distinct shifts in trophic habits of consumers can occur due to significant,
71 predictable hydrological seasonality affecting fish assemblages through fluctuations in habitat and
72 resource availability (Wantzen et al. 2002; Correa and Winemiller, 2014; Pease et al. 2020).
73 Increased habitat volume in the wet season delivers subsidies of allochthonous detritus,
74 macroinvertebrates, and nutrients to rivers, thus increasing primary production (Winemiller et al.
75 2004). As waters recede, predator-prey interactions are expected to intensify as fishes become
76 increasingly concentrated in reduced habitat volumes (Jepsen et al. 1999). Eventually, piscivores may
77 deplete prey during the dry season and systems may become resource limited during lowest water
78 levels. Trophic positions of fishes in tropical food webs vary widely, with some instream consumer
79 communities of large tropical systems functioning at lower trophic levels during the wet season due
80 to increased availability of invertebrates causing a subsequent decrease in piscivory (Wantzen et al.
81 2002; McMeans et al. 2019). Other communities have a broader isotopic niche during the wet season,
82 possibly due to a wider range of prey and increased access to inundated habitats (Pool et al. 2017).

83 Here we use carbon ($\delta^{13}\text{C}$) and nitrogen ($\delta^{15}\text{N}$) stable isotope ratios to provide insights into the
84 trophic diversity patterns of freshwater fish and macroinvertebrate communities along a longitudinal
85 and seasonal gradient of a coastal basin in the Republic of the Congo. We expected to see **(1)** lower
86 isotopic niche diversity in lower-order streams with an increase in higher-order rivers as diversity of
87 food resources increases along the continuum (Vannote et al., 1980; Thorp et al. 2008), **(2)** a shift in
88 $\delta^{13}\text{C}$ values of consumers driven by use of more algae in the dry season and more terrestrial organic
89 material in the wet season (Junk et al., 1989), and **(3)** a shift from higher trophic positions in fish
90 communities during the dry season (due to higher piscivory) to lower trophic positions in the wet

91 season (due to increased invertebrate resources and less constrained habitat). To address these
92 expectations, we used an array of assemblage-wide isotopic metrics on data collected along a river
93 continuum in the dry season and immediately following the wet season.

94 **Methods**

95 *Study region and site selection*

96 We sampled fishes, aquatic macroinvertebrates, and conspicuous basal resources in the Tintinda
97 River, located in a small sub-basin of the Noumbi River near Conkouati-Douli National Park in the
98 Republic of Congo. The Tintinda River, a tributary of the Noumbi, is an oligotrophic stream situated
99 in the coastal plains of the Kouilou Department in the Lower Guinea forest (Error! Reference source
100 not found.). The basin land use consists of moderate logging around forested areas, harvesting of fruit
101 and forbe species, with fishing a common practice in a sparsely populated landscape. The stream
102 continuum transitions from *Annona senegalensis* - *Hyparrhenia diplandra* grassland-savannah in the
103 first and second order headwaters, into *Manotes expansa* - *Millettia comosa* forest from the second
104 order to fifth order, widening into *Elaeis guineensis* - *Hallea stipulosa* lowland swamp forest with a
105 substantial lateral wetted area at the confluence of the Noumbi River (**Fig. 1**) (van Rooyen et al.
106 2016).

107 Sampling was carried out during two field surveys to account for seasonality in August 2016
108 (the end of the approximately 3-month dry season) and May–June 2017 (the end of the wet season
109 where the stream systems had been inundated by high water levels for several months and were
110 receding). The Spatial Analyst Hydrology package for ArcGIS 10.5 was used to generate river
111 networks and Strahler orders for site selection. We sampled aquatic food webs at five study sites
112 along the continuum of the Tintinda River ranging from 2nd to 6th Strahler order in each season
113 (Error! Reference source not found. **and 2**). Including consecutive stream orders allowed us to

114 capture changes in trophic diversity along the longitudinal course of the river seasonally. First-order
115 grassland-savannah headwaters of the stream network were dry and were therefore not included in
116 the study. At an elevation of between 7 and 31 m.a.s.l, the study area drains Tertiary and Quaternary
117 coastal sediments in a basin consisting of leached sandy soils, with Pliocene Cirque sand sheets
118 occurring along the coastline (van de Weghe, 2004)

119 *Field data collection*

120 Environmental data collected at each site included landscape and local measures (**Table 1**).
121 Catchment area (km²) and distance (km) from source were calculated using the watershed module of
122 the Spatial Analyst extension of the Hydrology package for ArcGIS 10.5 to generate catchments
123 from digital elevation models. Channel width (m), depth (m), and flow velocity (m/s) profiles were
124 measured for each site across a transect to calculate water discharge (m³/s). Light (lux) was measured
125 with a digital lux meter, and temperature (°C), pH, dissolved oxygen (mg/l) and conductivity (µs/cm)
126 were measured using a YSI Professional Plus multiparameter water quality meter. Turbidity (NTU)
127 was measured with a Hach 2100Q portable turbidimeter. Triplicate water samples were filtered
128 through 0.45 µm glass-fibre filters (Whatman) and analysed for phosphorus (P), nitrate-N, ammonia
129 (NH³) and silica (S) concentrations using a Hach DR900 multiparameter portable colorimeter.

130 Fishes were collected at each site using seine nets, cast nets, dip-nets, experimental gill nets,
131 fyke nets, and backpack electrofisher. Sampling was carried out until all common species were
132 collected in sufficient quantities for tissue sampling, consulting Walsh et al. (2014, 2022) to confirm
133 that expected species representing all families and all trophic levels captured in previous surveys in
134 the region. Fishes were identified to species level, with taxonomic nomenclature following van der
135 Laan et al. (2014). Specimens were collected according to the guidelines for the use of fishes in

136 research (AFS/AIFRB/ASIH, 2004) with individuals euthanized with a lethal dose of isoeugenol
137 anaesthetic before further processing.

138 Fish muscle tissue samples were taken from three to ten specimens of all common fish
139 species at each site for each season by removing the skin and harvesting a muscle plug from the
140 flanks (fish samples for dry season $n = 366$, wet season $n = 348$). For small-bodied fish species (e.g.,
141 *Aphyosemion* spp., *Epiplatys* spp., and *Neolebias ansorgii*), we removed heads and internal organs,
142 fins, scales, and skin, and collected whole bodies.

143 Aquatic macroinvertebrates were sampled by kick sampling with a dipnet and hand collection
144 from benthos at each site (dry season $n = 105$; wet season $n = 104$). Samples were collected from two
145 consistently available basal resource categories for stable isotope analysis. Riparian and aquatic
146 plants were sampled from the most abundant plant species including samples of riparian tree leaves
147 and instream and emergent aquatic plants (dry season $n = 102$; wet season $n = 167$). Particulate
148 organic matter (POM) samples included fine POM (FPOM) and coarse POM (CPOM) at each site
149 (dry season $n = 44$; wet season $n = 52$). Triplicate CPOM was collected from detritus components,
150 and FPOM was sampled in a plankton net with a 70 μm filter. Despite active searching, periphyton
151 and algae resources were highly limited and thus could not be included in analyses. Three replicate
152 samples were collected from all potential food sources. All samples of consumer and basal sources
153 were preserved in the field using NaCl following Arrington and Winemiller (2002) .

154 *Laboratory analysis of stable isotopes*

155 We rinsed and soaked all samples with deionized water for 48 h, after which they were rinsed again.
156 All tissues were dried in an oven at 60 °C for 48 hours to achieve a constant weight (O'Neill &
157 Thorp, 2014). Dry samples were ground into a powder, placed into tin capsules and weighed on a
158 five-place decimal Mettler Toledo XP6 balance. Animal material (composite aquatic

159 macroinvertebrate samples and fish tissue) was weighed between 0.4 and 0.5 mg, while plant
160 material (FPOM, CPOM and riparian and aquatic plants) was weighed between 0.8 and 1.0 mg
161 (Symes et al. 2017). If adequate sample mass was not achievable with small fish species and
162 macroinvertebrates, composite samples consisting of several individuals were used.

163 Samples were analysed for $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ stable isotopes at the DSI-NRF iThemba Laboratory
164 for Accelerator-Based Sciences isotopic laboratory at University of the Witwatersrand
165 (Johannesburg, South Africa) using a Flash HT Plus elemental analyser coupled to a Delta V
166 Advantage isotope ratio mass spectrometer by a ConFloIV interface. The $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values for
167 each sample were run in triplicates and corrected using laboratory standards Merck Gel and the Urea
168 Working Standard (IVA Analysentechnik e.K., Meerbusch, Germany). The results were referenced to
169 atmospheric N_2 (Air) and Vienna PeeDee belemnite for the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$, respectively (Woodborne
170 et al. 2012). The final isotope ratios were expressed in parts per thousand (‰) in standard delta
171 notation (δ). The $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values were calculated as $\delta^{13}\text{C}$ or $\delta^{15}\text{N} = [(\text{R}_{\text{sample}}/\text{R}_{\text{reference}}) - 1] \times 10^3$,
172 with $\text{R} = ^{13}\text{C}/^{12}\text{C}$ for carbon and $^{15}\text{N}/^{14}\text{N}$ for nitrogen.

173 *Statistical methods*

174 To visualize the range of isotopic values for local food webs in this system, we created biplots of
175 $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values for basal production sources (CPOM and C3 plants), aquatic
176 macroinvertebrates, and fishes across sites (each site representing a unique stream order) and seasons
177 (wet and dry). We focused on fishes only for assemblage-wide isotopic metrics because they were
178 sampled more exhaustively. We also used $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ for fish species to assess shifts in trophic
179 positions in assemblages along the river continuum and between seasons. Preceding all isotopic
180 analyses, arithmetic corrections were applied to adjust $\delta^{13}\text{C}$ values to account for $\delta^{13}\text{C}$ -depleted
181 signatures from lipids as per Post et al. (2007). Consumers with a C:N ratio of >3.5 were adjusted

182 using the equation $\delta^{13}\text{C} = -3.32 + 0.99 \text{ (C:N)}$. Plants with C > 40% were adjusted using $\delta^{13}\text{C} = -5.83$
183 + 0.14 (%C).

184 We used the SIBER package (Jackson et al. 2011) in R version 4.1.3 (R Core Team, 2021) to
185 calculate trophic structure of fish assemblages using assemblage-wide metrics (Jackson et al. 2011;
186 Layman et al. 2007). The $\delta^{13}\text{C}$ range shows the extent of producer resources in the food web that
187 support consumers. The $\delta^{15}\text{N}$ range expresses the vertical length of isotopic niche space, with higher
188 values indicating a greater number of trophic positions. Total Area (TA) is the convex hull of
189 consumers in the fish assemblage and represents the total amount of trophic niche space occupied.
190 The mean distance to centroid is the average Euclidian distance of each consumer to the centroid in
191 $\delta^{13}\text{C}$ – $\delta^{15}\text{N}$ isotopic niche space (Layman et al. 2007). Mean nearest-neighbour distance (MNND) and
192 standard deviation of nearest-neighbour distance (SDNND) are measures of density and clustering of
193 species within a community and are indicative of trophic redundancy, where lower MNND values
194 signify higher trophic redundancy, and low SDNND more evenly distributed trophic niches (Layman
195 et al. 2007). Bayesian standard ellipse areas (SEA_C , corrected for small sample sizes) were also
196 calculated to give an estimate of the total trophic niche space occupied (Jackson et al. 2011). We
197 performed linear regressions to understand the relationship between isotopic metrics and
198 environmental variables along the river continuum (**Table 1**) using the car package (Fox and
199 Weisberg, 2019) in the R version 4.1.3 (R Core Team 2021).

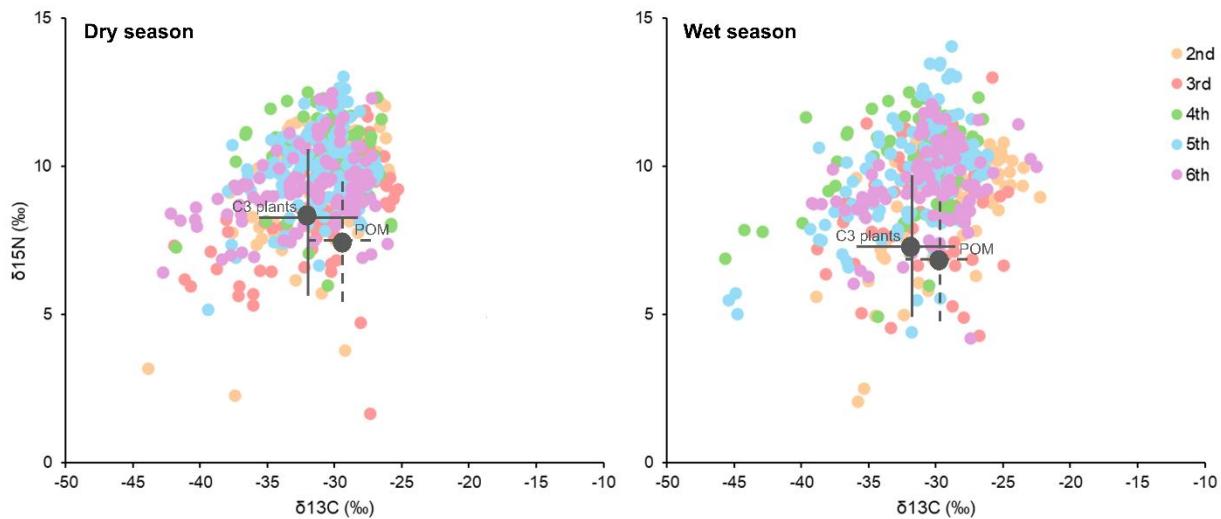
200 Trophic positions (TP) of all fish species were estimated using the baseline $\delta^{15}\text{N}$ for each site
201 per season by calculating the mean $\delta^{15}\text{N}$ of all basal production sources collected (TP = 1.0)
202 following Zeug and Winemiller (2008). We used 2.54 as the estimated fractionation rate of $\delta^{15}\text{N}$ for
203 each trophic level (Vanderklift and Ponsard, 2003) with the following calculation for each fish
204 assemblage:

205

$$\text{Trophic Position}_{\text{fish consumer}} = [(\delta^{15}\text{N}_{\text{consumer}} - \delta^{15}\text{N}_{\text{baseline}}) / 2.54] + 1$$

206

207 **Results**


208 *Environmental description of the continuum*

209 The Tintinda River has a gentle gradient changing in elevation from 31 m.a.s.l at the smallest 2nd
210 order site, to 7 m.a.s.l at the 6th order. River discharge did not show a substantial overall increase
211 between dry and wet seasons due to sampling taking place in a receding river trough of the wet
212 season (declining flows from a long wet season) with the maximum discharge ranging between 2.1
213 and 2.5 m³/s between the dry and wet seasons, respectively (**Table 1**). Although measured discharge
214 was comparable between sampling seasons, stable isotopes represent a measure of food consumption
215 over a period of weeks (vander Zanden et al. 2015). During the wet season survey, river discharge
216 had very recently declined following ~6 months of seasonal rains, and thus we consider the isotopic
217 results of this study to represent two distinct seasons.

218 Sites from 2nd to 5th order had varying degrees of shade in both seasons with lux levels
219 ranging from 77 to 490 lux, while the 6th order site received full sun (16,2100–18,890 lux). The river
220 was acidic with decreasing pH in the wet season (dry season pH range: 5.2–5.9; wet season pH
221 range: 4.2–4.8) and was nutrient and salt poor as indicated by the low values for conductivity,
222 phosphate and nitrate which were consistent between seasons (**Table 1**). The water was clear in both
223 seasons but showed a decrease in dissolved oxygen concentration in the wet season.

224 *Trophic structure and assemblage-wide metrics*

225 Biplots of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values of basal resources show an overlap between the standard deviations
226 of the riparian and aquatic vegetation resource and the POM resource, indicating that POM was
227 likely derived largely from broken down riparian and aquatic plant material (

228

229). Some fish and macroinvertebrate consumers also had very depleted carbon values ($\delta^{13}\text{C}$ range
 230 between $-45\text{\textperthousand}$ and $-38\text{\textperthousand}$) that were not accounted for in our basal resource samples.

231 No significant linear relationships between assemblage-wide isotopic metrics and stream
 232 order, distance from source, or upstream catchment area were found. The $\delta^{13}\text{C}$ ranges for fish
 233 communities (reflecting the breadth of basal resources) were low (< 5.0) across all sites in both
 234 seasons (**Table 2**). However, we did observe some general patterns in relation to gradient and trophic
 235 structure. Ranges for $\delta^{15}\text{N}$ were highest in the 3rd order and 6th order sites, which both had higher
 236 $\delta^{15}\text{N}$ ranges in the dry season. In the dry season, sites showed a pattern of higher trophic diversity in
 237 $\delta^{13}\text{C}$ – $\delta^{15}\text{N}$ space in larger habitats, with an overall increase in TA, SEAc, and CD from 2nd to 6th
 238 order sites (**Table**). However, this pattern was largely driven by relatively low values for the 2nd
 239 order site, as 3rd and 4th order site values were comparable to the 6th order site (**Table**). In the wet
 240 season, TA and SEAc for small headwaters (2nd and 3rd order) were similar to those for 4th–6th order
 241 sites, indicating resource use breadth comparable to larger sites. Trophic redundancy generally
 242 decreased along the continuum in the dry season (i.e. lower MNND scores in 2nd and 3rd order sites
 243 compared to 6th order), whereas trophic redundancy remained relatively consistent along the

244 continuum in the wet season survey. Trophic niche distribution was relatively even across sites and
245 seasons, with low values for SDNND, except for the 6th order site in the dry season, which had a high
246 value for SDNND. Overall ranges of assemblage-wide metrics across sites were similar between
247 seasons, except for $\delta^{15}\text{N}$ range and SDNND, which had higher maximum values in the dry season
248 (**Table 2**).

249 In general, fish assemblages had a larger proportion of individuals feeding at higher trophic
250 levels in the wet season in comparison to the dry season, suggesting an increase in the consumption
251 of predatory macroinvertebrates and fishes during the wet season (**Fig. 4**). We observed an increase
252 in proportions of higher trophic positions in fish assemblages along the continuum in the wet season,
253 with values generally indicating more carnivory in higher-order habitats. This was particularly
254 pronounced in the 4th order stream, where several species typically expected to feed at intermediate
255 levels, including some cichlids (*Chromidotilapia mamonekenei*, *Hemichromis elongatus*,
256 *Pelvicachromis subocellatus*) and cyprinodontiforms (*Epiplatys ansorgii*, *Plataplochilus cabindae*),
257 had higher trophic positions in the wet season (>4.5) compared to the dry season (2.9–4.3). The
258 inverse trophic trend was seen at the small 2nd order headwater site, where the fish assemblages fed at
259 higher trophic levels in the dry season. The small 2nd-order stream had a distribution of trophic
260 positions comparable to larger 4th–6th order systems in the dry season.

261 **Discussion**

262 This study provides insights into food web ecology of an understudied Afrotropical freshwater
263 region. Our findings support the importance of stream network position and season in consumer
264 trophic strategies along a river continuum, where seasonal variation in flow influences the
265 diversification of resources (Humphries et al. 2014; Pool et al. 2017; Cazzanelli et al. 2021). We
266 found some unexpected patterns, however, with relatively high trophic diversity in small, forested

267 headwaters. The consistently narrow ranges of very low $\delta^{13}\text{C}$ values in fish and macroinvertebrate
268 consumers also contrasts with expectations for shifting basal resource contributions across seasons
269 and along the river continuum. Our findings corroborate studies in other tropical freshwaters which
270 have elucidated the significance of riparian forest resources in directly supporting consumer
271 assemblages (Wootton and Oemke 1992; Pease et al. 2019) or through imported organic matter
272 (Hoeinghaus et al. 2007).

273 *Consumer $\delta^{13}\text{C}$ values aligned with forest resources*

274 This study contributes to a growing body of work highlighting the variability in the role of terrestrial
275 carbon in supporting tropical stream food webs (e.g. March and Pringle 2003; Hoeinghaus et al.
276 2007; Dudgeon et al. 2010; Correa and Winemiller, 2018), emphasizing that reliance on terrestrial
277 resources may be more context-dependent than previously assumed. Across sites in both seasons, fish
278 assemblages had low $\delta^{13}\text{C}$ values and very narrow $\delta^{13}\text{C}$ ranges, suggesting consistent predominance
279 of C3 plants as a basal resource (Finlay, 2001). There was a large overlap of $\delta^{13}\text{C}$ signatures between
280 C3 plants and POM resources (Fig. 3), which suggests that POM was derived from riparian sources,
281 and was likely imported from upstream processed riparian material originating in the headwaters of
282 the river (2nd and 3rd order systems in this study). Terrestrial riparian sources are typically ingested by
283 consumers either indirectly in the process of feeding on aquatic macroinvertebrates in the benthos, or
284 directly through consumption of riparian and POM material, although we did not examine gut data in
285 this study to confirm this. The other known study of stream food webs in the central African tropics
286 (Soto et al. 2019) found that riparian C3 plants were the predominant energy source for fish in the
287 Congo River and tributaries. We did not collect sufficient samples of biofilm or algae to estimate
288 their $\delta^{13}\text{C}$ values and contributions to local food webs because this resource was not visibly available
289 even in the 6th order site of the Tintinda River where more sunlight reached the water. Correa and

290 Winemiller (2018) also documented this phenomenon, where blackwaters of a Neotropical river had
291 limited production and growth of biofilm.

292 Notably, many fish and invertebrate consumers had $\delta^{13}\text{C}$ values ranging between $-45\text{\textperthousand}$ and $-38\text{\textperthousand}$, well below the $\delta^{13}\text{C}$ of our measured basal resources (riparian plants and POM) in both
293 seasons. Among fishes, we recorded $\delta^{13}\text{C}$ values $< 38\text{\textperthousand}$ for *Microctenopoma nanum* (Anabantidae),
294 *Pelvicachromis subocellatus* (Cichlidae), *Petrocephalus microphthalmus* (Mormyridae),
295 *Aphyosemion australe* (Nothobranchiidae) and *Channallabes apus* (Clariidae) from the 6th-order site
296 in the dry season. These species were generally captured in remaining wetted off-channel habitats. In
297 the wet season, when more of the adjacent riparian swamp forest was inundated across the lower
298 continuum from 4th–6th order sites, fish species including *M. nanum* (Anabantidae), *Neolebias*
299 *ansorgii* (Distichodontidae), *Paramormyrops kingsleyae* (Mormyridae), *Marcusenius moori*
300 (Mormyridae) and *Epiplatys ansorgii* (Nothobranchiidae) showed similarly depleted $\delta^{13}\text{C}$ values
301 across those sites. This suggests that the inundated swamp forest may be providing an additional
302 basal resource, perhaps from methane-derived C in decomposing detritus. Whiticar (1999) reported
303 $\delta^{13}\text{C}$ of $-47.5\text{\textperthousand} \pm 2\text{\textperthousand}$ for methane oxidizing bacteria, and biogenic methane produced in anoxic
304 detritus entering the food web and supporting benthic and pelagic consumers (Deines et al. 2007;
305 Sanseverino et al. 2012). Soto et al. (2019) speculated that this could be the mechanism behind
306 highly depleted $\delta^{13}\text{C}$ values (well below values for riparian and aquatic plants) for some consumers
307 in Congo River tributaries. Similarly, some food web studies in the Neotropical Usumacinta River
308 have suggested that methane oxidizers could be a seasonally important source that is mobilised from
309 anoxic detritus in inundated habitats in the wet season to augment basal carbon resources (Sepúlveda-
310 Lozada et al. 2015; Cazzanelli et al. 2021).

312 *Trophic diversity along the longitudinal fluvial gradient and across seasons*

313 Our expectation for increasing trophic diversity (higher TA and SEAc) in higher-order habitats was
314 somewhat supported, and isotopic niche diversity was driven by vertical expansion along the $\delta^{15}\text{N}$
315 axis since $\delta^{13}\text{C}$ ranges were consistently low across sites. Trophic diversity in freshwater consumers
316 is expected to increase along a fluvial gradient due to increased resource diversity associated with
317 larger and more heterogeneous habitats (Vannote et al. 1980; Power and Dietrich, 2002; Thompson
318 and Townsend, 2005; Thorp et al. 2006;) and in environments which receive resource subsidies from
319 adjacent habitats (Polis et al. 1997). Consumers in small, low-order streams are often generalist
320 feeders (Woodward and Hildrew, 2002; Pease et al. 2019). In the present study, the headwaters had
321 tighter assemblage breadths and higher trophic redundancy in fishes in some cases. For example, in
322 the dry season, the MNND was much lower for the 2nd order stream compared to the 6th order site
323 where more specialized feeders, such as herbivorous *Distichodus notospilus* and piscivorous
324 *Hepsetus lineatus* were present. This agrees with studies of trophic ecology in other tropical regions
325 where fish trophic diversity increased with habitat size and associated resource expansion (Ibanez et
326 al. 2007; Pease et al. 2019). Based on the concept of the flood pulse (Junk et al. 1989; Thompson and
327 Townsend 2005; Humphries et al. 2014), we would expect to see this pattern more pronounced in the
328 wet season.

329 Unexpectedly, in the wet season, assemblage-wide niche breadths of fish communities in small
330 headwater systems (2nd and 3rd order) were comparable to the larger, downstream reaches suggesting
331 that they support disproportionate trophic diversity given their size when forest connections are
332 strengthened by flow connections. Because forest inputs were readily available in downstream
333 reaches and $\delta^{13}\text{C}$ ranges were consistent across sites, this pattern was probably not driven by a
334 decline in basal resource diversity in downstream reaches as observed in some large temperate
335 streams (Thorp and Bowes, 2016; Maitland and Rahel, 2023). Instead, our results agree with findings

336 from Walsh et al. (2022b) which reported uniquely high functional richness for fish assemblages in
337 lotic sites with small upstream catchments in comparison to higher-order sites along river gradients in
338 Congo coastal basins. That study suggested that paleo-biogeographic factors may drive the high
339 functional richness of the region, preserving ancient trophic niche differentiation due to historic
340 stability at longer geological timescales compared to other regions (Tedesco et al. 2005). Walsh et al.
341 (2022b) also showed that relatively high trophic trait diversity in Congo coastal basins was associated
342 with higher habitat heterogeneity and that ecomorphological diversity was strongly driven by trophic
343 traits. Building on that work, the results of the current study underscore the importance of season and
344 hydrology in supporting a broad array of trophic strategies, with seasonality potentially playing an
345 important role in driving diversification of resources for freshwater consumer assemblages (Pool et
346 al. 2017; Cazzanelli et al. 2021).

347 We also observed shifts in seasonal distribution of fish trophic positions in local food webs
348 between small headwaters (2nd order) and other sites (3rd–6th order) along the continuum. Contrary to
349 our expectations, we found a larger proportion of fishes feeding at higher trophic positions in the wet
350 season compared to the dry season for the 3rd–6th order sites. Increased trophic position in the wet
351 season could be due to mobilisation of resources through the system and increased habitat availability
352 following flow pulses and forest inundation (Junk and Wantzen, 2004; Abrantes et al. 2014;
353 Humphries et al. 2014). Some sites (3rd and 6th order) had relatively high values for $\delta^{15}\text{N}$ range in the
354 dry season, but this appeared to be driven by fishes feeding at lower trophic levels (with lower $\delta^{15}\text{N}$
355 values) than observed in the wet season. The lower trophic positions of local fish assemblages in the
356 dry season suggest more frequent consumption of plant and detrital material, perhaps because animal
357 prey is less available with reduced habitat volume. Peterson and Winemiller (1997) found that a
358 Neotropical stream fish species, *Roebooides dayi*, showed a dietary preference for aquatic

359 invertebrates from drift in the wet season when that resource was abundant, moving their intake to
360 less energy-rich items during the dry season when there was more competition for invertebrate prey
361 due to habitat contraction.

362 We observed the opposite pattern (greater proportion of higher trophic positions in the dry
363 season) for the 2nd order headwater site. Abundance and diversity of invertebrate prey resources
364 typically decrease in the dry season, with increasing piscivory as fish density increases in shrinking
365 habitats (Lowe-McConnell, 1987; Winemiller, 1989; Wantzen et al. 2002), and this could increase
366 the overall trophic position of fish assemblages. Food resource constraints in the dry season may be
367 more intense in hydrologically variable low-order streams compared to larger, more stable higher-
368 order streams (Poff and Allan, 1995; Thorp et al. 2006; Pease et al. 2020).

369 *Conservation implications*

370 Our current and previous work (Walsh et al. 2022), has shown that Afrotropical headwaters in our
371 study region are distinctive in terms of trophic and functional diversity, but are also constrained by
372 habitat size which makes them particularly vulnerable to anthropogenic impact. Strong aquatic-
373 terrestrial connectivity in low-order streams promotes diversity for many aquatic taxa (Besemer et al.
374 2013; Ferreira et al. 2023) and appears to support relatively high trophic diversity for fish
375 assemblages in the Tintinda River headwaters, particularly in the wet season. Larger stream habitats
376 further down the river continuum are likely fed by processed carbon sources that originate from
377 riparian forests of these headwaters, and their disturbance would have knock on effects for large parts
378 of the fluvial network. Reduction in allochthonous inputs can cause resource homogenisation and
379 reduction in available niches, with severe effects for systems primarily fuelled by riparian forest
380 (Wilkinson et al. 2021). We also saw that unique basal resources, perhaps involving methanogenic
381 pathways in lateral swamp forests, contribute to aquatic food webs across the river network in this

382 region (see Cazzanelli et al. 2021; Soto et al. 2019), highlighting the importance of swamp forest-
383 river connectivity in subsidizing instream communities. Very little research on forest connections to
384 food webs has been conducted to date in the Afrotropics, making it an important topic for future
385 investigations (Lo et al. 2021). Deforestation is a primary threat to biodiversity in tropical streams,
386 and a better understanding of forest–stream relationships is needed to design effective conservation
387 policies (Ramírez et al. 2008).

388 **Acknowledgments**

389 This work was supported by the University of the Witwatersrand under the University of the
390 Witwatersrand, Johannesburg National Research Foundation Rated Researchers Incentive Grant
391 103581 and the Axelrod Curatorship of the American Museum of Natural History. JS acknowledges
392 funding from UKRI Future Leaders Fellowship [Grant/Award Number: MR/X035662/1]. We thank
393 Jean de Dieu Mountou, Frédéric Avoukou, Gislain Nakoundzi Taty and the local authorities of
394 Koutou Village for their support during our field collections. We thank Jonathan Levin, Vineet
395 Katariya and Nicole Burri for statistical and GIS support. We are grateful to Azraa Ebrahim, Dinah
396 Mukhari, Hima Rama and Michele Hall for their assistance in the preparation of the isotope samples.
397 Mike Butler, Osbourne Malinga, Stephan Woodborne (iThemba Laboratories for Accelerator Based
398 Sciences) and Grant Hall (University of Pretoria) kindly assisted with isotope analysis. All materials
399 were collected and exported with permission of the Congolese Direction Générale de l'Economie
400 Forestière, Direction de la Faune et des Aires Protégées (permits available on request from the
401 corresponding author).

402 **Data Availability Statement**

403 Data are available from the authors upon reasonable request and archived within The IsoFresh
404 database available at Zenodo (<https://doi.org/10.5281/zenodo.1498232>).

405 **Author contribution statement:** Conceptualisation: GW, JS, DJW, MLJS, JYG, AAP. Developing
406 methods: GW, JS, DJW, AAP, VNBM. Conducting the research: GW, VNBM, MLJS, JYG. Data
407 analysis: GW, AAP. Data interpretation: GW, JS, DJW, AAP, MLJS. Preparation of figures & tables:
408 GW, AAP. Writing: AAP, GW, JS, DJW, MLJS, JYG, VNBM.

409 **Competing Interests**

410 Authors Gina Walsh and Jérôme Gaugris are employed by Flora Fauna & Man Ecological Services
411 Ltd. The remaining authors declare that the research was conducted in the absence of any commercial
412 or financial relationships that could be construed as a potential conflict of interest.

413 **Ethics statement**

414 All research was undertaken according to the ethics protocol of the University of the Witwatersrand
415 (Wits - Johannesburg, South Africa). Research methods were approved by the Wits Animal Ethics
416 Screening Committee under the permit numbers 2015/03/08B, 2017/02/06/B. Fishes were collected
417 according to the guidelines for the use of fishes in research (AFS/AIFRB/ASIH 2003). All fishes
418 were collected and exported with permission of the Convention on International Trade in Endangered
419 Species of Wild Fauna and Flora (CITES permit numbers CG 1125774 and CG 1125818), and
420 Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN Permit numbers
421 205/MRSIT/IRSEN/DEO and 328/MRSIT/IRSEN/DO) on file at American Museum of Natural
422 History (AMNH). All collected vouchers were deposited at the Ichthyology Department of the
423 AMNH in New York, USA. Data are accessible online at the AMNH vertebrate zoology database
424 (<https://emu-prod.amnh.org/db/emuwebamnh/>).

References

Abrantes, K. G., A. Barnett, and S. Bouillon. 2014. "Stable Isotope-Based Community Metrics as a Tool to Identify Patterns in Food Web Structure in East African Estuaries." *Functional Ecology* 28: 270–282. <https://doi.org/10.1111/1365-2435.12155>.

AFS/AIFRB/ASIH. 2004. "Guidelines for the Use of Fishes in Research." <https://research.fiu.edu/documents/iacuc/documents/guidelines-fish-research.pdf>

Arrington, D. A., and K. O. Winemiller. 2002. "Preservation Effects on Stable Isotope Analysis of Fish Muscle." *Transactions of the American Fisheries Society* 131: 337–342. [https://doi.org/10.1577/1548-8659\(2002\)131<0337](https://doi.org/10.1577/1548-8659(2002)131<0337).

Cadotte, M. W., K. Carscadden, and N. Mirochnick. 2011. "Beyond Species: Functional Diversity and the Maintenance of Ecological Processes and Services." *Journal of Applied Ecology* 48: 1079–1087. <https://doi.org/10.1111/j.1365-2664.2011.02048.x>.

Cazzanelli, M., M. Soria-Barreto, M. M. Castillo, and R. Rodiles-Hernández. 2021. "Seasonal Variations in Food Web Dynamics of Floodplain Lakes with Contrasting Hydrological Connectivity in the Southern Gulf of Mexico." *Hydrobiologia* 848: 773–797. <https://doi.org/10.1007/s10750-020-04468-8>.

Correa, S. B., and K. O. Winemiller. 2018. "Terrestrial–Aquatic Trophic Linkages Support Fish Production in a Tropical Oligotrophic River." *Oecologia* 186: 1069–1078. <https://doi.org/10.1007/s00442-018-4093-7>

Correa, S. B., and K. O. Winemiller. 2014. "Niche Partitioning among Frugivorous Fishes in Response to Fluctuating Resources in the Amazonian Floodplain Forest." *Ecology* 95: 210–224. <https://doi.org/10.1890/13-0393.1>.

Coyle, J. R., F. W. Halliday, B. E. Lopez, K. A. Palmquist, P. A. Wilfahrt, and A. H. Hurlbert. 2014. "Using Trait and Phylogenetic Diversity to Evaluate the Generality of the Stress-Dominance Hypothesis in Eastern North America Tree Communities." *Ecography* 37: 814–826.

Fox, J., and S. Weisberg. 2019. An R Companion to Applied Regression, Third Edition. <https://socialsciences.mcmaster.ca/jfox/Books/Companion/>

Hette-Tronquart, N., J. Belliard, E. Tales, and T. Oberdorff. 2016. "Stable Isotopes Reveal Food Web Modifications along the Upstream–Downstream Gradient of a Temperate Stream." *Aquatic Sciences* 78: 255–265. <https://doi.org/10.1007/s00027-015-0421-8>.

Hoeinghaus, D. J., K. O. Winemiller, and A. A. Agostinho. 2007. "Landscape-Scale Hydrologic Characteristics Differentiate Patterns of Carbon Flow in Large-River Food Webs." *Ecosystems* 10: 1019–1033. <https://doi.org/10.1007/s10021-007-9075-2>.

Horwitz, R. J. 1978. "Temporal Variability Patterns and the Distributional Patterns of Stream Fishes." *Ecological Monographs* 48: 307–321. [https://doi.org/https://doi.org/10.2307/2937233](https://doi.org/10.2307/2937233).

Humphries, P., H. Keckeis, and B. Finlayson. 2014. "The River Wave Concept: Integrating River Ecosystem Models." *BioScience* 64: 870–882. <https://doi.org/10.1093/biosci/biu130>.

Ibanez, C., T. Oberdorff, G. Teugels, V. Mamononekene, S. Lavoué, Y. Fermon, D. Paugy, and A. K. Toham. 2007. "Fish Assemblages Structure and Function along Environmental Gradients in Rivers of Gabon (Africa)." *Ecology of Freshwater Fish* 16: 315–334. <https://doi.org/10.1111/j.1600-0633.2006.00222.x>

Jackson, A. L., R. Inger, A. C. Parnell, and S. Bearhop. 2011. "Comparing Isotopic Niche Widths among and within Communities: SIBER - Stable Isotope Bayesian Ellipses in R." *Journal of Animal Ecology* 80: 595–602. <https://doi.org/10.1111/j.1365-2656.2011.01806.x>.

Jepsen, D. B., K. O. Winemiller, D. C. Taphorn, and D. R. Olarte. 1999. "Age Structure and Growth of Peacock Cichlids from Rivers and Reservoirs of Venezuela." *Journal of Fish Biology* 55: 433–450. <https://doi.org/10.1006/jfb.1999.1009>.

Junk, W. J., P. B. Bayley, and R. E. Sparks. 1989. "The Flood Pulse Concept in River-Floodplain Systems." *Canadian Journal of Fisheries and Aquatic Sciences*, 106, 110–127. <https://doi.org/10.1371/journal.pone.0028909>

Junk, W. J., and K. M. Wantzen. (2004). "The Flood Pulse Concept: New Aspects, Approaches and Applications - An Update." In R. L. Welcomme and T. Petr (Eds.), *Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries*. Bangkok: Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific.

Layman, C. A., D. A. Arrington, C. G. Montaña, and D. M. Post. 2007. "Can Stable Isotope Ratios Provide for Community-Wide Measures of Trophic Structure?" *Ecology* 88: 42–48.

Maitland, B. M., and F. J. Rahel. 2023. "Aquatic Food Web Expansion and Trophic Redundancy along the Rocky Mountain – Great Plains Ecotone." *Ecology* 104: e4103. <https://doi.org/10.1002/ecy.4103>.

McMeans, B. C., T. Kadoya, T. K. Pool, G. W. Holtgrieve, S. Lek, H. Kong, K. O. Winemiller, V. Elliott, N. Rooney, P. Laffaille, and K. S. McCann. 2019. "Consumer Trophic Positions Respond Variably to Seasonally Fluctuating Environments." *Ecology* 100: e02570. <https://doi.org/10.1002/ecy.2570>.

O'Neill, B. J., and J. H. Thorp. 2014. Untangling Food-Web Structure in an Ephemeral Ecosystem." *Freshwater Biology* 59: 1462–1473.

Pease, A. A., K. A. Capps, R. Rodiles-Hernández, M. M. Castillo, M. Mendoza-Carranza, M. Soria-Barreto, and A. A. González-Díaz. 2019. "Trophic Structure of Fish Assemblages Varies across a Mesoamerican River Network with Contrasting Climate and Flow Conditions." *Food Webs* 18: e00113. <https://doi.org/10.1016/j.fooweb.2019.e00113>.

Pease, A. A., M. Soria-Barreto, A. A. González-Díaz, and R. Rodiles-Hernández. 2020. "Seasonal Variation in Trophic Diversity and Relative Importance of Basal Resources Supporting Tropical River Fish Assemblages in Chiapas, Mexico." *Transactions of the American Fisheries Society* 149: 753–769. <https://doi.org/10.1002/tafs.10269>.

Poff, N. L., and J. D. Allan. 1995. "Functional Organization of Stream Fish Assemblages in Relation to Hydrological Variability." 76: 606–627. <https://doi.org/10.2307/1941217>.

Polis, G. A., W. B. Anderson, and R. D. Holt. 1997. "Toward an Integration of Landscape and Food Web Ecology: The Dynamics of Spatially Subsidized Food Webs." *Annual Review of Ecology and Systematics* 28: 289–316. <https://doi.org/10.1146/annurev.ecolsys.28.1.289>.

Pool, T., G. Holtgrieve, V. Elliott, K. McCann, B. McMeans, N. Rooney, A. Smits, T. Phanara, M. Cooperman, S. Clark, C. Phen, and S. Chhuoy. 2017. "Seasonal Increases in Fish Trophic Niche Plasticity within a Flood-Pulse River Ecosystem (Tonle Sap Lake, Cambodia)." *Ecosphere* 8: e01881. <https://doi.org/10.1002/ecs2.1881>

Power, M. E., and W. E. Dietrich. 2002. "Food Webs in River Networks." *Ecological Research* 17: 451–471.

Ramírez, A., C. M. Pringle, and K. M. Wantzen. 2008. "Tropical Stream Conservation." In D. Dudgeon (Ed.), *Tropical Stream Ecology* (pp. 285–304). Elsevier Academic Press.

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Sepúlveda-Lozada, A., M. Mendoza-Carranza, M. Wolff, U. Saint-Paul, and A. Ponce-Mendoza. 2015. "Differences in Food Web Structure of Mangroves and Freshwater Marshes: Evidence from Stable Isotope Studies in the Southern Gulf of Mexico." *Wetlands Ecology and Management* 23: 293–314. <https://doi.org/10.1007/s11273-014-9382-2>.

Soto, D. X., E. Decru, J. Snoeks, E. Verheyen, L. van de Walle, J. Bamps, T. Mambo, and S. Bouillon. 2019. "Terrestrial Contributions to Afrotropical Aquatic Food Webs: The Congo River Case." *Ecology and Evolution* 9: 10746–10757. <https://doi.org/10.1002/ece3.5594>.

Sponseller, R. A., J. B. Heffernan, and S. G. Fisher. 2013. "On the Multiple Ecological Roles of Water in River Networks." *Ecosphere* 4: 1-14. <https://doi.org/10.1890/ES12-00225.1>

Symes, C., F. Skhosana, M. Butler, B. Gardner, and S. Woodborne. 2017. "Isotope (δ 13C, δ 15N, δ 2H) Diet–Tissue Discrimination in African Grey Parrot *Psittacus erithacus*: Implications for Forensic Studies." *Isotopes in Environmental and Health Studies* 53: 580–596.

Tedesco, P. A., T. Oberdorff, C. A. Lasso, M. Zapata, and B. Hugueny. 2005. "Evidence of History in Explaining Diversity Patterns in Tropical Riverine Fish." *Journal of Biogeography* 32: 1899–1907. <https://doi.org/10.1111/j.1365-2699.2005.01345.x>.

Thompson, R. M., J. A. Dunne, and G. Woodward. 2012. "Freshwater Food Webs: Towards a More Fundamental Understanding of Biodiversity and Community Dynamics." *Freshwater Biology* 57: 1329–1341. <https://doi.org/10.1111/j.1365-2427.2012.02808.x>.

Thompson, R. M., and C. R. Townsend. 2005. "Food-Web Topology Varies with Spatial Scale in a Patchy Environment." *Ecology* 86: 1916–1925. <https://doi.org/10.1890/04-1352>.

Thorp, J. H., & Bowes, R. E. (2016). Carbon sources in riverine food webs: New evidence from amino acid isotope techniques. *Ecosystems*, 20, 1–13.

Thorp, J. H., M. C. Thoms, and M. D. Delong. 2006. "The Riverine Ecosystem Synthesis: Biocomplexity in River Networks across Space and Time." *River Research and Applications* 22: 123–147. <https://doi.org/10.1002/rra.901>.

van der Laan, R., W. N. Eschmeyer, and R. Fricke. 2014. "Family-Group Names of Recent Fishes." *Zootaxa* 3882: 1–230. <http://biotaxa.org/Zootaxa/article/view/zootaxa.3882.1.1>

van Rooyen, M. W., N. van Rooyen, B. Orban, G. Nsongola, E. S. Miabangana, and J. Gaugris. 2016. "Floristic Composition, Diversity and Structure of the Forest Communities in the Kouilou Département, Republic of Congo." *Tropical Ecology* 57: 805–824.

Vande weghe, J. P. 2004. Forests of Central Africa: Nature and Man. Protea Book House.

Vander Zanden, M. J., M. Clayton, E. Moody, C. Solomon, and B. Weidel. 2015. "Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis." *PLoS ONE* 10: 1–16. <https://doi.org/10.1371/journal.pone.0116182>.

Vanderklift, M. A., and S. Ponsard. 2003. "Sources of Variation in Consumer-Diet d15N Enrichment: A Meta-Analysis." *Oecologia* 136: 169–182.

Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. "The River Continuum Concept." *Canadian Journal of Fisheries and Aquatic Sciences* 37: 130–137. <https://doi.org/10.1139/f80-017>.

Venarsky, M. P., B. Stewart-Koster, R. J. Hunt, T. D. Jardine, and S. E. Bunn. 2020. "Spatial and Temporal Variation of Fish Community Biomass and Energy Flow Throughout a Tropical River Network." *Freshwater Biology* 65: 1782–1792. <https://doi.org/10.1111/fwb.13581>.

Walsh, G., M. P. Alexandre, V. N. Boukaka Mikemb, M. N. Jonker, V. Mamonekene, A. J. Henri, and J. Y. Gaugris. 2022. "Fishes of the Loémé River System, Republic of the Congo, Lower Guinea, West-Central Africa." *African Journal of Ecology* 60: 848–856. <https://doi.org/10.1111/aje.13016>

Walsh, G., M. N. Jonker, and V. Mamonekene. 2014. "A Collection of Fishes from Tributaries of the Lower Kouilou, Noumbi and Smaller Coastal Basin Systems, Republic of the Congo, Lower Guinea, West-Central Africa." *Check List* 10: 900–912. <https://doi.org/10.15560/10.4.900>.

Walsh, G., A. A. Pease, D. J. Woodford, M. L. Stiassny, J. Y. Gaugris, and J. South. 2022. "Functional Diversity of Afrotropical Fish Communities across River Radients in the Republic of Congo, West Central Africa." *Frontier in Environmental Science* 10: 981960. <https://doi.org/10.3389/fenvs.2022.981960>.

Wantzen, K. M., F. de Arruda Machado, M. Voss, H. Boriss, and W. J. Junk. 2002. "Seasonal Isotopic Shifts in Fish of the Pantanal Wetland, Brazil." *Aquatic Sciences* 64: 239–251. <https://doi.org/10.1007/PL00013196>.

Wilkinson, C. L., K. W. J. Chua, R. Fiala, J. H. Liew, V. Kemp, A. Hadi Fikri, R. M. Ewers, P. Kratina, and D. C. J. Yeo. 2021. “Forest Conversion to Oil Palm Compresses Food Chain Length in Tropical Streams. *Ecology* 102: e03199. <https://doi.org/10.1002/ecy.3199>.

Winemiller, K. O., D. J. Hoeinghaus, A. A. Pease, P. C. Esselman, R. L. Honeycutt, D. Gbanaador, E. Carrera, and J. Payne. 2011. “Stable Isotope Analysis Reveals Food Web Structure and Watershed Impacts along the Fluvial Gradient of a Mesoamerican Coastal River.” *River Research and Applications* 27: 791–803. <https://doi.org/10.1002/rra.1396>.

Winemiller, K. O., R. L. Welcomme, and T. Petr. 2004. “Floodplain River Food Webs: Generalizations and Implications.” *2nd International Symposium on the Management of Large Rivers for Fisheries* 2: 285–309.

Woodborne, S., K. D. A. Huchzermeyer, D. Govender, D. J. Pienaar, G. Hall, J. G. Myburgh, A. R. Deacon, J. Venter, and N. Lübcker. 2012. “Ecosystem Change and the Olifants River Crocodile Mass Mortality Events.” *Ecosphere* 3(10): 1-17. <https://doi.org/10.1890/ES12-00170.1>.

Woodward, G., and A. G. Hildrew. 2002. “Food Web Structure in Riverine Landscapes.” *Freshwater Biology* 47: 777–798. <https://doi.org/10.1046/j.1365-2427.2002.00908.x>.

Wootton, J. T., and M. P. Oemke. 1992. Latitudinal Differences in Fish Community Trophic Structure and the Role of Fish Herbivory in a Costa Rican Stream.” *Environmental Biology of Fishes* 35: 311–319. <https://doi.org/10.1007/BF00001899>.

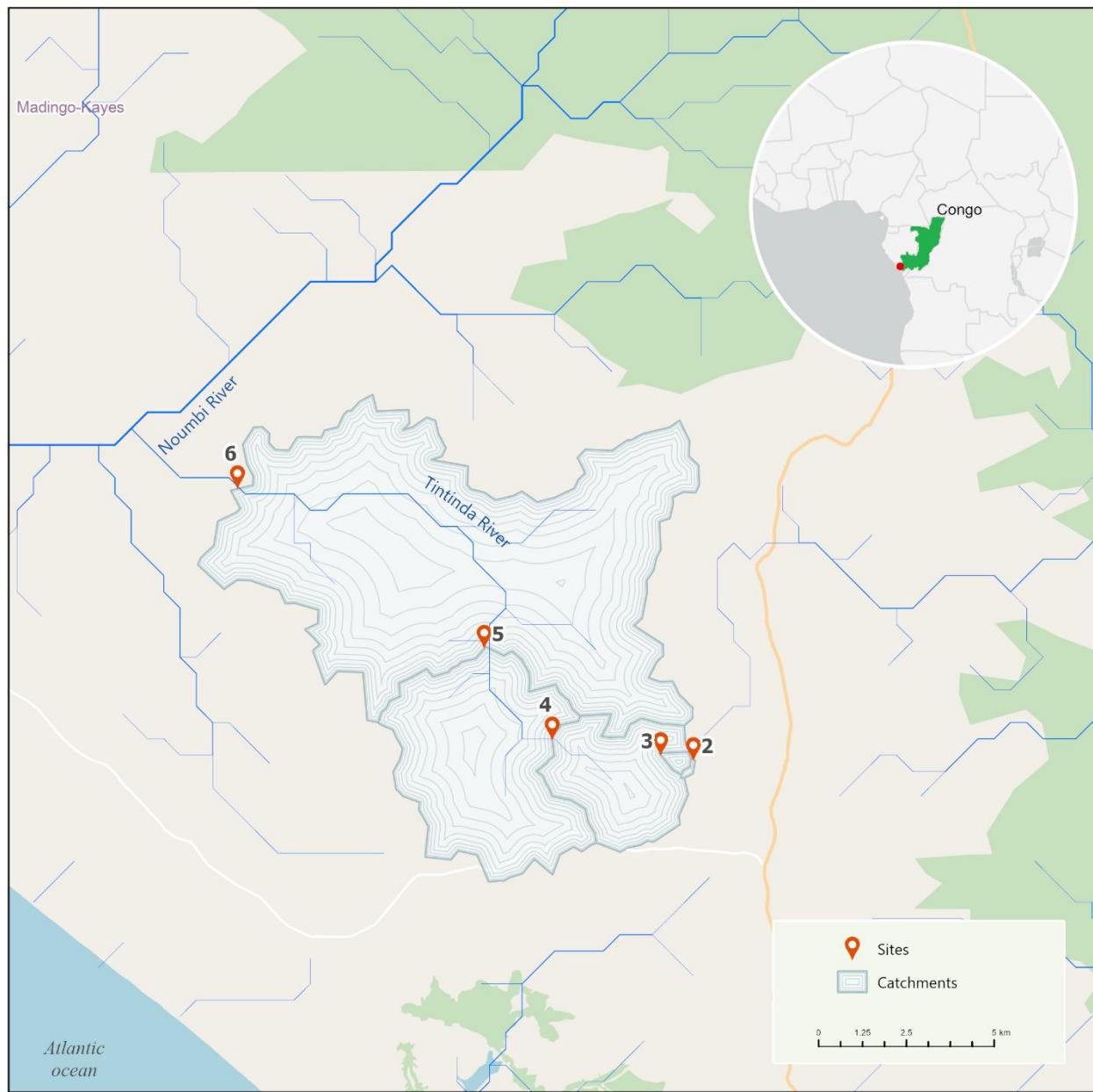
Zeug, S. C., and K. O. Winemiller. 2008. “Evidence Supporting the Importance of Terrestrial Carbon in a Large-River Food Web.” *Ecology* 89: 1733–1743.

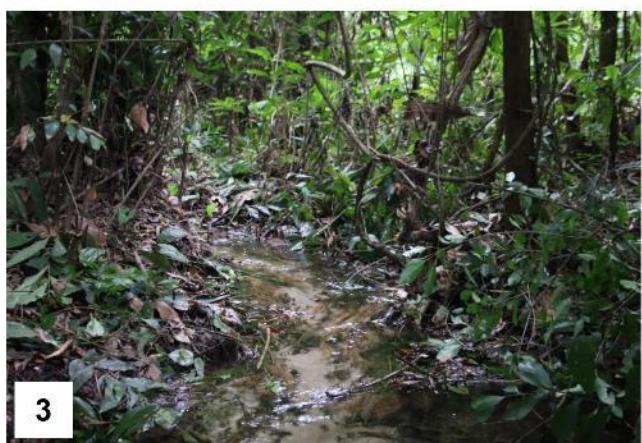
Table 1 Landscape and local environmental and physical variables measured at each site in the Tintinda Basin in the dry and wet seasons

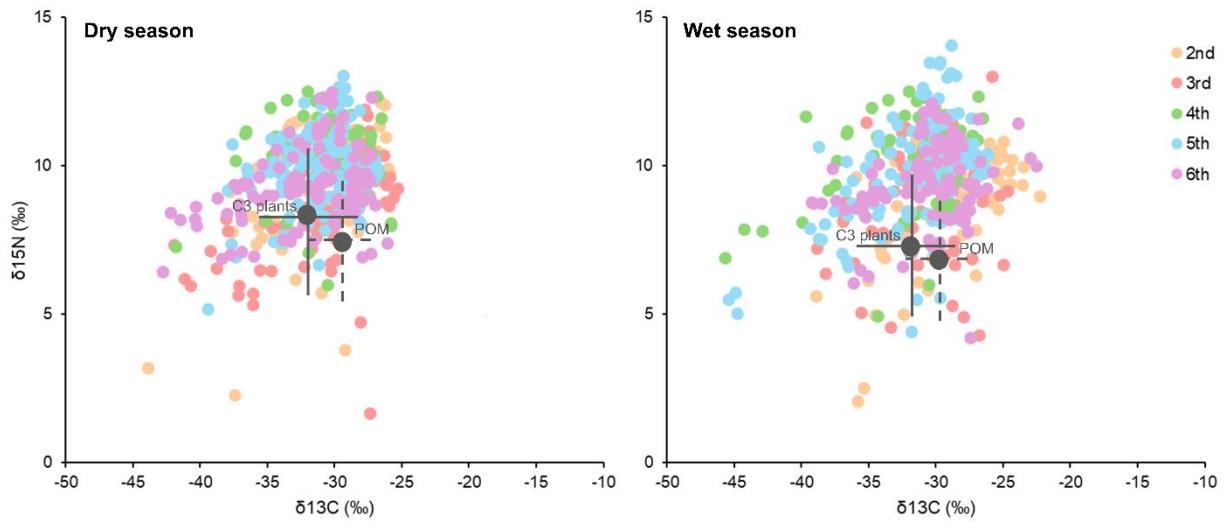
Site no. (Strahler Order)	2	3	4	5	6	2	3	4	5	6
Season	Dry					Wet				
Elevation (masl)	31	30	16	14	7	31	30	16	14	7
Catchment area (km ²)	3.2	3.5	14.7	40.1	119.4	3.2	3.5	14.7	40.1	119.4
Distance from source (km)	3.0	4.1	7.5	11.0	21.7	3.0	4.1	7.5	11.0	21.7
Discharge (m ³ /s)	0.01	0.26	0.31	0.9	2.1	0.03	0.31	0.44	1.1	2.5
Depth (m)	0.15	0.30	0.43	0.56	4.00	0.12	0.26	0.29	0.44	4.5
Channel Width (m)	1	3	3.8	5.5	8	1	2	3.5	4.5	9
Light (Lux)	347	420	117	77	16210	180	490	260	91	18890
pH	5.8	5.9	5.5	5.8	5.9	4.8	4.7	4.7	4.2	4.8
Conductivity (μs/cm)	12.4	16.8	20.2	22.5	39.7	11.7	16.8	19.3	21.0	43.3
Temperature (C)	24.1	24.0	23.9	23.9	23.0	24.8	24.2	24.7	24.2	24.6
Dissolved Oxygen (mg/l)	8.5	5.8	7.8	9.3	8.8	3.32	4.48	6.67	6.81	4.27
Turbidity (NTU)	7	4	5	8	11	0	4	5	8	11
Ammonia (mg/l)	0	0	0.04	0	0.02	0	0	0.03	0.01	0.01
Phosphate (mg/l)	0.08	0.05	0.2	0.15	0.25	0.09	0.06	0.25	0.08	0.31
Nitrate-N (mg/l)	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Silica (mg/l)	9	10	11	11	12	8	8	9	10	13

Table 2 Assemblage-wide metrics (for fish communities) calculated using isotope data at each study site along the river continuum for each season. TA = total area of convex hull, SEA_C = Bayesian standard ellipse area (corrected for small sample sizes), CD = mean distance to centroid, MNND = mean nearest-neighbour distance, SDNND = standard deviation of nearest-neighbour distance

Site stream order and season	$\delta^{13}\text{C}$ Range	$\delta^{15}\text{N}$ Range	TA	SEA_C	CD	MNND	SDNND
2nd Dry	3.11	7.31	34.09	6.69	1.99	0.62	0.39
3rd Dry	4.25	12.84	53.32	14.09	3.30	0.87	0.33
4th Dry	2.70	8.43	64.81	14.24	2.85	1.57	0.71
5th Dry	3.45	6.59	38.21	7.99	1.94	0.63	0.43
6th Dry	3.47	14.43	59.29	14.54	3.20	1.35	1.73
2nd Wet	1.73	8.02	51.58	9.52	1.83	0.94	0.40
3rd Wet	3.61	9.73	38.94	11.57	2.64	1.49	0.68
4th Wet	3.39	8.06	33.94	10.82	2.16	0.94	0.71
5th Wet	4.69	8.90	65.68	13.75	2.51	0.85	0.35
6th Wet	2.94	9.49	38.94	9.94	2.63	0.98	0.36


Figure Captions


Fig. 1 Study area showing study sites (numbers reflect Strahler order, from second to sixth) along the continuum of the Tintinda River in the Republic of the Congo.


Fig. 1 Photographs of sites on the Tintinda River from second (2) to sixth (6) Strahler order along the fluvial gradient. First-order sites (1) situated in the grassland-savannah vegetation zones of the Tintinda River were dry in both seasons.

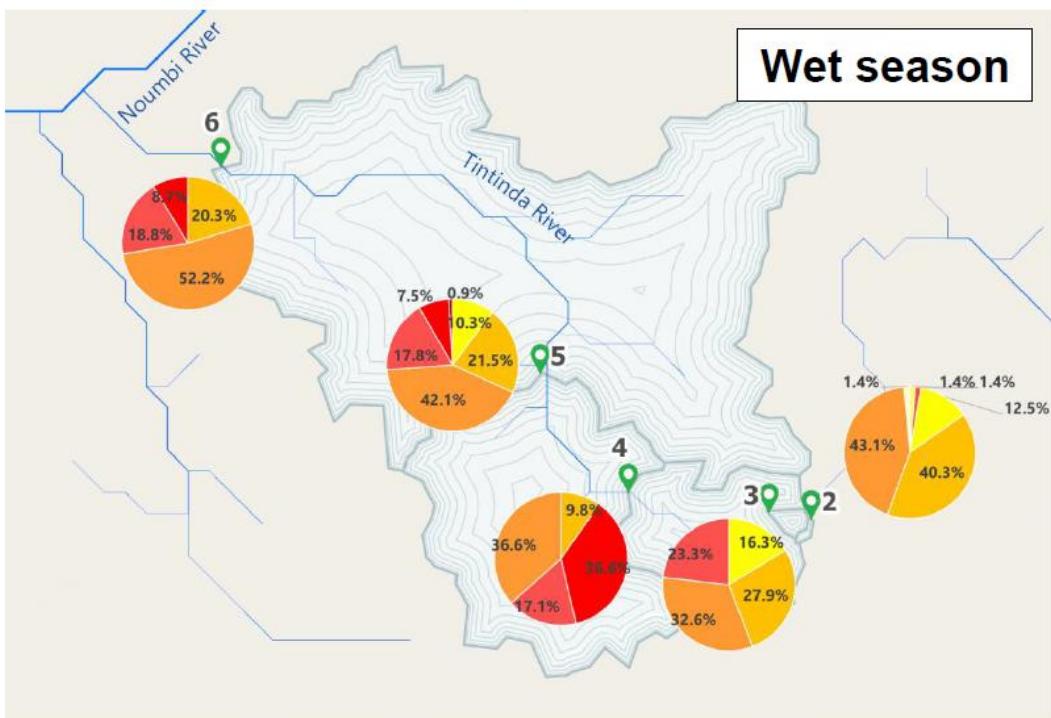
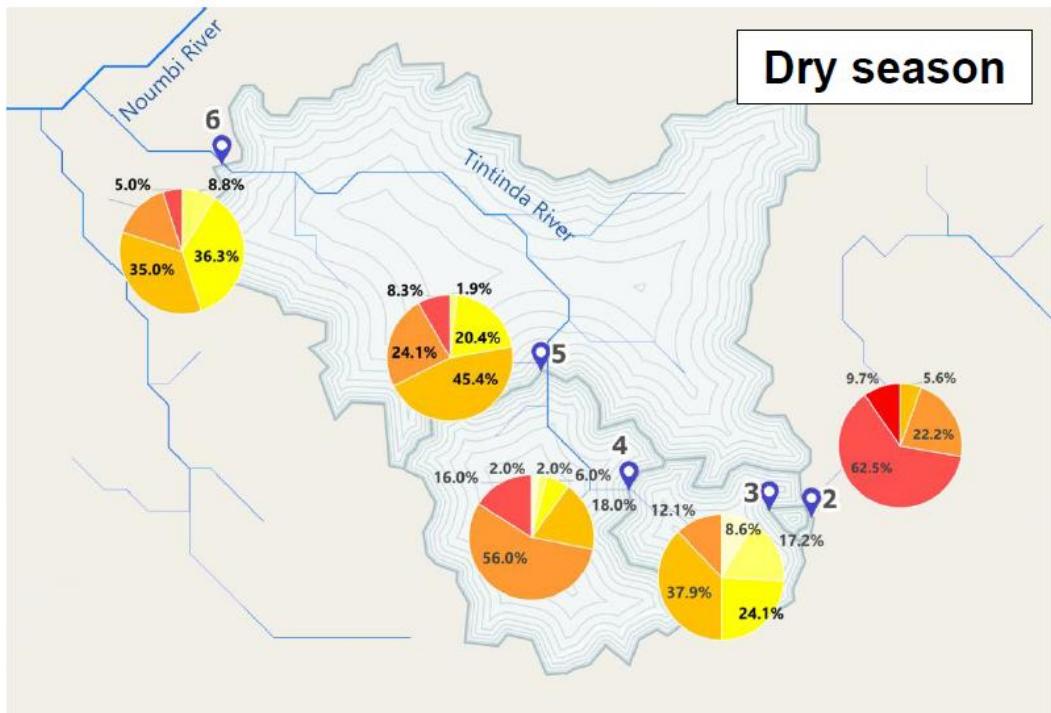
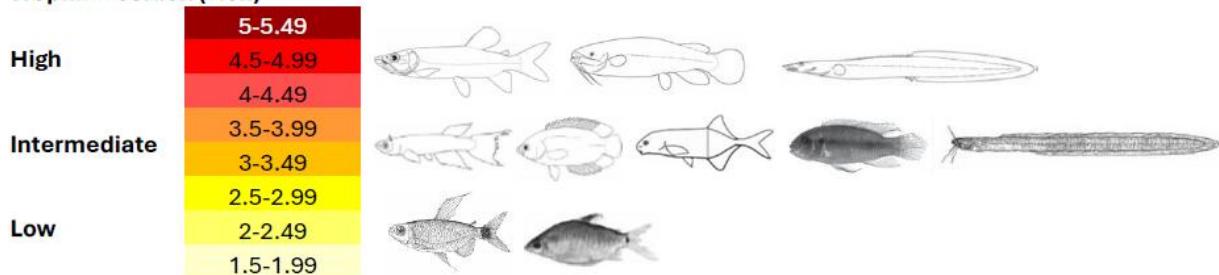


Fig. 3 Biplot of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values for consumer assemblages (fishes and aquatic macroinvertebrates) and two basal resource categories (C3 riparian and aquatic vegetation and POM) from each site along the continuum of the Tintinda River for dry ($n = 471$ consumer tissue samples) and wet seasons ($n = 452$ consumer tissue samples). Different colours represent Strahler order of the sites along the river continuum. There was one site representing each Strahler order. Values for consumers were adjusted for trophic fractionation.

Fig. 4 Percentages of trophic positions occupied by fish assemblages along the continuum of the Tintinda River in the dry (top panel) and wet (bottom panel) seasons with examples of fish species that typically occupied low, medium and high trophic positions.



Trophic Position (Fish)

