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Accurate quantification of steps 
from multiple smartphone 
positions
Alejandro Ena1, Claudia Mazzà1,2, Antonio Rodríguez-Romero1, Tim Woelfle3,4, 

Jannis Mueller3,4, Cristina Granziera3,4,5, Ludwig Kappos3,4, Emmanuel Bartholomé1, 

Corrado Bernasconi1, Shibeshih Belachew1 & Óscar Reyes1

A key challenge in smartphone-based assessment of motor capacity is that patients may wear their 
smartphone in varying positions, while state-of-the-art algorithms have not been designed and 
validated for multiple device locations. This paper proposes a solution to estimating foot-to-ground 
initial contacts (ICs) during gait using inertial measurement unit (IMU) sensor data collected from a 
smartphone agnostic of its location in a cloth front or back pocket. FAIR-Q, an algorithm originally 
validated for data collected from the lower trunk was further tuned for this intended use, and tested 
on IMU data collected in cloth pocket positions from both healthy adults (n = 83, age range: 20–83 
y.o.) and people with Multiple Sclerosis (n = 50, age range: 22–61 y.o., EDSS score: 0–6) during a 30s 
walk test. The performance of FAIR-Q was compared against a gold standard multi-sensor device in 
terms of sensitivity and measurement error in identifying ICs and measuring step and stride durations. 
Excellent performance was achieved for both groups in all tested conditions (test-level relative errors 
for duration measures < 1%) and using data from a large variety of smartphone devices, supporting the 
method’s suitability for high-frequency smartphone-based assessment of gait capacity in neurological 
diseases.

Keywords Gait analysis, Initial contacts, Pocket smartphone placement, Time frequency analysis, Multiple 
sclerosis

Smartphone-based assessment of motor capacity by means of inertial sensor data recorded during the execution 
of structured motor tasks has gained popularity for the longitudinal monitoring of people with neurological and 
muscular diseases1. This is particularly true in the case of Multiple Sclerosis, a chronic immune-mediated disease 
of the central nervous system characterised by demyelination and progressive impairment of motor function. 
Because gait disturbances are among the most common and disabling symptoms in people with Multiple Sclerosis 
(pwMS), objective, sensor-derived measures of walking performance have become increasingly important for 
supporting clinical decision-making, monitoring rehabilitation progress, and evaluating response to disease-
modifying therapies2–5.

This assessment typically entails the development of an application (App) that is used to provide detailed 
instructions to guide the patients through the execution of structured smartphone-instrumented tests (similar to 
those typically included in a clinical assessment of the same functions). The same App is then used to record and 
remotely transfer the data collected during the tests by the inertial measurement units (IMU) sensors embedded 
in the smartphones. This approach offers the opportunity of more frequent assessments, which better reflect 
patient’s performance in their natural environment. One of the challenges, however, is that in unsupervised 
conditions smartphone handling becomes a critical factor to control for. In gait measurement applications, 
for example, patients might find it preferable to place their smartphone in a pocket, even when instructed to 
use a provided belt to enable a median location in the lower trunk1,4,6. This implies that to extract relevant 
information, the data need to be processed by algorithms capable of detecting steps (interval between initial 
contact with the ground of one foot and initial contact of the contralateral foot) as well as strides (the interval 
between two subsequent initial contacts of the same foot) from highly variable input raw signals collected from 
different smartphone locations.
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Sheffield, UK. 3Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital 
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Many algorithms have been proposed and validated for detecting foot-to-ground initial contacts (ICs) and 
quantifying both step and stride dynamics from an IMU sensor located on the lower trunk in a median position. 
Simpler methods such as thresholding or zero-crossing detection7,8 rely too heavily on predefined thresholds or 
peak detection algorithms. Template matching methods9 are a more robust alternative but require predefined 
step cycle templates. Wavelet-based methods proved accurate to capture gait phases10 but still have limitations 
when applied to free-living gait data in a real-world environment11. Advanced machine learning methods12 can 
offer higher accuracy and adaptability for irregular gait but require substantial computational resources and 
large-annotated datasets. Overall, state-of-the-art methods for step detection still suffer from the assumption of 
a steady walking cadence and typically rely on the IMU sensor being placed near the body’s center of mass. This 
poses significant challenges when applied to impaired gait patterns and unsupervised recordings13.

Comparatively, the current state-of-the-art in detecting steps and strides from IMU data collected with a 
sensor positioned proximally on the thigh (i.e. when a smartphone is in a pocket) remains underdeveloped. 
Recent studies have demonstrated the feasibility of detecting stride events using smartphones placed in the 
trouser pocket during both treadmill walking14 and level-ground walking15,16. Some of these approaches have 
also been applied to pathological populations, including individuals with lower limb joint pain17 and with 
Parkinson’s disease18. While these methods have demonstrated satisfactory accuracy in stride detection, they are 
generally designed to identify initial contacts (ICs) from a single leg, hence only allowing for stride detection, 
or require the use of two devices - one per leg - for bilateral detection. Furthermore, some of these approaches 
rely on long, uninterrupted walking bouts to achieve acceptable performance14, limiting their applicability both 
in free-living and in clinical environments. Despite their promise, these methods have not yet been validated for 
use with data collected from pwMS.

A Frequency-Adaptive, Iterative and Robust Quantification (FAIR-Q) method was recently validated on 
lower-trunk real-world gait data for the purpose of segmenting steps without relying on specific signal shapes 
or templates19. When adequately tuned, the method proved accurate when applied to real-word data collected 
from a research-grade device, across normal and impaired gait patterns. This method leverages a time-frequency 
analysis that enhances the temporal allocation of events over gait cycles. This characteristic makes it an excellent 
candidate for adaptation to other gait cyclic signals, with enhanced robustness to the location and quality of 
the sensors embedded in the device. This paper aims at testing this hypothesis by assessing the accuracy of 
FAIR-Q in detecting the foot-to-ground ICs and consequently calculating step and stride duration and cadence 
in IMU data collected from a smartphone located either in a front pocket (FrP) or in a back pocket (BP). More 
specifically, the performance of the algorithm is evaluated against a reference motion capture system in both 
healthy controls (HCs) and pwMS.

Methods
Subjects and experiments
Data included in the study derived from two cross-sectional studies, involving 83 HCs and 50 pwMS. Expanded 
Disability Status Scale (EDSS) total scores, functional system subscores (FSS), and Ambulation Scores were 
assessed by trained and certified raters in accordance with Neurostatus standardized examination and scoring 
procedures20.

All participants (demographics in Table 1) performed a supervised, structured 30-second walk test on a flat 
indoor surface. The walking path differed between groups: pwMS walked in a straight line along a long hospital 
corridor, while HCs followed a curvilinear path within a 5-meter-sided square room. Participants in both groups 
were instructed to walk at their self-selected pace without stopping or interruptions, and to avoid abrupt turns 
as much as possible. To ensure safety, particularly for pwMS with higher levels of disability, all assessments were 
closely monitored by clinical staff walking alongside the patients.

During these tests, inertial sensor data were simultaneously collected by a reference system (Awinda, Xsens21, 
sampling frequency 60 Hz) and a smartphone (sampling frequency 50 Hz). The Xsens reference system consists 
of 17 IMUs, each equipped with 3D accelerometers, gyroscopes, and magnetometers. These sensors were attached 
to specific body segments - head, shoulders, upper arms, forearms, hands, upper legs, lower legs, and feet - using 
straps, and these units provided the Xsens system with the data required to reconstruct full-body 3D kinematics. 
Gait events were derived primarily from the lower-limb sensors by processing the foot-contact information 
provided by the Xsens system. Additionally, one IMU was rigidly attached to the back of the smartphone for 
synchronization and alignment purposes.

Each HC performed four 30-second walking tests, corresponding to four smartphone placement conditions: 
FrP left, FrP right, BP left, and BP right. For each participant, two tests were recorded with an Android device 
and two with an iPhone, ensuring that each type of hardware and operating system was used once in the front 
pocket and once in the back pocket. The assignment of Android and iPhone devices to the left or right side was 
randomized across participants but stratified at the group level to ensure a similar number of recordings for 
left and right legs. Devices were randomly selected from a pool of 10 Android smartphones (from 7 different 
manufacturers, Android version ≥ 9 and ≤ 12) and 7 different iPhone models (iOS version ≥ 15.7 and ≤ 16.4.1). 
This procedure resulted in a total of 332 smartphone recordings (BP, n = 166 ; FrP, n = 166), matched by an equal 
number of Xsens IMU recordings.

The pwMS performed a single 30-second walking test, during which IMU sensor data were recorded using 
the participant’s own smartphone, placed in the front pocket - either left or right leg, without standardization. 
Among the 50 pwMS, 33 used iPhone (12 different models, iOS version ≥ 14.7.1 and ≤ 16.1.2) and 17 used 
Android smartphones (from 5 different manufacturers, Android version ≥ 8 and ≤ 13). This procedure resulted 
in 50 smartphone recordings, matched by an equal number of Xsens IMU recordings.
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Data technical verification
The reference system data were downsampled to 50 Hz, and temporal synchronization between the Xsens and 
smartphone signals was achieved using a maximum cross-correlation approach applied to sliding windows of 
the three gravity acceleration components obtained from the smartphone and the reference IMU sensor rigidly 
attached to it.

After signal temporal alignment, a comprehensive technical verification was conducted to assess data quality 
and select the final test cases. This included checks for missing values, signal duration, sampling frequency 
stability, and synchronization among the Xsens IMUs22. Additionally, segment kinematics reconstructed by the 
Xsens 3D model and the detected foot contacts were visually inspected to ensure the absence of anomalies 
during task execution. The same checks were applied to both HCs and pwMS datasets and were performed by at 
least two operators. The ICs provided by the reference system served as the reference for evaluating the accuracy 

HCs PwMS

Female
(N = 45)

Male
(N = 38)

Female
(N = 28)

Male
(N = 22)

Height (cm)

Mean (SD) 164 (5.90) 175 (7.06) 168 (6.48) 183 (5.05)

Median 165 175 168 182

Range [Min, Max] [149, 175] [160, 188] [156, 184] [176, 194]

Weight (kg)

Mean (SD) 67.3 (13.6) 80.7 (14.8) 78.0 (20.7) 85.0 (10.4)

Median 64.0 79.1 76.0 86.0

Range [Min, Max] [48.6, 106] [53.5, 122] [43.0, 133] [63.0, 102]

Age (year)

Mean (SD) 43.7 (14.8) 42.4 (16.8) 43.4 (10.5) 42.2 (10.5)

Median 44.0 45.0 43.0 42.5

Range [Min, Max] [22, 77] [20, 83] [25, 61] [22, 61]

Disease duration (year)

Mean - - 12.00 8.44

Median - - 12.29 6.98

Range [Min, Max] - - [0.42, 32.12] [0.13, 27.94]

EDSS

Mean (SD) - - 2.3 (1.3) 2.1 (1.3)

Median - - 2.25 1.75

Range [Min, Max] - - [0, 5.5] [0, 6.0]

Pyramidal FSS

Mean - - 1.29 1.14

Median - - 1.0 1.0

Range [Min, Max] - - [0.0, 4.0] [0.0, 4.0]

Cerebellar FSS

Mean - - 0.75 0.59

Median - - 1.0 0.0

Range [Min, Max] - - [0.0, 3.0] [0.0, 3.0]

Ambulation score

Mean - - 0.43 0.45

Median - - 0.0 0.0

Range [Min, Max] - - [0.0, 4.0] [0.0, 7.0]

T25FW (second)

Mean - - 5.29 4.66

Median - - 4.74 4.33

Range [Min, Max] - - [3.25, 11.28] [3.27, 12.3]

SDMT score

Mean - - 61.34 60.82

Median - - 59.0 57.0

Range [Min, Max] - - [40.0, 100.0] [43.0, 88.0]

Table 1. Demographic characteristics of the healthy controls (HCs) and people with multiple sclerosis 
(pwMS). SD, standard deviation; EDSS, expanded disability status scale; FSS, functional system Scale; SDMT, 
symbol digit modalities Test; T25FW, timed 25-Foot Walk.
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of ICs estimated by FAIR-Q. Following individual case verification, 330 test execution recordings from HCs (FrP, 
n = 165; BP, n = 165) and 49 from pwMS were selected for subsequent analyses.

Frequency-adaptive, iterative and robust quantification (FAIR-Q) method for step detection
Figure 1 summarises the key steps of the FAIR-Q method, which was used to identify the occurrence and 
timing of the ICs between the foot and the floor. The method has been described in detail elsewhere19, where 
it was tuned and validated to process data collected from an IMU sensor located on the lower back. In brief, 
a Synchrosqueezed Wavelet Transform (SSWT)23 is applied to a previously filtered vertical component of the 
acceleration signal (Fig. 2a). This method has been chosen due to its performance localising the energy along 
the time, enabling accurate tracking of frequencies along the complete signal. The obtained time-frequency 
representation (TFR) is then processed to build a “ridge” (Fig. 2b), defined as the sequence of points in the TFR 
that effectively captures the evolution of motion-related frequencies and preserves the most significant spectral 
structures of the signal. The ridge is further analyzed to detect large discontinuities, or jumps, which are used to 
segment the signal into frequency-stable intervals. The subsequent analysis of this ridge allows identifying local 
frequencies (Fig. 2c) within each segment. These frequencies are used to adaptively smooth the original signal 
according to the actual cadence, resulting in a series of potential ICs, which are then pruned of false positives 
using a peak detection and prominence approach (Fig. 2d).

Previous work19 provided a systematic framework for selecting the parameters shown in Fig. 1, and an 
extensive sensitivity analysis demonstrated that the algorithm maintains reliable step-detection performance 
across a wide range of parameter values. Using this framework, the optimal parameter values for real-world gait 
analysis with a lower-back sensor were identified as follows: f

l
 = 0.25 Hz; f

u
 = 2Hz; w

d
 = 3s; d

t
 = 2, l = 2.5 s, w

MA
 

= 0.8s, j = 0.4 Hz, P
T
 = 0.1 m/s2.

However, the power spectrum of gait signals differs significantly between the thigh and lower trunk due to 
distinct biomechanical patterns and can be further influenced by variations in device orientation and placement 
(e.g., loosely in a pocket vs. tightly attached). Therefore, to ensure the method’s effective application to the current 
dataset, it was necessary to adjust the upper frequency cutoff f

u
. To this end, a frequency analysis was conducted 

using data from HCs only, wherein Fast Fourier Transforms (FFT) were computed for the vertical acceleration 
signals from the 330 test executions. The data was then visualized (Fig. 3) by overlaying all individual power 
spectra across all test executions and this visualization was used to determine the upper frequency cutoff f

u
, 

separating gait-related signal components from the ones that are assumed to be noise. Based on this analysis, f
u
 

was set to 4 Hz for both FrP and BP positions, and FAIR-Q algorithm was subsequently applied using this cutoff 
to extract the ICs.

Fig. 1. FAIR-Q algorithmic steps.
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Finally, the previous application of the FAIR-Q algorithm to lower back data19 revealed a consistent 
temporal bias of 90 milliseconds in the IC estimates. To account for this potential aspect also in the FrP and 
BP configurations, a bias analysis was performed on the data collected from the HCs using a Bland-Altman 
approach24, wherein IC timings obtained from FAIR-Q were compared against the reference measurements 
from Xsens. The identified bias was then systematically corrected also in the final ICs estimated in both HCs 
and pwMS.

Measurements and statistical analysis
The unbiased IC timings calculated by FAIR-Q were used to derive gait temporal parameters, including step 
duration (T1), stride duration (T2) and Cadence, which was computed according to the definition provided in13:

 
Cadence = 2 ∗

∑
N

k=1

60

T 2k

N
 (1)

where N is the total number of strides and T 2k is the stride duration of the k
th

–stride in a given test.
Ground truth ICs from the Xsens system ( ICREF ) were used as a reference to evaluate the performance of 

FAIR-Q. A predicted IC from FAIR-Q was considered a True Positive (TP) if it occurred within a 0.32s window 
centered on a corresponding ICREF , which is a narrower window than that used in13. Predicted ICs that did 
not fall within any ICREF  windows were labeled as False Positives (FP). Conversely, ICREF  events without 
corresponding predicted ICs were labeled as False Negatives (FN). This information was used to calculate the 
following metrics:

 
Sensitivity =

T P

T P + F N
(2)

 
P ositive P redictive V alue (P P V ) =

T P

T P + F P
(3)

Fig. 2. Representative results from key steps of Frequency-Adaptive, Iterative and Robust Quantification 
(FAIR-Q): (a) Synchrosqueezed Wavelet Transform (SSWT), (b) Ridge construction and filtering, (c) 
Stationary segments analysis and (d) Detection of Initial Contacts (ICs) and pruning of false positives.
Frequency-adaptive, iterative and robust quantification (FAIR-Q) method for step detection
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Fig. 3. Aggregated Fast Fourier Transforms (FFTs) of the vertical acceleration and 95th percentile curve in FrP 
and BP positions, zoomed to the range 0–8 Hz to focus on gait-related frequencies and enhance visualization.
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F 1 Score =

T P

T P + 0.5(F P + F N)
(4)

The accuracy in detecting the exact timing of individual ICs, the duration of individual steps (T1) and strides 
(T2) was established using only the TP events in terms of both absolute and relative errors:

 Median Absolute error T P IC (s) = med |ICREF T P
− ICF AIR−QT P

| (5)

 Median Absolute error in T P step duration (s) = |med T 1REF T P
− med T 1F AIR−QT P

| (6)

 Median Absolute error in T P stride duration (s) = |medT 2REF T P
− medT 2F AIR−QT P

| (7)

 
Median relative error in T P step duration (%) =

|medT 1REF T P
− medT 1F AIR−QT P

| ∗ 100

medTREF

(8)

 
Median relative error in T P stride duration (%) =

|medT 2REF T P
− medT 2F AIR−QT P

| ∗ 100

medTREF T P

(9)

Additionally, the accuracy of the method when applied to the analysis of the whole test was assessed using all 
steps and strides detected by each method and calculating the median relative error over the whole test:

 
Median relative error in step duration at test level (%)

|medT 1REF − medT 1F AIR−Q | ∗ 100

medTREF

(10)

 
Median relative error in stride duration at test level (%)

|medT 2REF − medT 2F AIR−Q | ∗ 100

medT 2REF

(11)

Lastly, agreement between paired FAIR-Q and Xsens measurements for the total number of detected ICs, T1, T2, 
and cadence was assessed using Bland–Altman plots, including all four tests for each HC and the single test for 
each pwMS. The Intra-Class Correlation Coefficient (ICC(2,1))25 was computed to provide a quantitative measure 
of agreement between paired FAIR-Q and reference system measurements. Additionally, to quantitatively assess 
agreement between Android and iPhone smartphones devices, for each HC and phone position (FrP or BP) the 
measurements from separate repetitions were compared using Bland–Altman analysis (bias, mean difference, 
and percentage of bias/mean ratio) to characterize the direction and magnitude of any deviations.

Results
IC timings bias analysis
When comparing the estimates of the TP IC timings obtained for the HCs from FAIR-Q and the reference 
system using a Bland Altman approach (Fig. 4), a constant bias of 0.03s and 0.07s was observed for the FrP and 
BP positions, respectively. These values were hence compensated by subtracting these values as a last step in the 
ICs timing, before computing the other derived metrics. The 0.03 bias in FrP position was also accounted for in 
the analysis of the data derived from pwMS.

Analysis of performance metrics
Regarding the number of ICs detected per test execution, only 7 out of 165 FrP (4%) and 9 out of 165 BP (5%) in 
the HC group, as well as 2 out of 49 FrP (4%) in pwMS, fell outside the limits of agreement. Visual inspection of 
these signals seemed to indicate that they contain portions with high varying cadence. These outliers, however, 
did not heavily reflect on the median step, stride and cadence level, as shown by the Bland Altman Plots 
calculated for the metrics of interest in both positions and groups (Fig. 5). Figure 5 also highlights an overall 
excellent agreement between the FAIR-Q and the reference system values, leading to negligible biases, narrow 
limits of agreements and very few outliers. At the level of the whole 30-second test, the IC detection sensitivity 
and positive predictive values were excellent with median values for all groups being 1.00 and 0.98, respectively 
(Table 2). When looking only at TP events, step duration had very similar accuracy in the three conditions, and 
a mean null error was observed in all three groups.

The plots in Fig. 5 also show that, when looking at TP values, the null bias in the duration estimates holds for 
both shorter and longer steps and strides. The limits of agreement at test level were also very narrow for the steps 
estimates ([−0.02,0.01s] in HC BP, [−0.02,0.02s] in HC FrP and [−0.02,0.02s] in pwMS), with only 3% of outliers 
in the HC and 4% in pwMS. Overall, very similar results were obtained at stride level, where the mean error 
was close to zero and the 6 outliers in the pwMS group were very close to the 0.01s lower limits of agreements.

The highly accurate behavior of the algorithm was confirmed by all calculated metrics. Table 2 summarizes 
the results for the assessment of the FAIR-Q performances both at the level of single IC detection, at the level 
of single step and stride duration quantification and when using these to evaluate gait metrics over the whole 
30-second test (i.e. Test-Level performance metrics). Results showed an overall high agreement with the 
reference system for all estimates. Almost identical performance was recorded in terms of ability of FAIR-Q to 
detect the ICs in the two smartphone locations, as well as in HCs versus pwMS.

The algorithm proved very accurate at both step and stride level (< 4% and < 2% median relative error, 
respectively) when looking at TP only. These differences between step and stride duration accuracy at single 
step/stride level were no more noticeable when results were considered at whole-test level, where the errors 
became negligible for both step and stride duration.
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Excellent performances of the FAIR-Q algorithm were also confirmed by ICC calculation (Table 3), showing 
robust agreement for both smartphone pocket positions and in both HCs and pwMS groups for all gait measures, 
i.e. number of ICs, step/stride duration and cadence, where all average ICCs remained ≥ 0.90.

Discussion
This paper aimed to propose and validate an approach for gait IC detection and step and stride segmentation 
applicable to data collected from different smartphone locations. To this end, ICs detected by FAIR-Q from 
smartphones placed in a back and/or front pocket were compared to those collected from a reference system 
for ground truth determination. FAIR-Q method proved to be highly accurate for both smartphone positions 
and when applied to gait data from both healthy controls and pwMS. This makes it particularly suitable for 
the analysis of gait IMU data from studies in which a participant might decide to swap smartphone locations 
between different observations, which is at risk to occur at a significant rate. Moreover, FAIR-Q method was 
tested using gait IMU data from a wide variety of smartphone brands and models, ensuring its suitability for 
trials collecting data in a “bring-your-own-device” setting.

The Bland-Altman plots generated for the analysis of the True Positive (TP) ICs (Fig. 4), built with data from 
the HCs only, showed the presence of a constant minor bias between FAIR-Q-detected IC  and the ICREF  
timing, which confirmed previous results obtained for a sensor in the belt19. When accounting for this bias 
by subtracting it from all IC estimates obtained from the FrP and BP smartphone positions, the resulting IC 
estimations showed only a negligible median absolute error of 0.02 s in all tested groups (HCs FrP and BP, and 

Fig. 4. Bias analysis of the True Positive Initial Contact timings between FAIR-Q and the reference system 
when applied to data from Front (top panel) and Back (bottom panel) pockets. N, number of ICs outside the 
limits of agreement; Blue dotted lines, Upper and Lower Limits of Agreement; Orange dotted lines, Mean of 
values.
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Fig. 5. Assessment of FAIR-Q performance per metric applied to data from healthy controls (HCs), Back (left 
column) and Front (center column) pockets, and people with multiple sclerosis (pwMS, right column). TP: 
true positive. N: number of points outside the limits of agreement. Blue dotted lines: Upper and Lower Limits 
of Agreement. Orange dotted lines: Mean of values. Visual differences in data point density across plots are due 
to overlapping points, with darker shading indicating higher density.
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pwMS FrP; see Table 2). This accuracy is in line with what has been reported in our previous application of 
FAIR-Q to real-world lower back IMU data19 and also with results reported by other studies for both healthy 
adults and pwMS in short gait laboratory assessments13 and in continuous monitoring scenarios13,26,27.

The next part of the analysis assessed the quality of the features derived from the ICs, namely step and stride 
durations (median value at the whole 30-second walking test level) and cadence. IC detection estimates showed 
excellent sensitivity, positive predictive value, and F1 score, with median values for all groups being 1.00, 0.98, 
and 0.99, respectively. This clearly shows that FAIR-Q correctly detects the vast majority of the ICs consistently 
with the reference system. The method clearly outperformed a previous study that evaluated IMU sensors placed 
in the front pocket, which achieved an F1-Score of 0.95 within-subjects, but only 0.76 between subjects28.

The results concerning step and stride duration quantification showed very low absolute and relative errors. 
Absolute and relative errors were the same in all three groups, with a median absolute error for step and stride 
duration of 0.02s, and relative errors below 4% for steps and 2% for strides. These results are in line with literature 
including MS participants both when the device is placed on the lower back13 or laterally on a non-dominant 
hip29.

The reported ICC values (Table 3), when comparing FAIRQ vs. reference system, were on average in the 
range of 0.93–0.99. ICC values were similar between FrP and BP, but the confidence intervals were wider for 
FrP. This is not surprising given that IC events signals collected in a FrP position might be slightly less marked, 
and hence more difficult to detect, when ground contacts of the foot correspond to the leg opposite to where the 

FAIR-Q vs. Xsens FAIR-Q (Android) vs. FAIR-Q (iPhone)

Gait measure

ICC
[95% confidence interval]

ICC
[95% confidence 
interval] Bias Android - iOS /Mean (%)

HCs - BP
N = 165

HCs - FrP
N = 165

pwMS - FrP
N = 49

HCs - BP
N = 82

HCs - FrP
N = 82

HCs - BP
N = 82

HCs - FrP
N = 82

Number of ICs 0.96
[0.85–0.98]

0.93
[0.78–0.97]

0.97
[0.8–0.99]

0.96
[0.93–0.97]

0.90
[0.85–0.93] 0.2/50.66 (0.39%) −0.37/50.18 (-0.73%)

Step duration (TP at single step level) 0.98
[0.98–0.99]

0.98
[0.97–0.99]

0.98
[0.97–0.99]

0.97
[0.96–0.98]

0.91
[0.86–0.94] −0.002/0.59 (−0.28%) 0.005/0.59 (0.85%)

Step duration (test level) 0.98
[0.97–0.99]

0.98
[0.97–0.99]

0.98
[0.97–0.99]

0.99
[0.98–0.99]

0.91
[0.86–0.94] −0.002/0.586 (−0.27%) 0.005/0.594 (0.76%)

Stride duration (TP at single stride level) 0.99
[0.98–0.99]

0.98
[0.97–0.99]

0.99
[0.99–1]

0.98
[0.96–0.98]

0.91
[0.86–0.94] −0.004/1.18 (−0.31%) 0.01/1.188 (0.86%)

Stride duration (test level) 1
[0.99–1]

0.99
[0.98–0.99]

1
[1–1]

0.99
[0.98–0.99]

0.92
[0.87–0.95] −0.002/1.175 (−0.16%) 0.009/1.182 (0.76%)

Cadence 0.99
[0.98–0.99]

0.97
[0.96–0.98]

1
[1–1]

0.98
[0.96–0.98]

0.91
[0.86–0.94] 0.21/102.99 (0.21%) −0.71/102.25 (−0.69%)

Table 3. Intraclass correlation coefficients (ICC) with 95% confidence intervals for the agreement of gait 
measures in HC and MS groups. The left column (“FAIR-Q vs Xsens”) reports the agreement between FAIR-Q 
and the reference system. The right column (“FAIR-Q (Android) vs FAIR-Q (iPhone)”) shows the agreement 
between FAIR-Q measurements obtained from different smartphones worn by HCs at the same position (FrP 
or BP), but recorded in separate repetitions. Also, the right column shows the bias, mean, and percentage of 
the bias-to-mean ratio derived from a Bland–Altman analysis. N: the number of measurement pairs used to 
calculate the ICC.

 

Gait Measure Performance Measure

HCs - Back Pocket HCs - Front Pocket pwMS - Front Pocket

Median (Q1-Q3) Median (Q1-Q3) Median (Q1-Q3)

ICs Sensitivity 1 (0.98–1.0) 1 (0.98–1.0) 1 (0.98–1.0)

Positive predictive value 0.98 (0.98–0.98) 0.98 (0.98–0.98) 0.98 (0.97–0.98)

F1 score 0.99 (0.98–0.99) 0.99 (0.98–0.99) 0.99 (0.98–0.99)

Median Absolute error in TP IC [s] 0.02 (0.02–0.04) 0.02 (0.02–0.02) 0.02 (0.02–0.04)

Step Median absolute error in TP step duration at single step-level [s] 0.02 (0.02–0.02) 0.02 (0.02–0.02) 0.02 (0.02–0.02)

Median relative error in TP step duration at single step level [%] 3.45 (3.33–3.70) 3.45 (3.23–3.70) 3.85 (3.57–4.35)

Median relative error in step duration at test level [%] 0 (0.0–0.0) 0 (0.0–0.0) 0 (0.0-1.70)

Stride Median absolute error in TP stride duration at single stride level [s] 0.02 (0.02–0.02) 0.02 (0.02–0.02) 0.02 (0.02–0.02)

Median relative error in TP stride duration at single stride level [%] 1.79 (1.64–1.84) 1.7 (1.56–1.79) 1.82 (1.61–1.96)

Median relative error in stride duration at test level [%] 0 (0.0–0.85) 0 (0.0–1.54) 0 (0.0–0.0)

Cadence Median relative error in Cadence at test level [%] 0.01 (0.00–0.01) 0.01 (0.00–0.01) 0.00 (0.00–0.01)

Table 2. Performance metrics for initial contacts (ICs), Step, Stride, and Cadence measures in healthy controls 
(HCs) and people with multiple sclerosis (pwMS).

 

Scientific Reports |         (2026) 16:4143 10| https://doi.org/10.1038/s41598-025-34270-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


smartphone is placed. Nonetheless, ICC values were considerably better with FAIR-Q (0.98–0.99) compared to 
those between 0.53 and 0.69 previously reported for step duration estimates from a smartphone in a pocket16.

FAIR-Q also demonstrated high consistency across operating systems and smartphone manufacturers 
(Table 3) when comparing two smartphones, with ICC values ranging from 0.90 to 0.99 for all gait metrics in 
both FrP and BP positions. The bias between Android and iOS devices was negligible (≤ 0.01s for step and stride 
duration), indicating that the algorithm’s performance was robust to variations in smartphone hardware and 
operating system, supporting its suitability for large-scale trials.

Cadence, assessed for by both relative error and level of agreement, demonstrated that the underlying 
hypothesis of FAIR-Q is correct and justifies the use of synchrosqueezing wavelet transform method for 
signal filtering and, consequently, for IC detection. The median relative error was ≤ 0.01%, and the ICC values 
ranged between 0.96 and 1.00 across the entire study population. Again, this proves that the algorithm clearly 
outperformed previous studies that estimated cadence in similar scenarios reporting errors of 5.5% for the FrP 
and of 10.5% for the BP30.

It is noteworthy that the agreement between FAIR-Q and the Xsens reference system in the pwMS group was 
very similar to that observed in HCs, with even narrower limits of agreement in the Bland-Altman plots. This 
might be due to the relatively mild disease severity in our pwMS sample and the smaller sample size. Nonetheless, 
it is worth highlighting that the investigated group comprised individuals with EDSS values between 0 and 6, 
which provided some heterogeneity in the tested pwMS population. These positive findings are encouraging, 
especially when considering the challenges previously identified in the literature regarding monitoring with 
smartphones in the pocket. A recent systematic review on the topic, in fact, highlighted that inconsistent 
smartphone placement can affect the accuracy of gait measurements in patients with MS31, to the extent that 
smartphone data collection could become insufficiently precise for use in clinical research when the device is 
in the front pocket32. The development and validation of FAIR-Q addresses this scientific barrier and ensures 
a first-in-kind robustness to smartphone placement variability, which is a necessary condition for deploying 
smartphone-based digital outcome measures in large-scale clinical trials or for routine clinical care33,34.

Overall, the proposed method showed strong potential for robust gait event detection. While not undermining 
the present findings, some limitations to their generalisability persist, which provide directions for future work. 
First, the patient cohort consisted mainly of individuals in earlier disease stages, and assessing performance in 
more advanced cases will help assess the method’s resilience to more atypical gait patterns. Second, although 
FAIR-Q has been previously validated using real-world data from a lower-back sensor, additional datasets would 
be valuable to demonstrate equivalent performance with pocket-worn devices where relevant. Last but not least, 
extending the approach to the detection of final contact events could unlock additional clinically meaningful gait 
features that go beyond those derived from initial contacts alone.

Conclusions
This study proved the validity of the FAIR-Q method for detecting steps and strides from smartphone data 
obtained from different device placements in both healthy controls and people with MS, underlining its 
robustness and clinical applicability. This flexibility makes the method particularly suitable for gait monitoring 
in longitudinal studies performed in a non-clinical environment, where inconsistency in device location can 
hamper measurement accuracy. Furthermore, FAIR-Q’s results were obtained from a variety of smartphone 
brands and models, confirming its usability also in a bring-your-own-device scenario, which ensures ecological 
validity and scalability of the proposed approach. In conclusion, considering also its previous validation on 
real-world data from different neurological populations, the proposed FAIR-Q method is an ideal solution for 
unsupervised smartphone-based high-frequency assessment of mobility in neurological diseases.

Data availability
The datasets generated and analysed during the current study are not publicly available due to patient privacy 
and ethical restrictions but could be available from the corresponding author on reasonable request.
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