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Background and Objective: Coeliac disease (CeD) is a common, underdiagnosed enteropathy with 
rising incidence and diagnostic delay. This literature review synthesises advances in small bowel capsule 
endoscopy (SBCE) and artificial intelligence (AI) for SBCE, and outlines implications for clinical practice.
Methods: A comprehensive literature search in PubMed, Scopus, Embase, and Cochrane Library was 
conducted, where relevant articles published in English over the past ten years [2015–2025] were selected 
and analysed by two independent reviewers. 
Key Content and Findings: Current evidence supports tissue transglutaminase immunoglobulin A 
(tTG-IgA) as the first-line test and endomysial antibody IgA (EMA-IgA) as a test to rule in disease. An adult 
no-biopsy pathway at ≥10 times the upper limit of normal (ULN) yields near-perfect specificity but modest 
sensitivity; therefore, histology remains the reference standard. Optimised biopsy protocols with ≥4 samples 

from the second part of the duodenum plus 1–2 samples from the bulb, which are well-oriented, increase 
diagnostic yield. SBCE complements oesophagogastroduodenoscopy (OGD) to map disease extent, detect 
complications, and guide care when biopsy is contraindicated. A positive baseline study may be prognostic. 
AI has progressed from per-frame villous atrophy (VA) detection (internal accuracy: 94–96%) to patient-
level and severity curve methods showing high agreement with experts, enabling reproducible burden 
mapping. Across prospective studies and meta-analyses in mixed SBCE indications, AI assistance increases 
sensitivity without losing specificity and reduces review time approximately 10–12-fold. Gains are greatest 
for non-experts and for triage applications. Key limitations include small, single-centre datasets, inconsistent 
labelling, image frame analysis rather than full videos, data leakage risks, and uncertain generalisability 
across devices and populations. Priorities include multicentre, patient-wise external validation; harmonised 
International Capsule Endoscopy Research (I-CARE) lesion definitions; prevalence-aware calibration; 
equity-aware evaluation; and vendor-agnostic deployment.
Conclusions: AI-augmented SBCE can improve efficiency, consistency, and monitoring of CeD; however, 
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Introduction

Background

Coeliac disease (CeD) is a chronic, immune-mediated 
enteropathy triggered by gluten in genetically susceptible 

individuals and has substantial implications for patient 
outcomes and healthcare systems. CeD is common 

worldwide, yet a substantial proportion of cases remain 

undiagnosed or are diagnosed after a prolonged delay, 

leading to ongoing symptoms and an impaired quality of 
life (1-4). Current diagnostic pathways rely on serological 
testing and histological confirmation from duodenal 

biopsies obtained at oesophagogastroduodenoscopy (OGD), 
which are invasive, resource-intensive, and vulnerable to 
sampling error and inter-observer variation (5,6).

Rationale and knowledge gap

Integrating artificial intelligence (AI) with small bowel 
capsule endoscopy (SBCE) offers promising solutions to 
longstanding diagnostic limitations whilst raising essential 

questions about implementation, safety, and equity. 
However, the evidence base for AI-assisted SBCE in CeD 
is still fragmented, with many studies being small, single-

centre, and using heterogeneous outcome measures and 

reference standards. As a result, clinicians and researchers 

lack a concise synthesis of how AI-augmented SBCE 
performs in detecting and quantifying villous atrophy 
(VA), how it influences workflow and reading time, and 
what safety, equity, and generalisability issues need to be 
addressed before wider adoption.

Objective

This narrative review consolidates advancements in 
SBCE and AI for SBCE, discussing their implications 
for clinical practice. Specifically, we aim to summarise 

current diagnostic pathways for CeD, appraise the available 

literature on AI applications in SBCE with regard to 
accuracy, workflow, and safety, and identify key gaps and 
priorities for future research and clinical implementation. 

We present this article in accordance with the Narrative 
Review reporting checklist (available at https://tgh.

amegroups.com/article/view/10.21037/tgh-25-128/rc).

Methods

To compile this narrative review, we conducted a 
comprehensive literature search in PubMed, Scopus, 
Embase, and Cochrane Library using various combinations 
and variations of the following keywords: “Coeliac disease”, 
“Artificial intelligence”, “Small bowel”, and “Capsule 
endoscopy”. The search was limited to articles published 
in English and included original studies investigating the 
integration of AI in CeD. Animal studies, studies focusing 
on diseases other than CeD, and articles not published in 

English were excluded. We selected and analysed articles 

published up to August 15, 2025, with a specific focus on 

recent articles published over the past decade [2015–2025]. 
Screening and selection of studies were done by two 

independent reviewers (R.M. and A.D.), followed by full-
text analysis. The details of the search strategy for this 
review are provided in Table 1.

Epidemiology

Globally, the pooled serology-based prevalence of CeD 
is ~1.4%, and the biopsy-confirmed prevalence is ~0.7%, 
with higher rates in women (≈1.5 times) and in children 
(≈2 times) compared with adults (1). Proposed mechanisms 
include differences in immune function (higher CD4⁺ 
and CD8⁺ activity), X-linked gene variants, hormonal 
influences such as oestrogen and androgens, and life events 
such as pregnancy or menstruation that can alter intestinal 

permeability and immune regulation. These combined 
genetic, hormonal, and environmental factors may 

adoption should remain human-in-the-loop and be anchored to safety protocols, including patency testing 

when retention risk is relevant. Equity considerations include serology-negative presentations in some 
populations and the need for calibrated thresholds aligned with real-world prevalence and costs.

Keywords: Celiac disease; capsule endoscopy; artificial intelligence (AI); villous atrophy (VA); small intestine 
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Table 1 Summary of our search strategy

Items Specification

Date of search August 15, 2025

Databases and other 

sources searched

PubMed, Scopus, Embase, and Cochrane Library

Search terms used “Coeliac Disease”, “Celiac Disease”, “Coeliac Sprue”, “Celiac Sprue”, “Gluten Enteropathy”, “Nontropical Sprue”, 

“Artificial Intelligence”, “AI (Artificial Intelligence)”, “Computational Intelligence”, “Machine Intelligence”, “Machine 

Learning”, “Small Intestine”, “Small Bowel”, “Capsule Endoscopy”, “Video Capsule Endoscopy”, “Wireless Capsule 

Endoscopy”

Timeframe Articles published up to August 15, 2025, with a specific focus on recent articles published over the past decade 

[2015–2025]

Inclusion and 

exclusion criteria

Inclusion criteria: (I) original studies investigating the integration of AI in coeliac disease; (II) articles published in 

English. Exclusion criteria: (I) animal studies; (II) studies focusing on diseases other than coeliac disease; (III) articles 

not published in English

Selection process Screening and selection of studies were done by two independent reviewers (R.M. and A.D.). Any conflicts were 

resolved by a third reviewer (J.B.)

AI, artificial intelligence.

contribute to both higher disease susceptibility and greater 

intestinal injury in women with CeD (2). Underdiagnosis 
remains pervasive. The fourth population-based survey in 
the Trøndelag Health Study (HUNT4) in Norway revealed 
that 75% of individuals with CeD were newly identified 
through screening, and most reported symptomatic/

quality-of-life gains after a gluten-free diet (3). “Hidden” 
prevalence has been highlighted in US data showing that 
Black patients may present with serology-negative yet 
biopsy-confirmed disease (4). Together, these findings 
support the contemporary concept of the “coeliac iceberg”. 
This underdiagnosis justifies interest in non-invasive visual 
modalities, such as SBCE, where AI support may help 
expose overlooked diseases and improve equity in detection.

Current diagnostics

Serology: assay performance and adult “no-biopsy” 

thresholds

With respect to first-line tests, a contemporary meta-

analysis in adults shows that tissue transglutaminase 

immunoglobulin A (tTG-IgA) has a sensitivity of 90.7% 

[95% confidence interval (CI): 87.3–93.2%] and specificity 
of 87.4% (84.4–90.0%), while endomysial antibody IgA 
(EMA-IgA) has a sensitivity of 88.0% (75.2–94.7%) and 
specificity of 99.6% (92.3–100%) (5). These data support 
tTG-IgA as a screening test and EMA-IgA as a means to 
“rule in” CeD. Total IgA should be measured to detect IgA 

deficiency; IgG-based assays are alternatives when IgA is 
low (6).

Adult no-biopsy approach

In a UK multicentre study, tTG-IgA levels ≥10 times the 

upper limit of normal (ULN) identified adults with histology 
diagnostic of CeD with very high positive predictive value 
(PPV), supporting a no-biopsy pathway in carefully selected 
patients (7). A 2024 meta-analysis of 18 studies encompassing 
12,103 adults found a pooled specificity of 100% (95% CI: 
98–100%) and a sensitivity of 51% for the ≥10 times the 

ULN threshold, with modelled PPV of 95–99% at pretest 
prevalences of 10–40% (8). Most guidelines still require 
biopsy in most adults; no-biopsy pathways should be limited 

to high pretest probability scenarios and robust assays, often 

with EMA confirmation (6).

Endoscopy and biopsy: sampling strategies that reduce 

error

Because VA can be patchy, evidence and guidelines support 
≥4 biopsies from the second part of the duodenum (D2) 
plus 1–2 from the bulb (D1); correct orientation improves 
interpretability (9). A 2018 meta-analysis showed that 
adding a bulb biopsy increased diagnostic yield by ~5% (10).  
A 2024 meta-analysis focused on D1 confirms the 

incremental yield in adults (11). Biopsies and serology 
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must be performed on a gluten-containing diet; endoscopic 

visualisation alone is insufficient to diagnose CeD in adults. 
Current American College of Gastroenterology (ACG) 
guidance continues to regard histology as the reference 

standard in most adult cases (6). Recent meta-analyses 
have collectively reinforced the central roles of serology, 
biopsy protocols, and no-biopsy thresholds in current 

diagnostic pathways. The pooled performance metrics of 
these approaches, including duodenal bulb biopsy yield, are 

summarised in Table 2, providing context for the evolving 
diagnostic algorithms.

The utility of SBCE in the diagnosis of CeD

SBCE can depict the extent of mucosal injury and 

detect complications; it is most useful when OGD/
biopsy is contraindicated, non-diagnostic, and suspected 

complications (e.g., ulcerative jejunoileitis, strictures, 
refractory CeD). While ESGE guidelines support the 
role of SBCE in identifying complications and in cases 

of equivocal disease, they are against its use for disease 
monitoring (12). In equivocal adult CeD, positive SBCE 
at diagnosis has been associated with worse outcomes, 

suggesting prognostic value (13). In addition, several studies 
have shown the benefit of repeat SBCE in refractory CeD, 
demonstrating an improvement in the extent of disease 
post-treatment (14-16). Multicentre series and reviews 
report high per-frame accuracy for VA on SBCE; however, 
heterogeneity in datasets and reference standards means 

that SBCE does not replace histology for initial adult 

diagnosis (17). Overall capsule retention is ~2% [higher in 
suspected/known inflammatory bowel disease (IBD)] (18). 
Patency testing halves retention in high-risk groups (19). 
These figures guide pre-procedure risk assessment when 
strictures are possible. The current diagnostic pathways for 
CeD, including the evolving role of SBCE and potential AI 
augmentation, have been summarised in Figure 1.

AI for SBCE in CeD 

From architecture choices to the unit of evaluation

The modern literature spans two main goals: (i) detecting 
VA on single frames or short clips; and (ii) estimating 
patient-level disease burden along the small bowel. Zhou 
et al. pioneered an accurate patient-level readout using a 
deep learning model called a convolutional neural network 
(CNN)—a type of algorithm that automatically learns image 

features such as texture or pattern differences—to analyse 
SBCE clips after a pre-processing pipeline that removed 
blurred frames and normalised lighting (20). The authors 
used GoogleNet, a CNN developed by Google, for their 
analysis. They achieved perfect sensitivity and specificity in 
a small pilot study, showing that an AI model can capture 
disease features visible to expert readers. Methodologically, 
the study is notable for: (I) making rotation/illumination 
variance an explicit design target; and (II) reporting patient-
level performance—albeit on a very small, single-centre 
cohort.

Subsequent work refined this approach by utilising 
more advanced “attention” modules that help the network 
focus on key areas of each frame. Wang et al. introduced 

a channel-based recalibration layer, Block-wise Channel 
Squeeze-and-Excitation (BCSE), within a standard CNN 
backbone to enhance feature discrimination (21). Rather 
than relying solely on one classifier, they tested various 
mathematical classifiers, such as support vector machines 
(SVMs), simpler k-nearest neighbour (KNN) and linear 
discriminant analysis (LDA) methods, which essentially 
group images based on learned patterns. The best setup 
reached an accuracy of 95.94%, a sensitivity of 97.20%, and 
a specificity of 95.63%. The authors explicitly acknowledge 
the risk of data leakage when adjacent frames from the 
same study are split across folds and call for patient-

wise evaluation on larger cohorts. Technically, the gain 
came from channel-wise attention and decoupling the 

classifier head (SVM on deep features), which can improve 
calibration and robustness.

Demonstrating that heavy CNNs are not strictly 
necessary,  Stoleru  e t  al .  designed a l ighter,  more 

interpretable system that utilised hand-engineered image 

features such as brightness, edge sharpness, and tissue 

texture to detect VA (22). They reported an accuracy 
of 94.1% on SBCE frames. While still per-frame and 

single-source, this result is significant for deployment, 

as it suggests that centres without Graphics Processing 

Unit (GPU) infrastructure can still approach deep-net 
performance using interpretable texture/edge descriptors. 

This approach achieved performance comparable to deep 
learning models while requiring less computing power, 
suggesting practical feasibility even in resource-limited 
settings.

Across methods, the per-frame discrimination of VA 
from normal mucosa is consistently high (~94–96% internal 
accuracy), but patient-level generalisation remains under-
reported beyond small, single-centre tests. Architecture and 
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Table 2 Diagnostic pathway accuracy studies (serology or histology)

Study (first 

author, year)
Design/population Key accuracy metrics Outcomes

Sheppard  

et al., 2022 

(5)

Systematic review & meta-

analysis (adults)—serologic 

tests vs. biopsy

tTG-IgA: Sens 90.7%, Spec 87.4%. EMA-

IgA: Sens 88.0%, Spec 99.6%

Supported IgA tTG as first-line (high sensitivity) and EMA as confirmatory 

(very high specificity) for coeliac diagnosis. Total IgA level must be checked to 

exclude IgA deficiency

Penny et al., 

2021 (7)

Multicenter observational 

(UK + international 

cohorts)—adults with high 

tTG titres

IgA tTG ≥10× ULN had PPV ~95–100% for 

Marsh 3 histology across cohorts. Sensitivity 

ranged ~30–54% and specificity ~83–100% 

depending on cohort

Demonstrated that very high tTG-IgA levels (≥10× upper limit) strongly predict 

villous atrophy in adults (nearly perfect PPV), albeit with modest sensitivity. 

Provides evidence for a no-biopsy diagnosis in carefully selected adults

Shiha et al., 

2024 (8)

Systematic review & meta-

analysis (18 studies, 12,103 

adults)—no-biopsy threshold

Pooled Sens 51%, Spec 100% for tTG ≥10× 

ULN. Modelled PPV ~95–99% at pre-test 

probabilities 10–40%

Confirms that the ≥10× tTG-IgA threshold yields near-absolute specificity 

(≈100%) for histologic CeD in adults, but detects only ~50% of cases. 

Emphasises biopsy is still required in ~half of adults (especially in lower-titer or 

atypical cases)

McCarty  

et al., 2018 

(10)

Systematic review & meta-

analysis—duodenal bulb 

biopsy yield

Adding a duodenal bulb biopsy resulted in a 

~5% increase (95% CI: 3–9%) in diagnostic 

yield for CeD

Validates guidelines recommending ≥1–2 biopsies from the duodenal bulb (in 

addition to ≥4 from D2) to detect patchy villous atrophy. The incremental yield 

(~5%) can be clinically significant in borderline cases

Deb et al., 

2024 (11)

Systematic review & meta-

analysis (adults)—role of 

duodenal bulb biopsy

Adding a D1 biopsy resulted in a ~6.9% 

increase (95% CI: 4.6–10.2%) in diagnostic 

yield for CeD 

Reinforces that duodenal bulb biopsies enhance detection of CeD in adults, 

aligning with prior evidence. Bulb involvement may be the only site of lesion in 

a subset of patients, justifying routine bulb sampling

CeD, coeliac disease; CI, confidence interval; EMA, endomysial antibody; IgA, immunoglobulin A; PPV, positive predictive value; Sens, sensitivity; Spec, specificity; tTG, 

tissue transglutaminase antibody; ULN, upper limit of normal.
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Patient with suspected CeD

• Symptoms

• Risk factors

Serology testing:

• tTG-IgA (1st line)

• EMA-IgA (confirmatory)

• IgA deficiency check

Small Bowel Capsule Endoscopy (SBCE):

• Map disease extent

• Detect complications

• When biopsy equivocal/contraindicated

AI Augmentation of SBCE:

• Frame triage (sensitivity ↑, workload ↓)
• Villous atrophy detection (~94–96% 

accuracy)

• Burden mapping (severity curves)

• Prognosis/monitoring tool

• Safety: Patency capsule 

to reduce retention risk

• Equity: Detects 

serology-negative CeD

• Workflow: Reduces 

review time (~12-fold)

Adult no-biopsy approach: 

tTG ≥10× ULN + EMA 

confirmation

• High specificity

• Limited sensitivity

Endoscopy + Duodenal 

Biopsy: 24 samples from 

D2 ± bulb

Figure 1 Diagnostic pathway flowchart with AI integration. AI, artificial intelligence; CeD, coeliac disease; D2, second part of duodenum; 
EMA, endomysial antibody; IgA, immunoglobulin A; SBCE, small-bowel capsule endoscopy; tTG, tissue transglutaminase antibody; ULN, 
upper limit of normal. 

classifier choices can contribute measurable gains, yet their 
true value must be judged under patient-wise splits and 
external validation. Methodologically, CNNs and related 
models show that AI can recognise mucosal changes at the 
pixel level and summarise them consistently across patients, 
offering a reproducible framework for objective SBCE 
interpretation in CeD.

From detection to measurement: severity quantification 
and disease mapping

Clinically, SBCE is often used to stage disease extent and 

severity rather than merely flag the presence or absence of 
VA. Two linked studies address this quantitative agenda. In 
2020, Chetcuti Zammit et al. used a probabilistic classifier 
trained on explicitly defined SBCE features aligned with 

recognised atrophic signs (scalloping, mosaic pattern, 

nodularity, fissuring, ulcers) to (i) predict Marsh severity and 
(ii) separate CeD from serology-negative VA (SNVA) (23).  
Internal validation yielded 69.1% accuracy for both tasks; 
incorporating class-proportion priors (prevalence-aware 
modelling) improved CeD vs. SNVA discrimination to 
75.3%. These targets are deliberately more challenging 
than “CeD vs. normal” frame classification, reflecting real-
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world differentials and the imperfect coupling between 

macroscopic atrophy and histology. In 2023, the same 
group advanced a continuous severity-curve approach (24).  
In 63 biopsy-proven adults, three expert readers scored 
frames on an ordinal 0–3 scale; a trained machine-learning 
algorithm (MLA) generated parallel scores, which were 
aggregated into segmental (tertiles) and whole-bowel 
curves. Inter-reader agreement on the whole-bowel mean 
severity was Krippendorff’s α=0.924 (excellent). Crucially, 
reader vs. MLA agreement was similarly high: α=0.945 for 
the whole-bowel mean, and in the proximal tertile, α=0.932 
(mean) and 0.867 (maximum). By transitioning from binary 
detection to standardised, reproducible quantification, 
this paradigm directly supports longitudinal monitoring, 

objective reporting (particularly in low-volume and non-
specialist settings), and potentially therapy decisions in 
CeD. Limitations are the single-centre origin and the 
absence of an external replication set using the same scoring 

protocol. The performance characteristics of AI models 
applied specifically to CeD SBCE datasets, including both 
frame-level and patient-level approaches, are summarised in 
Table 3.

Human-algorithm comparison: what does “expert-level” 

mean here?

Direct, task-matched comparisons in CeD on SBCE are 
uncommon. The severity-curve study (24) provides the best 
head-to-head signal, i.e., MLA recapitulated expert severity 
curves with α up to 0.945 for whole-bowel mean scores 
and 0.867–0.932 proximally, indicating that an automated 
pipeline can produce clinically legible outputs (mean/max 

severity by segment) that mirror those of senior readers. 
Unlike frame-level accuracy, agreement statistics on ordinal 
scales capture what clinicians need from SBCE—consistent 
burden estimation—and should be prioritised in future 
evaluations.

External validation, dataset diversity, and label standards

A consistent limitation across this literature is the absence 

of rigorous external, multicentre validation with patient-
level splits. Zhou et al. reported patient-level performance 
but evaluated only 10 test patients processed within the 
same pipeline, restricting generalisability (20). Wang et al. 

demonstrated excellent per-frame metrics under repeated 

10-fold cross-validation; however, they provided no patient-
wise or external evaluation (21). Likewise, Stoleru et al. (22)  

used single-source frames without an external test set, 

and the Chetcuti Zammit studies (13,24) relied on single-
centre cohorts with internal validation only. Together, 
these designs risk optimistic estimates and do not establish 
robustness across centres, devices, or disease spectra. 
Systematic review of CeD AI echoes these issues (25)—
small datasets, heterogeneous labels, and inconsistent 

reference standards—and summarises performance 
ranges (accuracy 84% to 95.94% in deep-learning studies; 
GoogLeNet’s 100%/100% on a tiny patient-level test) while 
urging larger, more diverse cohorts and better detection of 
milder disease. One practical enabler is label harmonisation. 
The International Capsule Endoscopy Research (I-CARE) 
Delphi consensus standardised SBCE atrophic-lesion 

nomenclature (e.g., scalloping, nodularity/granularity, 

mosaic pattern, loss of folds), providing operational 
definitions that can underpin multicentre annotation and 

device-agnostic training (26). The adoption of CeD-AI 
pipelines is expected to reduce inter-annotator noise and 

enhance transportability.

Clinical translation: where AI for SBCE can help 

in suspected or confirmed CeD 

Triage: prioritising “high-yield” SBCEs and readers’ 

attention

AI triage fits naturally before a full human read, an auxiliary 
model pre-screens the stream, surfaces frames with atrophic 

features (e.g., scalloping, mosaic pattern), and suppresses 
long stretches of normal mucosa. In SBCE, more broadly, 
deep-learning auxiliary readers have shown large review-
time reductions while maintaining or improving sensitivity. 
In a 2024 multicentre prospective study of bleeding lesions, 
AI-assisted reading was non-inferior and statistically 
superior to standard reading in terms of per-patient 

diagnostic yield (73.7% vs. 62.4%; P=0.0213), with reading 
time tracked as a secondary endpoint (27). A 2025 meta-
analysis of proprietary AI add-ons reported pooled per-
patient sensitivities with AI 0.93–1.00 vs. 0.75–0.89 for 
conventional reading, with no loss in specificity, and a  
12-fold mean reduction in reading time (4.7 min AI-assisted 

vs. 56.7 min standard) (28). Images requiring review fell 
by a factor of 24 to 51 across the included studies. These 
findings support the use of AI as a front-end triage tool 
to focus expert time on ambiguous or obviously abnormal 
sequences. For CeD specifically, frame-level detectors 
achieve ~94–96% accuracy internally, and a small patient-
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Table 3 Capsule endoscopy in coeliac disease, AI-based study summary

Study (first 

author, year)

Country; 

design
Population (n) AI task (model)

Capsule 

device
Sensitivity Specificity Accuracy Other outcomes

Zhou et al., 

2017 (20)

China & USA; 

retrospective

CeD patients vs. 

controls (11 vs. 

10)

Frame-level villous atrophy 

detection (GoogLeNet 

CNN)

PillCam 

SB2

100% 100% – Achieved 100% sensitivity and specificity on 

test set (5 CeD, 5 controls); confidence metric 

correlated with disease severity

Wang et al., 

2020 (21)

China & USA; 

retrospective

CeD patients vs. 

healthy (12 vs. 

13 adults; 2140 

images)

Frame-level VA 

classification (ResNet50 + 

attention)

PillCam 

SB2 & 

SB3

97.2% 95.6% 95.9% 10×10-fold cross-validation results: high 

accuracy (≈96%) in classifying villous atrophy 

vs. normal

Stoleru  

et al., 2022 

(22)

Romania; 

retrospective

CeD patients vs. 

healthy (65 vs. 45; 

109 films)

Patient-level CeD diagnosis 

(filter + SVM classifier)

PillCam 

SB3

– – 94.1% Achieved 94.1% accuracy (linear SVM) in test 

set; F1-score ~94%. AI used handcrafted 

features (mucosal atrophy patterns) rather than 

deep CNN

Chetcuti 

Zammit  

et al., 2020 

(23)

UK; 

retrospective

CeD patients 

with villous 

atrophy (incl. 

seronegative)

Patient-level severity 

prediction & CeD vs.  

SNVA differentiation 

(probabilistic ML model)

SBCE 

images

– – ~69% Higher Marsh score patients had more 

extensive SBCE lesions. Validation accuracy 

~69.1% for Marsh severity and ~69.1% for 

CD vs. seronegative VA, rising to 75.3% when 

accounting for class prevalence

Chetcuti 

Zammit  

et al., 2023 

(24)

UK & USA; 

prospective 

comparison

CeD adults (63) 

with SBCE

Whole-small-intestine 

disease burden mapping 

(ordinal 0–3 severity scoring 

by AI)

SBCE 

images

– – – Inter-observer agreement: Krippendorff’s 

α=0.924 among 3 experts, and AI vs. experts 

α≈0.93 (almost perfect). AI severity “curves” 

closely matched human readers, suggesting AI 

can reproducibly grade disease extent

AI, artificial intelligence; CeD, coeliac disease; CNN, convolutional neural network; ML, machine learning; SBCE, small-bowel capsule endoscopy; SNVA, serology-negative 

villous atrophy; SVM, support vector machine; VA, villous atrophy. 
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level study reported 100%/100% sensitivity/specificity, 
indicating that a triage filter can reliably elevate VA-like 
frames for expedited human review in suspected CeD. 
Beyond coeliac-specific work, AI has been widely evaluated 
in pan-indication SBCE studies, especially for triage and 

workflow optimisation. A summary of representative 
multicentre trials and meta-analyses is provided in Table 4.

Adjunct diagnosis: complementing serology and histology 

in equivocal adults

SBCE is already recommended as an adjunct when histology 

is contraindicated, non-diagnostic, or when disease extent/

complications are suspected. AI can strengthen this role 
by providing consistent, reader-agnostic detection of VA 
patterns and highlighting segments for targeted histology 

when subsequent procedures are feasible. In head-to-
head comparisons across SBCE indications, AI assistance 
enhances sensitivity without inflating false positives and 
particularly benefits non-expert readers. In a meta-analysis, 
AI-assisted juniors outperformed expert performance in 
conventional mode (sensitivity 99.2% vs. 91.1% in one 
included study) (28). In CeD-specific work, probabilistic 
models distinguishing CeD from SNVA reached 69.1% 
accuracy, improving to 75.3% after class-proportion 
priors were applied, illustrating the value of prevalence-
aware calibration when moving from curated datasets to 
mixed-prevalence clinics. AI support may help most adults 
with high pre-test probability, but equivocal serology 
or histology, where AI-flagged VA segments, including 
the bulb, can justify repeat or directed biopsies when 

appropriate. In patients for whom biopsy is contraindicated, 
AI-augmented SBCE can increase diagnostic confidence, 
while acknowledging that histology remains the reference 
standard for most adults. Performance remains modest 

for differentiating celiac disease from seronegative VA; 
however, probabilistic scoring offers more explicable 
outputs that can be weighed alongside serology, HLA status, 
and clinical context.

Safety: capsule retention risk and patency strategy

The rare but consequential risk of capsule retention 
dominates SBCE safety. A 2017 meta-analysis reported 

overall retention of ≈2%, rising to ~4% in suspected 
and ~8% in known IBD; patency capsule or computed 
tomography (CT) enterography prior to SBCE halved 
retention risk in high-risk cohorts (18). Contemporary series 

emphasise patency testing as a pragmatic gatekeeper, with 
extended protocols improving availability at the expense 
of longer pre-procedure time (32). In contrast to Crohn’s 
disease, small-bowel strictures are exceedingly uncommon 

in CeD, typically in refractory cases (33). For this reason, 
the baseline capsule retention risk is low; nonetheless, 
AI triage/monitoring does not alter mechanical risks, so 
standard safety pathways (patency imaging/testing when 

clinically indicated) remain unchanged. Multiple studies 
have quantified the baseline risk of capsule retention and 
the value of patency testing in high-risk populations. These 
data, including systematic reviews and recent extended-
protocol studies, are outlined in Table 5, supporting risk-
stratified use of SBCE in clinical practice.

Workflow and reading-time implications: service load, 

training, and quality assurance (QA)

SBCE reading is time-intensive and vulnerable to fatigue-
related misses; AI integration occurs at two pressure points: 
frame selection and first-pass classification. In the 2025 
meta-analysis of proprietary systems, AI assistance reduced 
review time from 56.7 to 4.7 min on average (a 12-fold 
increase) while increasing pooled sensitivity at unchanged 
specificity (28). The image burden presented to readers 
dropped by 24–51 times, allowing for concentration on 
ambiguous frames (28). A 2019 deep-learning model 
reported higher sensitivity with significantly shorter reading 
times than conventional analysis; subsequent multicentre 
work and randomized controlled trial (RCT)-style protocols 
have reinforced the efficiency gains (29). In real-world usage 
of a validated AI platform, centres documented substantial 
time savings with concordant detection performance 

vs. standard reading, supporting feasibility outside trial 

conditions (30). Together, these data justify positioning AI 
as a workload buffer in high-volume services and a training 
equaliser—in pooled analyses, AI-assisted junior readers 
matched or exceeded unassisted experts on sensitivity (28). 
The overall AI workflow for SBCE in CeD is illustrated 
in Figure 2, highlighting key stages from pre-processing to 
clinical output.

Equity and generalisability: who gets detected, and where 

does AI work?

The hidden burden is well documented. The HUNT4 
population screening revealed that most CeD cases were 
previously undiagnosed, with symptomatic and quality-
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Table 4 Pan-indication SBCE AI/workflow studies (mixed populations or triage)

Study (first 

author, year)
Indication/task Sample size

AI System 

(model)
Sensitivity (AI vs. standard) Reading time (AI vs. standard)

Spada et al., 

2024 (27)

Suspected small-

bowel bleeding 

(multicentre 

prospective)

133 patients NaviCam SB 

with “ProScan” 

CNN triage

73.7% vs. 62.4% detection yield for 

bleeding lesions (non-inferior and superior 

to manual)

3.8 vs. 33.7 min mean review time (~10× faster). AI 

missed fewer lesions (6.6% vs. 21% miss rate) and 

detected more lesions per patient

Cortegoso 

Valdivia et al., 

2025 (28)

AI vs. conventional 

SBCE reading 

(systematic review 

& meta-analysis)

6 studies 

(multi-

device)

Various 

proprietary AI 

assist systems

Higher accuracy & sensitivity with AI across 

studies (pooled diagnostic OR 10.3 vs. 7.4). 

E.g., junior readers with AI achieved ~99% 

Sens vs. ~88–91% for experts without AI

~4.7 vs. 56.7 min pooled mean reading time (≈12-fold 

reduction) with AI assistance, demonstrating markedly 

improved efficiency

Ding et al., 

2019 (29)

Multi-disease 

SBCE detection (GI 

lesions classifier)

5,000 

patients 

(validation)

Deep CNN 

(Ankon, 12-class 

model)

99.9% vs. 74.6% per-patient sensitivity (AI 

vs. doctors) for abnormalities; Spec ~100% 

vs. ~87%

5.9 vs. 96.6 min average reading time per case (AI 

vs. human). AI detected ~4,206 lesions with 99.9% 

sensitivity, far outperforming conventional review

O’Hara et al., 

2023 (30)

Real-world SBCE 

(OMOM capsule) 

in mixed GI cases 

(retrospective)

40 patients OMOM AI 

software (CNN)

98.1% vs. 86.2% per-lesion detection 

of significant findings (AI vs. standard)—

AI caught >98% of lesions vs. ~86% by 

manual reading

2.3 vs. 29.7 min mean reading time (AI vs. manual), 

saving ~27.4 minutes per study. Overall diagnostic 

conclusions were 100% concordant between AI-

assisted and standard reads

Mascarenhas 

et al., 2024 

(31)

Multi-device 

vascular lesion 

detection 

(angioectasia, etc.)

1,022 

exams

CNN trained 

on 7 capsule 

models (pan-

endoscopic)

86.4% (AI model sensitivity); 98.3% 

specificity for vascular lesions in validation

N/A (algorithm processes ~115 frames/second)—not a 

live reader study. Overall accuracy 95.0%, PPV 95.2%, 

NPV 95.0%. Demonstrated cross-device interoperability 

of the AI

AI, artificial intelligence; CNN, convolutional neural network; GI, gastrointestinal; N/A, not applicable; NPV, negative predictive value; OMOM, OMOM HD Capsule 

Endoscopy system [Jinshan Science & Technology (Group), Yubei, China]; OR, odds ratio; PPV, positive predictive value; SB, small bowel; SBCE, small-bowel capsule 

endoscopy; Sens, sensitivity; Spec, specificity. 
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of-life gains on a gluten-free diet after case-finding (3). 
Diagnostic equity is a specific concern: in a US tertiary 
centre, Black patients with histology-consistent CeD were 
more likely to have negative serology, potentially excluding 
them from current adult pathways; an accompanying 

editorial highlighted algorithmic and systems contributors 

to missed diagnoses (4,34). In this context, a visual, 
morphology-based adjunct like SBCE—especially when 
AI-assisted—may help surface disease in groups at risk of 
serology-negative presentations, provided thresholds and 
outputs are calibrated to realistic prevalences.

Generalizability across devices and centres. SBCE AI 
research historically used single-centre, single-vendor 
datasets. Newer work demonstrates multi-brand, multi-
device training for lesion detection across pan-endoscopic 
capsules, addressing technological interoperability—
a prerequisite for wide rollout (31). Equally, label 
standardisation matters: the I-CARE Delphi consensus 
provides operational definitions for atrophic SBCE lesions 
(scalloping, mosaic pattern, loss of folds, nodularity). 
Prospective adoption should reduce inter-annotator noise 
and support cross-site learning and testing (26). 

Limitations and future directions

Current AI applications in SBCE for CeD face several 
significant limitations that must be addressed for successful 
clinical implementation. These include small, single-centre 
datasets that limit generalisability, inconsistent labelling 

protocols across studies, risks of data leakage in model 
development, and uncertain performance across different 
capsule devices and patient populations.

• Triage

• Burden mapping

• Equity: serology-

negative groups

• Workflow: time 

savings

• Monitoring: disease 

extent

AI- 

enhanced 

SBCE

SBCE for 

extent/prognosis

Serology Endoscopy + Biopsy

Figure 2 Coeliac disease diagnostic and monitoring pyramid. AI, 
artificial intelligence; SBCE, small-bowel capsule endoscopy.
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Future research priorities should focus on multicentre, 
patient-wise external validation studies, developing 
harmonised I-CARE lesion definitions, implementing 
prevalence-aware calibration methods, equity-aware 
evaluation frameworks, and vendor-agnostic deployment 
strategies. Spatial mapping of mucosal changes in CeD 

using colour-coded small bowel maps to illustrate the 

distribution and severity of VA is a promising future 
direction. Similar frameworks have been applied in 
ulcerative colitis to depict segmental disease burden (35,36). 
Development of large-scale, publicly available annotated 
datasets in CeD is essential to enable such advances.

Conclusions

AI-augmented SBCE represents a promising advancement 
in CeD diagnosis and monitoring, offering potential 

improvements in efficiency, consistency, and accessibility. 
However, successful implementation requires careful 
attention to safety protocols, equity considerations, and 
the maintenance of human oversight in clinical decision-
making. As this technology evolves, continuous evaluation 
of its real-world performance and impact on patient 

outcomes will be essential.
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