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Abstract 

This paper attempts to take a comprehensive look at the challenges of representing the spatio-temporal structures 
and dynamic processes that define a city’s overall characteristics. For the task of urban planning and urban opera-
tion, we take the stance that even if the necessary representations of these structures and processes can be achieved, 
the most important representation of the relevant mindsets of the citizens are, unfortunately, mostly neglected.  After 
a review of major “traditional” urban models of structures behind urban scale, form, and dynamics, we turn to major 
recent modeling approaches triggered by recent advances in AI that enable multimodal generative models. Some 
of these models can create representations of geometries, networks and images, and reason flexibly at a human-com-
patible semantic level. They provide huge amounts of knowledge extracted from huge collections of text and image 
documents and cover the required rich representation spectrum including geographic knowledge by different 
knowledge sources, degrees of granularity and scales.  We then discuss what these new opportunities mean for cop-
ing with the modeling challenges posed by cities, in particular with regard to the role and impact of citizens and their 
interactions within the city infrastructure. We propose to integrate these possibilities with existing approaches, 
such as agent-based models, which opens up new modeling spaces including rich citizen models which are able 
to also represent social interactions.  Finally, we put forward some thoughts about a vision of a “social AI in a city 
ecosystem” that adds relevant citizen models to state-of-the-art structural and process models. This extended city 
representation will enable urban planners to establish citizen-oriented planning of city infrastructures, to make them 
into inviting environments that reconcile and foster human culture, city resilience and sustainability.

1 � Introduction: modeling cities – a multifaceted 
challenge

The complexity of cities makes their modeling into a mul-
tifaceted challenge, arising from the numerous perspec-
tives to be covered by models.

Historically, the perhaps earliest city models started 
with pictures or crude maps to aid finding one’s way 
through the city. With increasing size and complex-
ity of cities, along with improved technical means, city 
maps improved steadily, with the first printed maps of 
major cities such as Rome, Antwerp, and Paris appear-
ing in Europe between the 15 th and 16 th centuries, with 
printed city maps in China dating back at least to the 12 
th century, with maps carved in stone even older (Cheng 
2022). These may be considered as the earliest proto-
types of spatial city models that already also cared about 
visualization of and semantic information about promi-
nent landmarks, addressing in their essence very similar 
questions as the much more detailed city models of today 
(Fig. 1).

Modern cartography had its beginnings around the 
18 th century, followed by major advances, such as 
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triangulation networks and aerial image capture in the 19 
th century, and finally the availability of digital comput-
ers in the 20 th century, enabling geospatial information 
systems and the modern digital city maps of our time. 
The addition of modern Building Information Mod-
eling (BIM) systems towards the turn of the millennium 
extended these 2D models into fully three-dimensional 
city models.

The early city models were essentially static and 
focused on modeling shape (but maps of other features, 
such as weather maps, or of the spatial distribution of a 
wide range of entities, including population, did exist as 
well). However, these models were purely descriptive and 
always focused on a single particular instance (such as a 
map of Rome). However, visualization triggers for more 
flexibility, e.g., to realize different views with regard to 
perspective, scale, illumination, weather conditions or 
seasons in a year. All this requires a model that can ren-
der or simulate a variety of views under different condi-
tions. Today, such view simulation can happen instantly, 
including simulated changes to the geometry or even 
presence of entire buildings or other structures. We owe 
such models to our reasonably accurate knowledge of the 
physical laws that are involved when surfaces reflect light 
to form a picture for an observer, along with powerful 
computing hardware to simulate the imaging process.

We also may wish models that reflect other properties 
of cities, such as traffic flows, resilience against flooding 
or heat, pedestrian flows, and many others. Such mod-
els help us explore consequences changing the city itself, 
for instance, by generating alternative plausible city vari-
ants “of a certain kind” (e.g., a mid-sized town in a par-
ticular region with a particular mix of building styles for 
its houses). This includes making predictions, e.g., gen-
erating probable development paths of a given (true or 

hypothetical) city in the future. Finally, modeling vari-
ability can help us synthesize developmental patterns of 
an entire range of cities that share selected similarities at 
present.

All these modeling directions differ from our initial 
visualization example by involving processes for which 
we do not know good law-like representations to imple-
ment a simulation. This problem becomes even more 
acute when we turn to the impact of the citizens since 
the actions of the citizens are a major, if not the strong-
est, driver of temporal change. Citizens act in very com-
plex and often highly interdependent ways, giving rise 
to complex patterns of change at many different time 
scales, from hours to decades. Although some aspects 
of their actions may admit aggregated models based on 
average behavior, there are always macroscopic changes 
in a city that have originated from decisions of only few 
or even single individuals: the physical infrastructure is 
much simpler than the main drivers of its dynamics, the 
citizens.

This paper will first offer (Section 2) a view on the land-
scape of existing models, along their path from largely 
static geometry models to dynamic models, with an 
emphasis on major ideas, such as fractal geometry, cellu-
lar automata, dynamical systems, digital twins and multi-
agent models, and how these attempts led to accounting 
for the important role of citizens. Then it will shift the 
focus to generative models and recent advances of AI that 
have enabled their construction in a purely data-driven 
way (Section 3). Our emphasis will be on the capabilities 
of models that can generate complex data objects, such 
as images or other spatial structures, and, particularly, on 
Large Language Models (LLMs). These models can learn, 
capture huge amounts of knowledge and bring it to bear 
on solving tasks that can be specified in natural language, 

Fig. 1  Left: Ancient printed map of the city of Nanjing (around 12 th century (Theobald 2010)). Right: 3D model of part of a city model, procedurally 
generated with Blender (Blender, 2024) and the CitiGen software plugin (Couturier 2024)
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or even in multimodal ways that admit combinations 
with images and sound. Finally, we will look at the new 
opportunities and prospects (Section  3) that arise from 
these innovations and present some thoughts on a vision 
of a “social AI in city ecosystems” that will enable urban 
planners to establish citizen-oriented planning of city 
infrastructures and to make them into inviting environ-
ments that reconcile and foster human culture, city resil-
ience and sustainability.

2 � The landscape of urban models: scale, form 
and dynamics

The complexity of cities inevitably calls for many models, 
each one addressing a subset of features that contribute 
to characterizing a city. These models will come in many 
variants, but they all somehow have to say something 
about how cities vary with scale, in spatial form, and 
how they vary in time. Moreover, what they have to say 
can be represented at different levels of abstraction or 
granularity.

Role of scales.  Cities and their structures span across 
many scales, both in the spatial (meters to kilometers) 
as well as in the time dimension (minutes to hours, days 
and months). Spatial and temporal scales are linked in 
many ways, sometimes following simple patterns, such as 
changes to large structures usually taking more time to 
happen.

Complex couplings arise through the spatial coupling 
of moving entities, such as pedestrians and cars. These 
couplings and the time scales of their dynamics can vary 
abruptly when certain “order parameters”, such as density, 
or cross critical thresholds are met (Helbing 2001). Such 
“emergent” or “critical phenomena” can make it hard or 
impossible to confine a model to a single time scale and 
instead one must strive for models that can capture such 
critical phenomena at the “edge of chaos” (Chen 2009). 
Moreover, these conditions are not exceptional but a fre-
quent characteristic of complex systems (Siegenfeld and 
Bar-Yam 2020) and actually prerequisites for important 
capabilities, such as resilience and innovation. Many ele-
ments of a city have memory-like properties, which range 
from hysteresis over simple adaptation to sophisticated 
planning and anticipation, which can act in complex, 
stabilizing or de-stabilizing ways, e.g., when the decision 
behavior of citizens comes into play, and extend to very 
long time scales, e.g., due to citizens’ ability to create and 
pursue long-term plans, or slow processes such as demo-
graphic change.

Scaling laws  express important aspects of scale. With 
regard to cities, properties such as area, energy consump-
tion, or various connectivity measures (e.g., total road 
length), necessarily vary as a function of city size (e.g., 
measured by the number p of inhabitants). It turns out 
that this variation often takes the form of a power law for 
the quantity of interest: A = pd , where for many cases, 
the expected values for the exponents d deviate from 
their “naive” expectations. These deviations often indi-
cate efficiency gains, e.g., sublinear ( d < 1 ) growth behav-
ior for quantities such as city area or total road length 
(Molinero and Thurner 2021; Chen 2021). The resulting, 
usually non-integral exponents expose deviations from 
familiar, 1D or 2D geometries of road networks or occu-
pied city area, and indicate linkages between scaling laws 
and models of urban form (see below).

Models of urban form.  Maps primarily embrace the geo‑
metric aspects of a city, in the form of 2D, 3D or fractal 
models. Models can be further distinguished by their 
focus on land usage (2D areas), connectivity (graph-based 
representations), buildings (3D structures) or combina-
tions thereof (e.g., planar maps with street networks and 
embedded areas). These models differ in their extent, 
e.g., buildings are very localized whereas streets or other 
transportation facilities can extend across wide ranges.

Statistical models can simplify local detail below a par-
ticular scale into averaged local bulk properties, e.g., of 
city patches. This can make shape properties, such as, 
e.g., distance or area, scale dependent. Fractal models 
(see below) offer an elegant solution to represent such 
nested-ness of detail.

Interaction and proximity.  Interactions between citi-
zens are crucial for any city and are usually sensitive to 
proximity. Land features such as ridges, rivers or lakes, or 
man-made structures such as fences and building com-
plexes can impact on travel times, effectively “distorting” 
geometric distance (Barnsley 2014)). Urban road and 
transportation networks add further reshaping effects 
on spatio-temporal characteristics of interactions. The 
resulting complex intertwining of many factors leads to 
significant deviations of proximity from what would be 
expected according to Euclidean geometry.

Graph‑ and network‑models.  With the advent of wire-
less networks, which complement physical proximity 
with a completely new layer of “virtual” proximity, net-
work and graph models, cities have become augmented 
with an extremely important new layer of transport 
structures that needs to be included in urban modeling.
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Graph and network models offer a unified approach to 
model both the physical as well as the information trans-
port networks in this layer as general connectivity struc-
tures, with geometric analogs to distance, connectedness, 
and centrality. Because of their discretized nature, graphs 
are also very suitable to represent topological properties, 
such as connectivity, which are more coarse-grained than 
geometry. Graphs with weighted edges can also con-
veniently represent travel distances or times instead of 
Euclidean distance (Sun et al. 2012). Using such models 
can avoid overfitting while still representing important 
properties, such as reachability or clusterings.

Fractal models  permit a unified treatment of urban 
form, proximity structures and scaling properties (Batty 
and Longley 1986; Batty and Xie 1996; Chen 2021). 
Moreover, these models have been observed to also cap-
ture intriguing aspects of the growth of cities (Batty et al. 
1989; Shen 2002; Zhang et al. 2022). Fractal geometry can 
be characterized in several ways, for example by fractal 
dimensions which describe how some size measure S 
(such as length, area, volume) associated with a geomet-
ric object behaves under a linear change of scale. This is 
described by a power law S(L) ∝ LD where L denotes the 
scaling factor and D> 0 is the dimension that character-
izes the geometry of the object. For fractal objects, this 
dimension can deviate from the usual integer values.

Besides area, other size measures, such as the total 
length of road or transportation networks, or the length 
of coast lines, also exhibit fractal scaling properties 
indicated by non-integer D dimensions. As a result, the 
concept of fractal geometry has been found to be use-
ful for characterizing the scaling properties of a variety 
of urban structures (Chen 2021; Jahanmiri and Parker 
2022).

Self‑similarity and procedural city models.  Fractal 
scaling behavior is closely linked to the property of self-
similarity – i.e., when parts of a shape resemble a scaled 
version of itself or some part of it. This can be turned 
around, creating a shape from suitably (either determin-
istically or stochastically) re-arranged copies of a number 
of initial “generators”, and repeating this procedure recur-
sively. Such constructions can be shown to lead to geom-
etries with fractal dimensions that can be directly com-
puted from their recursive construction process. They 
turn out to offer approximations to many shapes that are 
encountered in nature (Barnsley 2014; Mandelbrot 1983), 
as well as a number of man-made artefacts (buildings, 
cities, road networks). There are different mathematical 
frameworks to formalize the generative process, such 
as Lindenmayer- or L-Systems (Prusinkiewicz 1986) or 

iterated function systems (Barnsley 2014). They triggered 
the seminal work of Parish and Müller (2001) which led 
to increasingly refined procedural city models (Kelly and 
McCabe 2006; Vanegas et al. 2009; Kim et al. 2018), and 
sophisticated city modeling engines, such as CityEngine 
(Roumpani 2022) which has become widely available in 
the commercial ESRI software (ESRI 2024). Starting from 
a given geographical area with land features and addi-
tional constraints, such as targeted population density, 
these models can be parametrized to generate house, 
land use, and street patterns that cover the given area 
with an arrangement of houses and streets that follows 
the prescribed constraints. In a subsequent step, the 2D 
geometry plan can be augmented with further features, 
such as building heights and texture choices for walls and 
roofs (an illustrative result is depicted in Fig. 1 (right)).

Qualitative Spatial Representations (QSR)  Cohn and 
Renz (2008); Chen et al. (2015) is a well developed field 
which is concerned with the representation of qualitative 
spatial information and reasoning with it. In natural lan-
guage, spatial information is usually represented quali-
tatively (using prepositions such as on, in, left of, part 
of, under, touching, east of,...) and many formalisms have 
been developed to represent such information. Each of 
these calculi consists of a set of small finite set of relations 
– e.g., one well known calculus (RCC) for handling topo-
logical information consists of eight jointly exhaustive 
and pairwise disjoint (JEPD) base relations allowing one 
to specify whether two regions are disconnected, touch-
ing, partially overlapping, equal, or part of the other one 
(either touching at the boundary or not); RCC has been 
implemented in GeoSPARQL. Other calculi focus on rep-
resenting information about shape, size, directions and 
may also explicitly handle the case of regions with vague 
boundaries which is a common occurrence in geographic 
situations (e.g., exactly where is “downtown”?). Each cal-
culus has associated specialized inference mechanisms, 
in particular an efficient way to compute the composition 
of two relations – e.g., if one knows that region x is part 
of region y and region y is part of region z, then one can 
infer that x must be part of z. Using composition one can 
not only infer relationships not explicitly in a knowledge 
base, but also check if a database of facts concerning a set 
of spatial entities is consistent or not – this might not be 
the case if the information has been provided by different 
agents or sensors, or at different times, for example.

Spatial economics.  Another class of models employs 
metric spaces with a continuous distance metric to rep-
resent interactions in cities with partial differential equa-
tions, similar to field equations in physics. Taking fur-
ther guidance from the idea of gravitation choices for 
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the placement of cities or economic entities are modeled 
as if seeking minima of potential energy in a fictitious, 
gravitation-like field of attractive forces between entities 
for which proximity has an economically favorable effect. 
This has given rise to spatial models of urban econom-
ics that offer an attractive semi-analytic middle ground 
between highly abstract conceptual and extremely 
detailed simulation models (Redding and Rossi-Hansberg 
2017).

Other spatial models.  Spatial cluster structures are the 
focus of the space syntax approach to city modeling (Hill-
ier et al. 1976; Van Nes and Yamu 2021) which is a family 
of techniques for representing and analysing spatial rela-
tionships, especially in an urban context – it views cit-
ies as networks of spatial entities formed by the placing, 
grouping and orientation of buildings, enabling analyses 
of how streets interact spatially with all the other streets 
in a particular urban setting. It can be used to understand 
and predict the effects of spatial configurations on social, 
economic, and environmental behaviors within urban 
environments. By examining how streets, buildings, 
and public spaces are interconnected, space syntax pro-
vides insights into the movement patterns, accessibility, 
and spatial usage within a city. It thus has the potential 
to help urban planners and architects design more effi-
cient, navigable, and sustainable urban environments by 
revealing the underlying spatial structure that influences 
human behaviour. A historically prominent example is 
central place theory (Chen and Zhou 2006) that attempts 
to capture urban structure in a hierarchical set of central 
places and their neighborhood relationships.

City development and dynamics  has been a long-
standing concern of urban researchers. Diffusion-limited 
aggregation (DLA) (Witten and Sander 1983; Halsey 
2000) is an early example of a model that takes the degree 
of simplification to the extreme. It models a growth 
dynamics arising from a large number of particles mov-
ing along the random paths of Brownian motion.

This dynamics causes an initial seed to grow into a den-
dritic pattern that can mimic the development of fractal 
city shapes over time (Fotheringham et  al. 1989; Batty 
et al. 1989). This has triggered numerous studies of self-
organized models for growth processes in nature for their 
capability to also mimic dynamical processes observed 
in the development of urban structures (Xu et  al. 2007, 
2021).

Early dynamical city models.  Dynamical city modeling 
originated with the classical Urban Dynamics model 
(Forrester 1970; Moody 1970). It uses a parameterized 

urban space of fixed size with a population which distin-
guishes managers, skilled and unskilled workers. These 
seek dwellings in three types of city areas and get their 
wages from a number of firms categorized into new, 
mature and old firms, reflecting the different needs of 
the different worker types. The model is not a spatial 
model in that it uses aggregated quantities for which it 
sets up rate equations for their temporal changes. The 
rate of these changes is specified with equations inspired 
by classical engineering control systems, emphasizing 
the important role of closed feedback loops. Although a 
major advance at its time, many of the limitations of this 
model were already noted by Forrester himself, amongst 
the most severe perhaps that the city cannot expand and 
that the action response patterns of the agents are taken 
as constant over an entire multi-year simulation time 
span.

Cellular Automata (CA) models  provide an elegant 
and intuitive approach to connect dynamics with spa-
tial structure. Popularized with Conway’s “Game of Life”, 
Tobler (1979) then brought the framework to geographic 
modeling. Space is modeled as a grid (or a more general 
type of graph) of cells. Each cell holds a “state variable” 
describing local properties (such as type of land use, pop-
ulation density etc.) of the corresponding land patch at 
a particular point in time. A “transition rule” then speci-
fies, for each cell, its (possibly altered) state at the suc-
cessive time step, using only the current state of the cell, 
and the states of cells within a certain spatial neighbor-
hood. Applying this rule to all cells iteratively creates 
the dynamics of the system. The remarkable complexity 
of the spatio-temporal patterns that can arise even from 
seemingly simple rules and neighborhoods have led to a 
wide adoption of CA models for geographic and urban 
modeling (White and Engelen 2000; Isinkaralar and Varol 
2023). Identifying the rule application with decisions of 
some “agent” connects CA models with the wider class of 
agent based models.

A famous example is the Schelling model and its sub-
sequent variants (Jensen 2022). The model consists of 
two populations of agents (e.g., “white” and “black”) that 
make repeated decisions on whether to stay in their cur-
rent location or move to a different vacant place in the 
grid, with this decision only dependent on the agent dis-
tribution in their neighborhood. When the considered 
alternative place has a more preferable (as defined by a 
utility function) neighborhood, they move; otherwise 
they stay. Simulating this model has consistently shown 
that the model converges to a self-organized demixing of 
the population into homogeneous domains. Subsequent 
studies allow for more realism (such as including market 
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mechanisms for house prices, non-symmetric preference 
functions, bounded rationality of agents, and generaliza-
tion to more than two-component ethnic mixtures) have 
reproduced this type of behavior for a wide range of set-
tings (Clark and Fossett 2008).

Dynamical models of transportation systems  address 
another key urban structure. Travel demand models 
aim to predict the response of transportation demand 
to modifications of the parameters of the transportation 
system and the travelers (Bhat and Koppelman 1999). 
Trip-based travel demand models, which were devel-
oped in the late 1950’s, used individual trips as the unit 
of analysis. They assumed that it was possible to predict 
travel behavior based on household data averaged over 
a zone. Activity-based travel demand models devel-
oped in the late 1970 s understand travel as a derived 
demand from the need to pursue activity distributed in 
space (Axhausen and Gärling 1992) and hence focus on 
household and personal activity scheduling rather than 
trips isolated from human behavior. In recent years, 
deep learning approaches have been proposed for both 
short- and long-term traffic forecasting (Yin et  al. 2022; 
Jiang and Luo 2022). These data-driven methods mine 
the complex non-linear spatial-temporal patterns of traf-
fic data to make traffic predictions. However, such data 
is only collected infrequently and expensively from traf-
fic surveys resulting in out-of-date predictions, although 
call records from cellular communication networks may 
provide an alternative (Yin et al. 2018; Wang et al. 2024b).

Agent‑based models  employ mobile agents located in 
space in order to arrive at finer-grained models that can 
address spatio-temporal urban and land use phenom-
ena (Huang et al. 2014; Zhang 2021; Crooks et al. 2021). 
The simulated agents are endowed with some form of 
behavior that has to be specified, ranging from extremely 
simple to highly sophisticated and only limited by the 
computational resources of the simulator and the imagi-
nation/creativity of the modeler.

Typically, these agent-based models exploit Cellular 
Automata, where agents can change between a small 
number of states and are fixed or limited to simple moves 
on some discrete grid. Their state changes follow a set 
of rules that mimic interactions with a (usually) local 
neighborhood. The choice of neighborhoods and agent 
rules can vary widely and is critical for the performance 
of the model. While some models, such as the afore-
mentioned Schelling model, create rules from the intui-
tion of the researcher, models intended for quantitative 
predictions need rules carefully tuned to data. This, and 
also to avoid any bias from “handcrafting” rules, requires 

the construction of agents in a more data driven way (e.g. 
using regression approaches, “population generation 
methods” (Sun and Erath 2015) or deep learning).

Compared to human behavior (which includes adap-
tivity, memory, sensorimotor skills, social interaction, 
creativity and more), even the classical agent models still 
appear strongly simplified. However, such simplification 
can also be designed systematically in order to inves-
tigate which behavioral “components” (e.g., automatic 
obstacle avoidance when moving) contribute to which 
aspects of city dynamics (e.g., efficient pedestrian stream 
dynamics).

Digital Twins (DTs)  have been developed and success-
fully used as a comprehensive planning, analysis, and 
control concept for complex cyber-physical systems, e.g., 
in manufacturing (Mihai et  al. 2022). Subsequently, the 
same DT approach was also taken up for city planning 
(Ferré-Bigorra et al. 2022), another complex area where it 
is of utmost importance to avoid costly errors and model 
the (future) reality as closely as possible, despite the 
numerous interrelationships between the many different 
aspects of a city (Herzog et  al. 2023). In addition, these 
model DTs must be capable to model societal necessi-
ties such as an emphasis on sustainability and reaching 
relevant UN Sustainability Development Goals (SDGs) 
and to be updatable with not only new data but also new 
functionalities (Herzog et al. 2023).

While Digital Twins offer a big step towards agents 
with rich behavior based on a sophisticated model, there 
are still major gaps when it comes to a comparison with 
real humans populating an urban environment, and 
LLMs offer a potential solution to help bridge such gaps. 
Wang et al. (2024b) surveys the literature on integrating 
LLMs and agent technology; several of these approaches 
(e.g., BabyAGI, CAMEL, Multi-Agent Debate, MetaGPT) 
are based on multi-agent systems that support collabo-
ration between agents to accomplish a common task. 
AutoGen (Wu et al. 2023) is an open source framework 
for building multi-agent systems, where agents can inte-
grate humans, tools, and LLMs, or combinations thereof. 
Agents can use many of the capabilities of advanced 
LLMs, such as role-playing, state inference, making pro-
gress based on conversation history, providing feedback, 
adapting from feedback, and coding.

The combination of LLMs and agent technology opens 
up a wide range of promising applications. For example, 
LLMs can be used to decompose potentially complex 
tasks into simpler subtasks organized as a workflow. To 
execute the subtasks, the LLM generates code that is 
passed to agents, which have the ability to execute tools 
through code execution (Li and Ning 2023; Mansourian 
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and Oucheikh 2024). In addition, agents and LLMs can 
work together to solve potentially complex optimization 
or simulation problems, where the LLM generates solver 
code based on a natural language query and translates 
the solver result into a natural language response (Li et al. 
2023a). Finally, an agent can assist urban planners in per-
forming complex tasks such as text review, auditing, or 
evaluation, and assist them in tasks such as reverse geoc-
oding, knowledge graph construction, and image cap-
tioning (Zhu et al. 2024a).

3 � What AI generative models can do for city 
models

Advances in AI and machine learning have greatly 
impacted on our modeling tools in general. Before these 
developments, our only way to create models relied on 
careful manual design. This usually required significant 
insights into the to-be-modeled processes, ideally dis-
tilled into mathematical equations to provide the basis for 
a computational model. The role of data was limited to 
identify suitable settings of the (usually few) parameters 
of the model to make it fit given data and to predict new 
data about the phenomenon of interest. The flexibility of 
these parameterized models was severely limited by the 
relatively low number of their parameters. Increasing this 
flexibility by introducing more parameters usually led to 
overfitting and poor performance on new data. On the 
other hand, for processes whose inner structure or basic 
laws were basically unknown, models with such limited 
flexibility were very difficult or even impossible to adapt 
to fit the empirical data. As it is well known, this changed 
around a decade ago when it was discovered (in the con-
text of models for object recognition from images (Kriz-
hevsky et  al. 2012)1) that deep neural networks did not 
pose this overfitting problem of traditional parameter-
ized models, opening the avenue to what is now known 
as data-driven modeling. In this approach, the model 
emerges almost completely2 as the result of training a 
deep neural network on a training data set, where usually 
both the deep neural network and the training data set 
must be extremely large to make the method work.

This revolution has greatly pushed forward the fron-
tiers of modeling in many fields, and notably in urban sci-
ence among them. Here (as well as in many other fields), 
a particular impact comes from the important subclass 
of generative AI models that can generate complex data 
objects, such as images, texts, or also almost any other 

kind of complex data item, provided that training data 
sets can provide enough examples.

3.1 � Generative models for images, 3D structures and maps
Many aspects of urban modeling are related to visualiza-
tion, a process governed by well-known physics. How-
ever, details of surface properties that impact appearance 
remain cumbersome to model. Here, deep learning mod-
els have been able to substitute physics-based modeling 
with purely data-driven visualization models that learn 
from large image databases. Most of these models origi-
nate from Generative Adversarial Networks (GANs, 
Goodfellow et al. (2014)).

GANs provide a very versatile class of data-driven gen-
erative models for images (and other high-dimensional 
objects) that are generated from having two networks 
that learn in an opposing (“adversarial”) way from given 
data (such as an image data base): a first network (the 
final generator) transforms its input (in the simplest case 
some random vector) into a data sample (e.g., an image). 
Its learning task is to respond to each input with a sam-
ple that resembles the samples (e.g., images) in the data 
base. A second network, the discriminator, receives sam-
ples randomly chosen from responses of the generator 
or from the database and has to learn the binary deci-
sion whether they stem from the former or from the lat-
ter. Failing to make the right decision is used as a reward 
for the generator, thereby driving its learning towards 
the production of samples that become more and more 
indistinguishable from true database elements.

This technique has now become an almost stand-
ard way to enable the generation of complex data items 
(of which images are just one major case) from many 
domains, without requiring any explicit specification of 
the desired result except for providing a large database 
of examples (Hong et al. 2019; Gui et al. 2020). By con-
ditioning the learning of the two subnets on a shared 
steering input, the output can be controlled in a flexible 
manner. This allows transformations between vastly dif-
fering representations of data items to be implemented. 
For example, the control input can be image sketches 
or stylized facade schemas (Isola et  al. 2017; Bachl and 
Ferreira 2019), which the generator then transforms 
into photorealistic images. Other recent works demon-
strate the generation of 2D designs of house floor plans 
(“House-GAN”, Nauata et al. (2020)) or entire 3D struc-
tures for buildings (“Building GAN”, Chang et al. (2021)) 
from simple text-based specifications. These techniques 
have been elaborated in Quan (2022), allowing even non-
experts to generate entire city street layouts that mimic 
the urban form of a provided example.

Recently, another generative approach, diffusion mod‑
els, has emerged that can produce similar results. It is 

1  A milestone paper with more than 130000 citations
2  The only handcrafted specifications being the choices of the neural net-
work architecture and the training data set plus a handful of hyperparam-
eters.
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based on a different principle, exploiting the computa-
tional inversion of a diffusion process. The idea is to gen-
erate training sequences, each of which is a sequence of 
progressively noisy versions of some different starting 
image, with each sequence ending when the final image 
can no longer be distinguished from pure noise. The 
generator is obtained by training a predictor network 
on the reversed sequences. This makes the trained pre-
dictor able to iteratively transform even pure noise into 
an image from the image space used to construct the 
training sequences (Song et  al. 2020). Like GANs, this 
approach has become extended with conditioning inputs 
and further refinements and has begun to replace GAN 
generators due to its potential for even higher image 

quality (Dhariwal and Nichol 2021) – for a survey see 
Yang et  al. (2023). Again, it has become combined with 
front-ends for flexible text-based control of image gen-
eration, thereby often drawing on large language mod-
els (LLMs) as pioneered by GPT and its successors (see 
below). These approaches are already available in a mul-
titude of commercial (e.g., Midjourney (2024)) or free 
(e.g., Stable Diffusion) platforms with convenient text-
based interfaces to make the image generation process 
also feasible for non-experts (see Fig. 2 for an example). 
It is important to note that these results come without 
any guarantees about physical feasibility since the models 
were only trained with visual images, not with any deeper 
representations to capture static or other physical laws.

Fig. 2  Futuristic city rendered with Midjourney using a specific text prompt (Imagine you are an urban designer. Create a view of a city 
with a harmonic balance between architecture and green zones. The buildings should use curved surfaces and reflect a sharing of style 
without being monotonous. Use building smooth, curved forms that blend well with forms of nature. Make the buildings stand out aesthetically 
by giving them bright colors. Render the cityscape in mild late afternoon sunlight. Avoid skyscrapers and plain rectangularity. Pay careful attention 
to each of the requirements)
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Besides visualization, data-driven approaches do 
advance into numerous other tasks that are important 
for urban modeling, including generation of land use 
patterns from surrounding spatial context to aid urban 
planning (Wang et  al. 2023a), building layout genera-
tion (Jiang et  al. 2023), wind flow modeling (Kastner 
and Dogan 2023), floor plan design from human activity 
patterns in buildings (Wang et al. 2021), lane extraction 
from aerial images (Ruiz et al. 2024), or generative design 
of walkable cool areas based on GAN-generated heat 
patterns (Li et  al. 2024b). Other works demonstrate the 
design of complex “citiscapes” populated with 3D build-
ing models, streets and lakes from aerial images (Zhang 
et  al. 2020), or the “CityDreamer” (Xie et  al. 2024) that 
can generate spatially unbound 3D cities including the 
rendering of visual appearances for their 3D-buildings.

3.2 � Large language models
Large Language Models (LLMs) (Devlin et  al. 2019; 
Brown et al. 2020) are a form of so called generative AI. 
They are neural networks with billions of parameters (the 
weights of the interconnections between nodes in the 
network). These parameters are set by training the model 
of very large amounts of text to predict what might come 
next given any prompt. Although simple next word pre-
diction seems a very primitive facility, in fact LLMs 
have displayed remarkable fluency and ability to answer 
seemly any question on any topic. They are sometimes 
termed “foundation models” since they can potentially be 
used as the foundation for an AI system in virtually any 
domain or application area, perhaps just requiring fur-
ther “fine tuning” or careful prompting strategy (i.e., the 
precise wording and form of question given to the LLM). 
The performance of LLMs has improved dramatically in 
recent years with many claims made about their abilities 
including their ability to reason (Creswell and Shanahan 
2022; Huang and Chang 2023; Kojima et  al. 2022), for 
commonsense (Belussi et  al. 2022), and their ability to 
pass tests designed to test human ability, many point to, 
possibly fundamental, limitations in their abilities, and 
suggest that they alone will not lead to Artificial Gen-
eral Intelligence (AGI) (Baum 2017), but that some kind 
of neuro-symbolic AI (d’Avila Garcez and Lamb 2023) 
might be a more likely route to AGI; it has already been 
shown that, for example using LLMs to translate a prob-
lem into a logical formulation and then using an external 
reasoner can improve performance (e.g. Li et al. (2024a)). 
The problem addressed in Li et al. (2024a) was a spatial 
one based on the StepGame benchmark dataset. The 
native LLM performance was less good than when the 
external reasoner was employed in conjunction with the 
LLM. There have been other demonstrations of the dif-
ficulties that LLMs have with spatial reasoning, including 

the difficulty of reasoning about cardinal directions, e.g., 
Cohn and Blackwell (2024), particularly intercardinal 
directions (NE, SW, NW, SE).

A more recent development is the emergence of multi-
modal LLMs (MLLMs) – which can for example, pro-
cess and generate images as well as just text (Zhang et al. 
2024). A recent survey is Zhang et  al. (2024). In princi-
ple, multi-modal LLMs include other kinds of modali-
ties, for example speech input and generation, but we 
will just consider vision-language MLLMs here. There 
are two aspects to consider: (1) MLLMs which can gen-
erate images given text prompt and (2) MLLMs which 
can accept images or other kinds of visual inputs and 
analyse them, and then respond to textual prompts. We 
have already seen the impressive abilities of systems such 
as Midjourney and DALL-E to generate images to order 
in Fig.  2. However, their map drawing abilities are very 
poor – see, for example, Fig. 3 – there are so many things 
wrong with the map including the fact that the requested 
route is not shown that one does not know where to start.

MLLM’s capabilities regarding the analysis of images 
and maps in particular have been improving. For exam-
ple, consider the map displayed in Fig. 4 and the descrip-
tions generated by ChatGPT- 4o which can be found in 
the Appendix as Fig. A1. The description is generally 
very good and accurate, though it contains a few subjec-
tive opinions or surmises about the region not backed up 
by the image (e.g., the School being an important com-
munity institution, and that the bridge is a crucial piece 
of infrastructure) – both are in fact true but cannot be 
inferred directly from the map – though it is possible the 
LLM used information gathered during training to make 
these statements.

However, when it comes to interpreting sketch maps 
LLMs seem to struggle more – see Fig. 5 and the descrip-
tion given of it in the Appendix, Fig. A3. Some parts of 
the description are good, in particular all the text relating 
to the roads – except for the purple road which is ignored 
in much of the output. However, the locations of the 
buildings are mostly wrong. Moreover, if asked to plot a 
route from the Fishmonger to the School, many mistakes 
are made (e.g., one should not go past the newsagent, one 
should turn right not left on to the red road – see Fig. A2 
in the Appendix).

3.3 � Geo‑LLMs
In the previous section we looked at LLMs generally and 
their abilities to reason with or generate spatial informa-
tion and maps. In this subsection we report on some of 
the growing body of research into geo-LLMs. For exam-
ple, GEOLM (Li et al. 2023b) aims to connect geo-entity 
mentions in text to geospatial information extracted 
from geographical databases; the authors demonstrate 
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that GEOLM has some capability to support toponym 
recognition, toponym linking, relation extraction, and 
geo-entity typing. Qi et  al. (2023) propose that rather 
than using LLMs for spatial databases, they should be 
used as spatial databases – “Machine Learning Mod-
els as a Spatial Database” (MaaSDB). Whilst they point 
out the advantages this might bring (learning from and 
integrating information on both structured and unstruc-
tured data; full integration between the natural language 
interface and the data itself ), this is not without risks 

– LLMs are well known for their propensity to “halluci-
nate” (Huang et al. 2023) and thus relying on an LLM for 
accurate spatial fact retrieval may yield incorrect results 
(and indeed the paper itself gives examples of incorrect 
information being returned in a small number of cases 
in their preliminary study using ChatGPT). Other work 
investigating geo-spatial capabilities of LLMs includes 
(Bhandari et al. 2023) who conclude that at least the larg-
est LLMs, and those that have been instruction-tuned do 
have fair abilities.

Fig. 3  The image drawn on 3/9/24 by ChatGPT- 4o to the prompt “give me an image of a map of the sea route from Southampton to Barcelona.”
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Fig. 4  A map of Pool-in-Wharfedale in West Yorkshire, UK. Presented to ChatGPT- 4o as a raster image taken from Open Street Map. The 
given prompt on 4 Sept 2024 was: “Consider the attached map. Please describe the main geographical and built environment features”

Fig. 5  A sketch map given to ChatGPT4-o on 3rd September 2024 with this instruction: “Please consider the attached sketch map and describe 
the various features on it in sufficient detail that someone else could create a reasonable copy of it.” See Fig. A3 in the Appendix for the LLM’s 
response
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An interesting approach to interacting with geo-
graphic data extracted from a map is presented by Unlu 
(2023). In this work, a number of points were chosen 
such that 300 metre radius circles centred on these 
points were densely tagged with features (e.g. schools, 
cafes, ATMs...). The amenities of each area are then 
represented as a preprompt. E.g.:

This is a circular area of radius of 300 meters that 
intersects province(s) of İstanbul and district(s) of 
Fatih. There are 3 atm(s), 2 bank(s), 1 bureau_de_
change(s), 18 cafe(s), 2 clinic(s), 1 court_house(s), 
2 dentist(s), 1 driving_school(s), 2 events_venue(s), 
11 fast_food(s), 1 guest_house(s), 3 hospital(s), 11 
parking(s), 33 pharmacy(s), 9 place_of_worship(s), 
1 post_office(s), 43 restaurant(s), 5 school(s), 1 
shower(s). There are 525 buildings which cover 31% 
of the total area. It contains 289 meters of plat‑
form rail, 100 meters of footway road, 80 meters of 
pedestrian road, 44 meters of primary_link road, 
2786 meters of residential road, 283 meters of ser‑
vice road, 20 meters of steps road, 1005 meters of 
tertiary road, 62 meters of tertiary_link road, 249 
meters of unclassified road.

ChatGPT 3.5 Turbo was then used to generate prompt 
answer pairs from these preprompts, using prompts 
such as:

I will give these types of preprompts and you will 
generate prompt-answer pairs in python list of dic‑
tionaries format. These prompts should be ques‑
tions that businessmen, citizens, tourists would 
demand based on the data in the preprompt. Gen‑
erate 50 prompt-answer pairs with very diverse 
topics. Important : Do not generate prompts that 
data in preprompt is not sufficient to answer!

ChatGPT 3.5 Turbo then produced prompt-answer 
pairs such as:

Question : Tell me about the options for cultural 
enthusiasts with a gallery nearby.
Answer : Cultural enthusiasts can explore the gal‑
lery in this area.

4111 such prompt-answer pairs (generated from 81 
preprompts) were then used to fine-tune an LLM (Fal-
con 1B RW) using Low Rank Adaption (LORA) (Hu 
et  al. 2021). The resulting fine-tuned model is able to 
answer questions similar to those in the fine-tuning set 
about novel regions.

A further experiment reported in the paper is to map 
the (GLOVE) embeddings of the preprompts onto a 
“D space using universal manifold approximation and 
projection (UMAP) – and then assign colours to each 

embedding based on its UMAP score – these can then 
be plotted on a map as shown in Fig. 6.

Mai et al. (2023) discuss some possibilities for exploit-
ing Foundation Models in geospatial situations, investi-
gating the performance of a number of different models 
across seven tasks. They conclude that on toponym rec-
ognition and location description recognition (which 
are purely textual tasks), LLMs can outperform task 
specific fully supervised models. On the other hand for 
multi-modal problems, such as land classification from 
satellite imagery, or street view image-based urban noise 
intensity classification, specialist models outperformed 
multi-modal foundation models. They conclude that 
multi-modal models specifically built or tuned for geo-
spatial data should be an aim for future work.

SpaBERT (Li et  al. 2022b) is a spatial language model 
based on the BERT LLM (Devlin et  al. 2019). Just as 
standard LLMs use embeddings based on neighbouring 
words in sentences (which SpaBERT continues to use), 
SpaBERT also builds embeddings based on neighbouring 
entities in geographic space; these are linearised based 
on the distance to the pivot entity; SpaBERT also builds 
a third embedding based on the distances to the nearest 
neighbours in the x and y dimensions separately. Spa-
BERT is then pretrained in a standard way with masked 
language modeling and masked entity prediction tasks to 
learn spatial dependencies. When applied to two down-
stream tasks: geo-entity typing and geo-entity linking, 
SpaBERT shows significant performance improvement 
compared to standard LLMs without any specific spatial 
competency.

3.4 � LLMs and Retrieval Augmented Generation (RAG)
We have already mentioned above the problem of “hal-
lucination” – that LLMs tend to produce text which 
contains statements which are not true – see Hong 
et al. (2024) for an open effort to measure the extent to 
which this happens via a series of benchmarks. There 
are a number of ways in which this issue might be miti-
gated, although it is unlikely that hallucinations can be 
eliminated - indeed (Banerjee et  al. 2024) argue that 
they are something we need to live with, arguing that 
“every stage of the LLM process – from training data 
compilation to fact retrieval, intent classification, and 
text generation – will have a non-zero probability of 
producing hallucinations”. Similarly (Xu et  al. 2024b) 
use results from learning theory to demonstrate that 
LLMs will always hallucinate. However, there is a com-
munity focus on finding ways to mitigate the problem, 
recently surveyed by Tonmoy et  al. (2024). They out-
line a taxonomy of possible methods, with the two top-
level categories being prompt engineering and model 
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development. Within the former category, Prompt Tun-
ing, Self-Refinement and RAG form the next level of 
the classification. RAG is of particular interest in our 
domain of interest. RAG addresses one of LLM’s big-
gest weak spots – since LLMs are only (re)-trained 
rather infrequently – because of the huge cost – so 
their “knowledge” may date quickly, particularly about 
propositions whose truth may change frequently. RAG 
provides a way for LLMs to tap into authoritative sym-
bolic knowledge bases as a secondary explicit knowl-
edge source rather than relying on information held 
implicitly in its model from possibly outdated train-
ing data. This symbolic knowledge can be exploited in 
three different ways by a RAG enabled system: (1) the 
external knowledge can be added to the user-supplied 
prompt before generation starts; (2) during generation, 
for example by validating generated facts and rectify-
ing them when necessary; (3) waiting until an entire 
response has been generated before checking it against 

external knowledge to the LLM and adapting the 
responses as necessary.

4 � The future of urban models: prospects 
and opportunities

Cities are for citizens. The introduction of agent-based 
modeling techniques has allowed for significant strides 
towards more realistic models, but the created agent 
models were still severely limited by the comparably sim-
ple behaviors that could be realized in those agents.

4.1 � What is missing?
So far, urban planning has been mainly concerned with 
the static infrastructure of cities. Adding virtual citi-
zens and allowing them to move and behave in their 
environment according to their needs is a very impor-
tant extension. This can be built using the agent-based 
modeling techniques described above, but it is an open 
question whether these modeling methods can lead to 

Fig. 6  Embeddings of preprompts visualised on a map where colours are assigned proportionally to UMAP values. “Bright red colors indicate 
more touristic locations, dark red colors more indicate business/commercial districts and bright greenish colors indicate relatively empty spaces, 
residential areas” (Unlu 2023, Fig. 4)
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agents that have sufficient complexity to yield systems 
with an adequate level of realism. The simple param-
eterised agent models that aim to be “statistically cor-
rect” with regard to their aggregated properties (such 
as means and correlation functions, see, e.g., Sun and 
Erath (2015)) can indeed capture some useful aspects 
of behavior to drive models such as transport systems 
under loads of simulated passengers. However, these 
models usually attempt an approximation at a certain 
time scale, with the agents deriving their behavior from 
relatively simple sensor signals and following mostly 
fixed parameterised rules to compute their movement 
decisions or trajectories. While well calibrated mod-
els of that type have shown useful predictive capabili-
ties for real systems, they are limited in many ways, 
e.g., they cannot deal well with changing conditions, 
such as unusual weather conditions, emergency situa-
tions or simply drifts due to technology changes (e.g., 
increasing numbers of cars, with changing driving 
characteristics due to partly or fully autonomous driv-
ing systems, changes in car utilization due to sharing or 
home office). If at all, they have only very simple goals, 
intentions, emotions, adaptivity or creative capabilities. 
This exposes a stark difference between current agent 
models and real citizens.

Citizens have mind states.  The behavior of citizens can 
be extremely rich, reflecting their largely unobservable 
states of mind that make them extremely adaptive and 
able to correlate their behavior with memories from dec-
ades ago. They enable citizens to shape and take highly 
informed initiatives, to be emotional, have expectations 
and values and to be creative. As a result, they can engage 
in rich interactions among themselves, making reciprocal 
representations of each other, and interact similarly with 
the city in which they live. From the observable, outer 
side, this fills the city with complex interaction patterns 
that actually underlie most of its development. In addi-
tion, the city becomes connected and embedded in the 
mental spaces of its citizens. In turn, these mental spaces 
become filled with experiences that arise from the inter-
actions with others and with what the city has to offer to 
them. This shapes needs, demands, and resources that 
reshape mind states, changing the complex relational 
fabric that the citizens weave into the city. It extends the 
city’s physical space with a rich social space in which 
the citizens’ mental spaces are connected and interre-
lated. While this social space (along with the individual 
citizens’s mental spaces) can only be observed indirectly, 
by inferring some of their content from their shaping of 
what the citizens do (e.g., usage of media), it is an entity 
that is at the root of almost all impacts that the citizens 
bring to bear on the city.

In the following, we take a brief tour through several of 
these aspects.

Capturing rich knowledge.  Human behaviors obtain 
their richness from the huge amount of knowledge that 
affects human choices. This knowledge has a complex 
and hierarchical structure: the largest part – our seman-
tic memory – has been distilled from lifelong learning 
from huge numbers of contexts. Another part is from 
our episodic memory linked to specific episodes in our 
past. And a third part of our short term and our work-
ing memory captures very recent contexts and events just 
minutes, hours and days ago. Capturing such rich and 
hierarchical knowledge requires new methods that have 
opened up powerful ways of creating models completely 
from data, leading to new types of generative models 
culminating in the LLMs epitomized by GPT and its 
successors. The next section is dedicated to providing a 
compact review of these new possibilities. Finally, we will 
attempt to look at how this opens up exciting perspec-
tives to complement modern agent models such as Digi-
tal Twins with powerful capabilities to bring city models 
to a new level.

Integration of demands and resources as key driv‑
ers.  Citizens are both the carriers of resources as well 
as of demands. A city is attractive when it supports a 
good matching between resources and citizens’ demands. 
Therefore, we need models that allow for the introduc-
tion of resource-demand matchings into the planning 
process. Such matchings have already been considered 
as important elements of transportation models (Zhang 
2021). Matching processes that are focused on local 
neighborhoods are – in highly idealized form – also at 
the core of the cellular Schelling model (Jensen 2022), 
in which residents match their expectations about the 
ethnic composition of their neighborhood with possi-
ble choices for a picking their residence. This matching 
model has been shown to explain the strong tendency of 
ethnic group mixtures toward spatial segregation.

The importance of linking the needs of the citizens with 
the urban planning processes has been hardly discussed 
in the literature (Alsayed 2024). González-Méndez et al. 
(2021) provides one recent example, aiming towards an 
agent-driven platform that can mediate between different 
stakeholders in the process.

Smart support environments.  The now wide-spread 
availability of human-compatible perception and natural 
language capabilities in technical artefacts and the abil-
ity to compile huge amounts of human expertise into 
digital assistants leads to the question how to combine 
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such skills with human expert guidance. This requires 
to modify standard deep-learning architectures to pro-
vide for meaningful inclusion of human expert guidance, 
e.g., when realising intelligent urban planning assistance 
functions (Fang et  al. 2022). It is also a question to the 
field of human-computer interaction, extending its scope 
from artefacts surrounded by humans to entire environ-
ments inhabited by humans. For the case of buildings this 
has spurred human-building-interaction (HBI) as a new 
branch of HCI (Alavi et al. 2019). As the next logical step 
we foresee its extension to the even more comprehensive 
field of human-city-interaction, with the task to elucidate 
the integration of digital and AI-driven technology with 
the planning, maintenance and operation of urban struc-
tures and services in ways that enhance urban quality and 
adress human needs.

Citizens’ mental spaces.  Human interactions are not 
only highly variable, they also add a level that is not pre-
sent in physical interactions that are familiar from the 
physical city infrastructure. This level is constituted of 
mental spaces that are inseparable from human agents. 
Humans not only feel anchored in the physical space of 
the city. They also augment it with their mental space 
which gives them imagination and the power of abstrac-
tion. They can populate their mental space with their 
individual versions of the city or parts thereof, e.g., cre-
ating their individual version of the subset of city places 
which they know and their preferred commuting trails 
between them (Gibała-Kapecka and Kapecki 2016). 
They can create mental pictures of “their ideal city” and 
their life therein, or mental maps of safety zones, recrea-
tion areas, landmarks or networks with other citizens. 
And they can open further spaces accommodating their 
needs, hobbies, dreams and desires. All these possibilities 
are ultimately rooted in their experiences in the physi-
cal city, but extend its physical space and feed back on 
it in rich and varied ways (Mehaffy and Elmlund 2023) 
that reflect their rich relationships with the city they live 
in. Can we build models that represent aspects of these 
mental spaces that are shared among large groups of citi-
zens? How would these models interact with the physi-
cal city? How do the physical and the shared mental city 
spaces jointly affect decisions, identity or creativity of the 
citizens? All these are modeling challenges for the future 
almost untouched so far.

Social space.  Of these mental spaces there is a par-
ticularly important one that is specialized on the social 
dimension of human interactions and, therefore, deserves 
special attention. The social nature of human interactions 
becomes already relevant when a human interacts with 
an artificial agent, such as an avatar in a mobile phone 

or an embodied robot. The human will locate the agent 
not only in physical space, but also in social space, per-
ceiving the agent, e.g., as representing an external agency 
or alternatively as a member of the human’s household. 
This leads to different expectations about agent role, 
trustability, party taking in decisions, or compatibility of 
interests and intentions. This requires a “Social AI” that 
extends beyond the merely functional level and that can 
take social aspects into account in its interactions and 
services. Conceptually, this again can be framed as the 
augmentation of the city with another space that repre-
sents the social interrelations among the citizens. Here 
too, we may distinguish between a “shared approxima-
tion” of what might be termed “objective social space”, 
and individual spaces (as specialized versions of the indi-
vidual social spaces of citizens) that represent the indi-
vidual perspectives of citizens’ own social embedding in 
the city.

Social AI.  While traditional city models were focused 
primarily on the functionality of the infrastructure of a 
city, with subsequently developed agent models adding 
to that level a layer of behavior in the form of (usually 
highly simplified) decision-making (including decisions 
about agent movements, e.g., when the agents model 
pedestrians or drivers), we are now at the dawn of models 
that can include rich social behavior, identity and crea-
tivity enabled through the presence of these social and 
further mental spaces. For instance, geotagged twitter 
data have been used to create models about demographic 
variations of distancing practices during the COVID- 19 
pandemic (Xu et al. 2024a). Commuting efficiency (Ling 
et  al. 2024) quantifies how well urban policies optimize 
the connection between job and residential locations, 
and how the degree of optimization varies depending on 
socio-demographic factors. The path towards smart cities 
leads to an increasing multitude of platforms to capture 
data about such and numerous further aspects of citizen 
life (Pal et al. 2018), providing a rapidly evolving basis for 
more detailed models of citizen behavior.

This will connect city models with the concept of a 
“Social AI” as a key element to adequately frame the 
rich interactions of citizens as social entities in interac-
tion with each other and their mental spaces, and also 
with AI agents that will become an increasingly perva-
sive part of the future infrastructure of cities, making 
cities accommodate a hybrid society of humans and 
artificial agents which can interact in new synergies to 
drive the emergence of our cities of the future.
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Interdisciplinarity.  The above makes clear that a proper 
addressing of the complexity of urban models necessarily 
has to cut across many disciplines:

Since cities connect the lives of their citizens, appropri-
ate models have to cope with tasks that involve numer-
ous areas in addition to urban and computer science. To 
model the forces and dynamics that unfold when citizens 
meet and move in cities needs to reach out into fields 
that deal with us humans: psychology, sociology, health 
sciences, arts and communication, and what it takes to 
organise us: education, economy, law, and certainly many 
more. Neither last nor least in this enumeration is ethics: 
modern cities and their data- and AI-driven models have 
many of their benefits connected with significant ethical 
questions concerning privacy, freedom, forms of govern-
ance, ownership, values, or norms.

Case studies.  Resources and methods for data-driven 
models and modern AI methods working at the scale of 
cities are rather recent developments. Thus case studies 
typically were initially restricted to major metropoles and 
will certainly become more numerous within the next 
years. The case study (Sanchez-Sepulveda et al. 2024) for 
the city of Barcelona provides an early example of the 
use of data-driven models to inform city planning with a 
focus on improving walkability, transportation and safety. 
Another example (Floridi 2020) presents insights and 
benefits for the cities of Amsterdam and Helsinki when 
making AI services accessible through centralized AI reg-
isters. The case of the city of Singapore (Das and Kwek 
2024) illustrates how addressing the needs of the COVID 
pandemic benefited from AI-driven approaches to real-
ize different subsystems that became gradually more and 
more integrated and were adapted to serve new tasks 
after the pandemic, leading to a seamless merging of IoT 
and AI to explore different ways of ultimately making a 
city adaptive in real-time, e.g., through smart gantries or 
police robots perceiving and reacting to human behavior 
to enforce policy rules. Typically, case studies can only 
address a subset of the wide range of AI use cases that 
are relevant to a city. Focusing on the transportation sec-
tor, Patil et  al. (2024) provides an overview with a tax-
onomy of major case studies obtained from an extensive 
literature search on AI applications in urban contexts. 
A very large use case has been launched around 2017 in 
the Haidian district of Beijing (Cugurullo and Xu 2024). 
After a concept phase and the formation of a consortium 
of firms and governmental institutions the implementa-
tion was started in 2020. So far, the project has connected 
more than 14,000 cameras with a large network of server 
nodes and two centralized data centers that are run-
ning algorithms and AI methods to process the data to 

provide a layer of automated city management based on 
combining AI methods for visual recognition and event 
prediction akin to a “brain” that must run a body that is 
in this case a city. This approach has inspired an increas-
ing number of similar “city brain” projects for other Chi-
nese cities. Besides a general feasibility of the approach, 
it has led to the insight that different cities may require 
different tailored “brain structures” and that adequate 
participation by the residents remains a major challenge 
for the current organisational format.

4.2 � Realizing rich virtual citizen models
We contend that LLMs put us in a position to create 
agents that can draw on extensive knowledge for choos-
ing their actions, and in a way that can take complex 
context into account. Moreover, the nature of LLMs pro-
vides these agents with an intrinsic form of short term 
memory that makes their responses contingent on their 
interactions within a recent time horizon that be made to 
include dialog spans of many thousand items if desired. 
This makes these agents quick to adapt to their recent 
past, a property which has at best been extremely simple 
and limited in agents used by previous techniques.

These agents allow city models to be brought to a new 
level where the city is modeled together with the inter‑
actions with and among its virtual citizens, which can 
access the facilities of virtual city models in a knowledge-
able and adaptive way.

This will open up entirely new possibilities for urban 
planners: they can devise different city layouts, populate 
them with different mixtures of artificial “agent personas” 
(which can be quite easily obtained with combinations of 
prompting and fine-tuning techniques), and simulate the 
resulting dynamics to predict the impact on citizens and 
explore and evaluate different designs.

First steps towards such models already exist. Wang 
et al. (2024a) show the realization of an LLM-agent based 
on GPT- 3.5 that can create personal mobility data that 
then can be tuned with available human mobility data. 
They demonstrate that their citizen emulation leads to 
appropriate activity changes when the agent receives a 
prompt that informs about the presence of a pandemic 
and pertinent government advice. Park et al. (2023) show 
that a group of simulated citizens placed in a small neigh-
borhood of a simulated city area unfold a variety of inter-
esting behaviors in their environment, such as going for a 
walk, making appointments, meeting at a café, or sharing 
news with a colleague, demonstrating that LLM agents 
can model complex social interactions and decision-
making processes. Besides enriching models with realis-
tic citizen behaviors LLM agents can also be employed 
to contribute to a variety of city planning tasks directly, 
for instance, by using fine-tuning of base models with 
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scientific literature to create experts for specialized areas, 
such as urban renewal (Wang et al. 2023b).

These possibilities have triggered a significant number 
of proposals for integrating LLMs with agent technology 
(Wang et  al. 2024b). Some of these proposals are based 
on single-agent systems, such as AutoGPT or LangChain 
Agents, while others employ a collection of collaborative 
agents, such as aBabyAGI, CAMEL, or AutoGen. In the 
latter case, the agents may incorporate individual LLMs 
to support collaborative task solving (Wu et al. 2023).

An attractive feature of these LLM integrations in 
architectures that allow the flexible interfacing of LLMs 
with additional functionalities (e.g., sensors for percep-
tion, databases for specialized information queries, or 
actuators for allowing physical or virtual actions) is to 
give the LLM the possibility to access existing tools to 
support operations for which a variety of established 
solutions of proven quality exist. This permits the LLM to 
focus on solving problems at a higher level of abstraction, 
away from the details of the more specialized operations 
covered by the tool. In essence, LLM support can be lim-
ited to combining existing functional building blocks into 
a workflow to solve the given task.

For instance, as we have seen, current LLMs still have 
difficulties with many spatial tasks. Thus, basic spatial 
functions, such as querying a GIS database or visualizing 
spatial data on a map, can be safely delegated to a tool, 
such as ArcGIS (ESRI 2024), while the task chain for solv-
ing a complex task using these basic functions might be 
generated by an LLM.

For example, Li et  al. (2022a) proposed a single-agent 
approach for performing GIS tasks. An LLM embedded 
in an autonomous agent performs the planning task. The 
agent uses basic GIS functionality such as spatial data-
bases, spatial analysis functions or visualization tools 
together with existing GIS data to perform its task. The 
LLM establishes a work flow, generates code to call basic 
GIS functions and to assemble the final result.

4.3 � Towards LLM ecosystems
However, the very high computational and memory 
demands of the currently best LLMs makes their use 
within such LLM agent frameworks extremely compute 
intensive and puts severe limits on the number of agents 
that can be simulated within reasonable resources. 
Using these “huge” LLMs to train smaller LLMs has 
enabled the “distillation” of their knowledge into much 
smaller footprints, giving rise thus to large number of 
“small LLMs” (SLMs) (Zhou et al. 2023). Despite their 
much smaller size the most recent of these SLMs often 
sacrifice only little of the performance of their much 
larger brethren. At the same time, they can be tuned (or 
sometimes even trained from scratch) with much more 

modest resources. Their execution is usually possible, 
even with several instances simultaneously, on desk-
top computers down to laptops or even mobile phones 
(Chen and Li 2024). Besides clever training schemes 
and the use of carefully curated data, their compact size 
has also been enabled through more compute efficient 
architectures and algorithmic improvements (“weight 
quantization”) that allow them to work with extremely 
low-resolution parameters replacing standard 32-bit 
float values for network parameters by coarser num-
ber representations that occupy only 3–4 bit, bringing 
a ten-fold reduction in required memory size. Recently, 
this has been pushed to the extreme of ternary (− 
1/0/1) weight and binary (0/1) activity values. With 
suitably adapted algorithms for training and execution 
these models only require additions and allow for a very 
energy parsimonious execution on dedicated hardware 
(such as standard FPGAs) (Chen et al. 2024).

The availability of such very parsimonious LLMs opens 
up the vision of creating systems populated by large num‑
bers of SLMs to simulate correspondingly large numbers 
of citizens for a new generation of bottom-up driven 
urban models, that at the same time are connected to our 
high-level semantic world. Such a system could then bring 
the “mental citizen spaces” into the urban model and 
simulate the interaction between the physics of the build-
ings and the mental spaces of the citizens. While such 
modeling will always be too coarse to obtain predictions 
about mental spaces of individuals, it may be useful to 
address phenomena such as the clustering or spreading 
of opinions and sentiments, their relation to spatial struc-
ture (e.g., well-connected vs. scantly connected areas, or 
local ethnic variations in the city) or to changes in the 
urban infrastructure (e.g., new apartment and shopping 
complexes, roads, or park areas).

Alternatively, we can realise intelligent distributed eco-
systems that can be embedded in a city, with each node 
providing expertise for a restricted area. The nodes in 
such a distributed system could be much more easily 
maintained since the burden of retraining or fine-tuning 
becomes partitioned into much smaller chunks. At the 
same time, such an approach would offer better resil-
ience, since such a system has at worst only reduced 
functionality if a sub-unit fails, whilst a monolithic unit 
can only fail catastrophically.

This would also facilitate the application of RAG tech-
niques to swap in locally specific knowledge (Lewis et al. 
2020; Fan et al. 2024), and cooperation with Digital Twins 
(DTs): DT instances typically represent models that are 
in correspondence to many kinds of physical subsystems 
in a city (such as road segments, buildings, or vehicles), 
which makes them tightly integrated into the “physical 
fabric” of a city (Ferré-Bigorra et al. 2022).
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The flexible granularity of SLM arrays offers an ideal 
match for this granularity of DT systems, allowing each 
DT to become coupled with one or more dedicated SLMs 
from the array. In this coupling, the use of an SLM can 
extend well beyond just merely providing a natural lan-
guage interface. Instead, the good tunability (or even 
trainability from scratch) of SLMs allows the interface to 
be knowledgeable and specialized to the task domain of 
the DT it is associated with (Fig. 7).

Such knowledge-integrated DT-SLM-pairs offer a new 
and very powerful building block to endow a city with 
a kind of virtual and distributed “intelligent ecosystem”. 
Each node of this ecosystem integrates subsymbolic con-
trol knowledge in the DT with natural language accessi-
ble symbolic and high-level knowledge in the associated 
SLM. This network can be hierarchical, with super-ordi-
nate nodes supervising more local clusters. However, the 
selection of collaborating partners in such a large-scale 
system has been identified as a challenging problem 
(Rothermel et  al. 2025). In the IoT domain, collabora-
tion partners are often selected based on spatial proxim-
ity. This is in line with Tobler’s observation (Tobler 1970) 
that “everything is related to everything else, but nearby 
things are more related than distant things”. In Rothermel 
et  al. (2025), we propose a proximity model that allows 
agents to identify collaborators based on spatial proxim-
ity. However, the concept of proximity is not limited to 

the spatial dimension and could therefore be extended to 
cognitive, institutional, social or organizational aspects.

Combining SLMs and Digital Twins and embedding 
them in a hierarchical network structured according 
to the spatial proximity structure of the city leads to an 
architecture which is very favorable for computational 
parsimony. While a more detailed analysis has to be post-
poned to a forthcoming paper, there exist already ample 
results how the utilization of SLMs can lead to significant 
computational gains. For instance, Irugalbandara et  al. 
(2024) find in their study of 29 recent SLMs that most of 
them reach response qualities that are close to GPT- 4 
level while incurring only a small fraction (1/5 or less) of 
the cost. The recent development of scalable matrix-mul-
tiplication free language models brings further reduc-
tions into reach. Zhu et  al. (2024b) reports an FPGA 
implementation of a 1 billion parameter SLM employing 
this technique that consumes 13 W of power while gen-
erating text at humen reading speed.

The implementation of such an SLM-DT based “intelli-
gent ecosystem” can provide a powerful infrastructure for 
planners to interact with the city, to monitor city states, 
or even to simulate the response of the city to unfore-
seen impacts. Its accessibility through natural language 
also enables its use to capture feedback or sentiments 
from citizens, to engage in distributed discussions about 
planning options, or to support forms of participatory 

Fig. 7  Interconnected pairs of locally specialized Digital twins (DT) and language models (LLM) can provide powerful units for a distributed “Social 
AI System” within a city
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planning that involve citizens via the interface. Unlike 
traditional forms of citizen participation, such a network 
might be able to evaluate the consistency of citizens’ pro-
posals, oversee compatibility with overarching long-term 
plans (e.g., such as the example of the Shanghai Master-
plan (Leading Group Office 2017)), or evaluate feasibil-
ity with regard to resources and demands of involved 
players.

4.4 � Ethical challenges
Urban planning creates long lasting impacts that affect 
the lives of many. This brings a large responsibility. At the 
same time, the multi-dimensional optimization expected 
from urban planners cannot be done without weighting 
and balancing a multitude of often conflicting optimiza-
tion criteria and interests. This can lead into ethical dil-
emmata whose resolution will be affected by the tools 
that provide planners (and the public) with the models, 
simulations, perspectives and predictions for different 
planning scenarios and potential outcomes. A recent 
overview of major challenges is provided by Sanchez 
et al. (2024). They focus on the problems of bias, privacy, 
equity and inclusivity, accountability and transparency, 
danger of mis- and dis-information, and the necessity of 
human control and oversight to safeguard against limita-
tions of AI, and they offer several recommendations in 
each of these areas. Kitchin (2016) takes a critical look at 
how the transition from small to big data influences our 
way how we conceive cities and their operational gov-
ernance, with the danger of a “reduction of urban life to 
logic and calculative rules”. He argues for a re-orientation 
in how cities are conceived and, likewise, emphasizes 
the importance of an ethics about privacy, harms, notice 
and consent, and recommends a pro-active stance of city 
managers. We would like to complement these broad 
analyses with three specific aspects that appear to us par-
ticularly focal to our work:

Offering intelligent agents roles of virtual citizens.  Here, 
the created benefits come with the side-effect of poten-
tially substituting real human action or feedback with 
that from a digital surrogate that may introduce (or even 
enhance) biases, compromise privacy (when the simu-
lated behavior leaks individual information in the train-
ing set), or possibly endanger human participation and 
trust. This will require advances on the technology side 
in conjunction with clear legal frameworks to ensure that 
citizen models are based on training data that properly 
reflect local diversity patterns (e.g. gender, cultural, age) 
and are ethically sourced.

Pervasive urban AI with perfect recall.  Endowing intel-
ligent agents with more sophisticated memory systems 

(e.g., episodic memories) and connecting larger and 
larger parts of a city to sensors that provide continu-
ous input to AI models can lead to a pervasive urban AI 
that has perfect recall of almost everything that has hap-
pened. We need to understand how we can appropriately 
limit such systems and endow them with a social AI that 
by its design will reliably evolve in harmony with human 
society. This might require to endow AI systems with 
some ethical understanding or memories with the ability 
to forget.

Virtual accessibility of “everything”.  To a large degree 
the significance of humans, experiences and things for 
us is related to the ways in which they are special to us. 
What will happen if sophisticated urban models reach a 
level of detail and realism that they can begin to compete 
with the real city and its citizens? How can we develop 
our ethics to provide guidance in future “hybrid cities” 
that not only mix cultures but also the real and the vir-
tual in unprecedented seamlessness and variability of the 
virtual?

Thus, urban planning, AI and ethics need rich interac-
tions that deserve careful attention to properly enhance 
cities as places that foster human potential and creativity.

5 � Conclusions
Tracing back city models to their historical roots, we 
have shown their steady development from simple map-
like descriptions to modern digital counterparts that 
combine many sophisticated methods to generate large 
scale renderings that can represent the physical sub-
strate of cities to a high degree of realism. We then have 
set out to analyze what still is largely missing from these 
approaches: to adequately include the behavior of the cit-
izens as the most important factor that an urban model 
must address. Linking this gap with the recent availabil-
ity of very large-scale generative models with billions of 
parameters, particularly in the form of large language 
models (LLMs) and their recent multimodal variants, 
we have argued that we now are for the first time in a 
position to create rich citizen models that can capture 
a realistic level of complexity. We discussed strengths 
and weaknesses of these models, particularly their large 
resource footprints, the still existing challenges that come 
with adapting them in a fashion that is reliable and inter-
pretable, and encouraging developments, particularly the 
advent of resource-parsimonious small language models 
(SLMs) that can approximate the capabilities of LLMs in 
much smaller footprints. We have then made a proposal 
how to bring these different strands of developments 
together to achieve a new level of urban modeling where 
models are interactive and can reach beyond traditional 
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representations of a physical city populated by rather 
simple agents that are limited to an almost particle-
like behavior due to their small number of parameters. 
Instead we have sketched a concept how we can exploit 
the capabilities of multimodal SLMs to reach into a mod-
eling of the mental spaces that are contributed by the 
citizens and that we argue as being at the root of driving 
urban development. We have linked this to the concept 
of a “Social AI” that brings the citizens’ anchoring in a 
social world into its focus, along with important driving 
forces such as resources, desires, needs and sentiments. 
We finally came up with a sketch of an architecture that 
can provide the necessary substrate for such an endeavor. 
It achieves resource parsimony by employing a distrib-
uted network of nodes each of which combines SLMs 
and Digital Twins to effectively combine the holistic rea-
soning power and human-friendly interaction formats 
of the former with the hallucination-free reliability and 
inspectability of the latter. We argue that this approach 
can provide a solid technological base for realizing safe, 
manageable and resource parsimonious intelligent eco-
systems for driving a new generation of urban models 
based on Social AI. We believe that this Social AI can fos-
ter not only the development of the physical spaces of the 
city but also the development of its social space which 
arises from the interaction of the many mental spaces of 
the citizens. While this certainly is still a distant vision, 
innovation from coupling urban models, Digital Twins 
and generative AI systems together can already now 
be seen to bring us ever closer to realising this exciting 
vision.

Appendix A ChatGPT‑ 4o outputs
Fig. A1: The ChatGPT-4o output on 4 Sept. 2024 given 
the image and prompt in Fig. 4.

The map you provided appears to depict the village of 
Pool-in-Wharfedale, located near the River Wharfe in 
the region of West Yorkshire, England. Here’s a detailed 
description of the geographical and built environment 
features visible on the map:

### Geographical Features: 1. **River Wharfe**: A 
significant geographical feature on the map, the River 
Wharfe flows from the northwest to the east along the 
northern edge of the village. The river creates a natural 
boundary and likely influences the local landscape and 
activities.

2. **Leathley**: Across the River Wharfe, the area 
labeled as Leathley is indicated in North Yorkshire. 
The river serves as a boundary between West York-
shire (where Pool-in-Wharfedale is located) and North 
Yorkshire.

3. **Green Spaces**: There are several green areas, par-
ticularly to the north and west of the village. These areas 
are likely open fields, woodlands, or agricultural lands, 
typical of the rural landscape in this region.

### Built Environment Features: 1. **Main Roads**: - 
**A658**: A major road labeled A658 runs through the 
village from south to north, crossing the River Wharfe via 
a bridge. This road connects Pool-in-Wharfedale to sur-
rounding towns and regions, making it a key transport 
route. - **A659**: This road intersects with the A658 in 
the southern part of the village, running from west to 
east, and continues towards the east as Arthington Lane.

2. **Residential Areas**: - The village is primarily com-
posed of residential areas, with various roads such as 
Church Close, Mill Lane, and Manor Court serving the 
local community. These areas are characterized by clus-
ters of houses and small streets.

3. **Community and Religious Buildings**: - **Churches**: 
There are two symbols of churches marked with crosses 
on the map. These are likely to be significant religious or 
community buildings. - **Pool-in-Wharfedale Church of 
England Voluntary Controlled Primary School**: Located 
towards the southeast of the village, this school is an impor-
tant community institution.

4. **Recreational Areas**: - **Pool Cricket Club**: Situ-
ated to the northeast of the village, this cricket ground 
is a notable recreational facility for local residents. - The 
presence of several green spaces and the cricket club 
indicates recreational opportunities within the village.

5. **War Memorial**: A war memorial is marked in the 
central part of the village, indicating a place of remem-
brance and historical significance.

6. **Bridges**: The map shows a bridge where the A658 
crosses the River Wharfe, which is a crucial piece of 
infrastructure connecting different parts of the region.

### Surrounding Areas: - To the north, beyond the 
River Wharfe, the land appears to be more rural with 
less dense development, while the village itself is more 
built-up.

Overall, Pool-in-Wharfedale is depicted as a small 
village with essential amenities, recreational facilities, 
and residential areas, set against a backdrop of natural 
features like the River Wharfe and surrounding green 
spaces.

Fig. A2: ChatGPT-4o’s response on 4/9/2024 to the 
question “Please describe a route from the fishmonger to 
the school.”

To describe the route from the Fishmonger to the 
School on the provided map:

1. **Start at the Fishmonger:** - The Fishmonger is 
located on the right side of the map along the yellow 
road.
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2. **Head left along the Yellow Road:** - Move left 
along the yellow road towards the center of the map. 
You will pass by the Restaurant, which is centrally 
located on this road.

3. **Continue past the Newsagent:** - Continue trave-
ling left on the yellow road. You will pass the Newsa-
gent, which is located to the left of the Restaurant.

4. **Reach the intersection with the Red Road:** - 
Continue until you reach the intersection where the 
yellow road crosses the red diagonal road.

5. **Turn left onto the Red Road:** - Turn left onto 
the red road.

6. **Proceed up the Red Road to the School:** - Con-
tinue traveling upward along the red road until you 
reach the School, which is located just slightly below 
the intersection of the red road and the yellow road.

This route will take you directly from the Fishmon-
ger to the School by primarily using the yellow road 
and then switching to the red road near the School’s 
location.

Fig. A3: The response of ChatGPT-4o on 4 Sept 2024 
when presented with the sketch  map and prompt dis-
played in Fig. 5.

The sketch map you’ve provided features a simple lay-
out of a small town or village with various buildings and 
roads marked. Here’s a detailed description that someone 
could use to recreate the map:

### Roads: 1. **Red Road (Diagonal, Top-Left to Bot-
tom-Right):** - Starts from the top left corner and ends at 
the bottom right corner. - Intersects with the green road 
and the yellow road.

2. **Green Road (Diagonal, Bottom-Left to Top-
Right):** - Starts from the bottom left corner and ends at 
the top right corner. - Intersects with the red road and 
the yellow road.

3. **Yellow Road (Horizontal, Middle):** - Runs hori-
zontally through the middle of the map. - Intersects with 
the red and green roads.

4. **Purple Road (Horizontal, Bottom):** - Runs hori-
zontally near the bottom of the map. - Does not intersect 
with the red or green roads.

### Buildings and Locations: - **Top-Left (near the Red 
Road):** - **School:** Positioned slightly below where the 
red road intersects with the yellow road.

- **Top-Right (along the Green Road):** - **Post 
Office:** Located just before the green road reaches the 
top-right corner.

- **Middle of the Map (on the Yellow Road):** - **Res-
taurant:** Centrally located on the yellow road, close to 
where it intersects with the green road.

- **Middle-Left (on the Yellow Road):** - **Newsa-
gent:** Positioned to the left of the restaurant along the 
yellow road.

- **Middle-Right (on the Yellow Road):** - **Fishmon-
ger:** Positioned to the right of the restaurant along the 
yellow road.

- **Bottom-Left (along the Purple Road):** - **Bakery:** 
Located at the far left on the purple road.

- **Bottom-Right (along the Purple Road):** - 
**Butcher:** Located at the far right on the purple road.

- **Middle (slightly off the Green Road):** - **Pub:** 
Positioned very close to the intersection of the green 
road and the yellow road, just below the yellow road.

- **Bottom-Left (along the Green Road):** - **Café:** 
Located where the green road intersects the purple road, 
but closer to the left side.

- **Bottom-Right (along the Red Road):** - **Charity 
Shop:** Located at the bottom right, close to where the 
red road meets the purple road.

### Notes: - The buildings are depicted as small blue 
rectangles. - The roads are represented by colored lines: 
red, green, yellow, and purple. - The roads intersect at 
various points, creating a cross-like pattern with the red 
and green roads.

This detailed description should help someone recreate 
the map accurately.
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