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Quantum solutions to differential equations represent quantum data—states that contain relevant information
about the system’s behavior, yet are difficult to analyze. We propose an algorithm for reading out information
from such data, where customized quantum circuits enable efficient extraction of flow properties. We concentrate
on the process referred to as quantum vortex detection, where specialized operators are developed for pooling
relevant features related to vorticity. Specifically, we propose approaches based on sliding windows and quantum
Fourier analysis that provide a separation between patches of the flow field with vortex-type profiles. First, we
show how contour-shaped windows can be applied, trained, and analyzed sequentially, providing a clear signal
to flag the location of vortices in the flow. Second, we develop a parallel window extraction technique, such that
signals from different contour positions are coherently processed to avoid looping over the entire solution mesh.
We show that Fourier features can be extracted from the flow field, leading to classification of datasets with
vortex-free solutions against those exhibiting Lamb-Oseen vortices. Our work exemplifies a successful case of
efficiently extracting value from quantum data, and it points to the need for developing appropriate models for

quantum data analysis that can be trained on them.

DOI: 10.1103/mn3x-8ygh

I. INTRODUCTION

Turbulent flows are inherently nonlinear and exhibit a rich
hierarchy of spatiotemporal structures across scales, ranging
from large-scale eddies down to dissipative microvortices
[1-4]. Vortex detection is a critical process in computational
fluid dynamics (CFD) [5] and is essential for understanding
the physics of flow fields [6—8]. Accurate detection enables
better turbulence modeling and multiscale analysis, leading
to improved predictions in the areas of magnetohydrodynam-
ics [9], astrophysics [10,11], oceanography [12], aerospace
[13,14], and atmospheric science [15]. For industrial and engi-
neering applications, vorticity structures provide key insights
to optimize designs with respect to energy efficiency, noise,
and safety [16-20]. However, it is often challenging to resolve
such vortical structures unless fine-mesh direct numerical sim-
ulation is performed [21-23].

Quantum computing methods have the potential to im-
plement direct numerical simulation—type methods using
a distinct physical hardware and large operational space
[24,25]. Quantum algorithms can encode solutions on a fine
mesh or function basis into the Hilbert space of a quan-
tum system [26—31]. Recent advances in quantum differential
equation solvers include methods based on quantum signal
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processing [32-34], eigenstate filtering-based approaches
[32,35], linear combinations of unitaries [36—40], Schrodin-
gerization [41-44], Fourier transform—based solvers [31,45—
47], digitized quantum adiabatic methods [48-50], and quan-
tum iterative solvers [43,51-53]. Nonlinearity can be treated
with Carleman linearization [34,35,54-60], Chebyshev-based
models [61,62], and quantum nonlinear processing units
[63—65]. Turbulence from the quantum encoding perspective
was studied in Ref. [58]. However, the drawback of repre-
senting solutions in an amplitude-encoded way corresponds
to a large readout cost—we cannot readily access information
from quantum states and need to rely on sampling (repeated
measurements) [66]. This calls for specialized feature extrac-
tion methods for quantum data [67].

Vortex detection from a calculated flow profile can com-
bine local and global approaches [68,69], where the latter
is computationally intensive and relies on identifying topo-
logical features. In the domain of data-driven science and
engineering, machine learning (ML) demonstrated success in
flow analysis [70,71] through advances in pattern recognition,
classification, and segmentation. Convolutional neural net-
works (CNNs) and U-Net architectures were adapted to vortex
detection tasks by utilizing convolutional filters [72-76].
However, these methods act on classical flow field images
or simulation data arrays, and they are not applicable for
quantum states. Quantum machine learning (QML) devel-
oped as a field where quantum datasets can be processed
with parametrized quantum circuits [77-79], spotting patterns
that are difficult to analyze classically [77,80-85], as well
as developing physics-informed quantum processing methods

Published by the American Physical Society
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FIG. 1. Workflow for vortex detection from quantum data. A nonlinear system is modeled using a quantum differential equation solver,
producing states that contain solutions with vortices (turbulent flow) or without vortices (laminar flow). Vortex detection is applied with sliding
window—based spectral analysis, compressing relevant features of the flow for consequent detection. The detection circuit is trained on a few

examples and only requires several tuning parameters.

[62,86-95]. From the feature selection perspective, quantum
convolutional neural networks became a tool for efficient
readout [96-104]. At the same time, their utility largely de-
pends on data, competition with measure-first approaches
[105-107], and generally suffers from being physics-agnostic.
Our recent work introduced a quantum scientific machine
learning framework for feature extraction from quantum par-
tial differential equation (PDE) solvers [67], highlighting the
need for specialized postprocessing pipelines that operate
within the quantum domain. These tools must not only pre-
serve the computational advantages of quantum encoding but
also support the efficient retrieval of physically meaningful
observables.

In this work, we address the challenge of extracting
flow features, and specifically vortex patterns, from quantum
data produced by quantum differential equation solvers. This
workflow is illustrated in Fig. 1. The modeled CFD system
(e.g., a wind turbine) can give rise to solutions with nontrivial
patterns. These solutions can be measured experimentally, or
modeled with numerical simulation tools (classical or quan-
tum). In the case of quantum algorithms, the corresponding
flow fields are stored as quantum states, and they require a
complicated feature extraction procedure at the readout. These
states are referred to as quantum data, which we load into
a QML framework that performs quantum feature detection
to distinguish between vortical and nonvortical flow field
solutions. This quantum vortex detection approach enables
the identification of localized vorticity features while using
coherent (“parallel”) processing. Specifically, our proposed
quantum vortex detection framework is based on sliding win-
dow operators paired with quantum Fourier analysis. Our
method enables spatially localized probes of the vorticity
field and parallelized processing of solution patches, avoiding
full quantum state tomography. In this work, we show that
a general strategy for extracting structured information from
quantum PDE solutions requires physics-aware approaches
and models with only a few tunable parameters.

II. ALGORITHMS

We proceed to propose and develop an algorithm for
vortex detection from quantum data, referred to as quan-
tum vortex detection (QVD). The methodology employed
for the QVD framework takes inspiration from the ideas be-
hind convolutional neural networks (CNNs). CNNs rely on
pattern recognition using a sliding window that traverses a

data sample (array of values) to identify local features and
hierarchical patterns within the data [108]. Similarly, we de-
sign a QVD framework for quantum feature extraction to
detect vortical structures in local patches of field profiles that
are analyzed in superposition. The designed models are able
to learn on patterns inferred from available simulations or
data. By working explicitly with quantum simulations (data),
the QVD model bypasses classical-to-quantum conversion
for postprocessing. Unlike a general quantum convolutional
neural network (QCNN) [96,97,102,107] that simply mimic
the convolution-pooling structure, the QVD framework is de-
signed to analyze the Fourier representation of quantum data,
as well as the underlying power spectrum. It is a specialized
model that embeds principles from CFD into the automated
detection of vortices. Such a physics-informed methodol-
ogy and superposition-based processing cannot be replicated
within a traditional CNN architecture.

Let us proceed to describe the input for quantum vortex
detection. This consists of quantum states as solutions of
quantum differential equations. At the physical level they con-
tain local multidimensional patches of vorticity field solutions
that are amplitude-encoded by construction. As a particular
example, we consider the Lamb-Oseen vortex model [68],
generating solutions of the type shown in Eq. (1) for varying
parameters. As a solution to the Navier-Stokes equations in
cylindrical coordinates, Lamb-Oseen exhibits vortical motion
with a concentrated vorticity that diffuses over time [109]. The
model characterizes a two-dimensional vortex structure with
a Gaussian distribution of vorticity. The azimuthal velocity
profile vy is given by

1 \r R?
Vg = Umax 1+E R 1 —exp _Ar_2 ; (1)

where A is the vorticity diffusion parameter, vy, is the peak
tangential velocity, R is the radial distance from the vortex
center, and r is the radius of the vortex core where the vorticity
is concentrated. We take this as an illustrative example and
describe the approach to study solutions.

A. Quantum vortex detection: Tools

The input corresponds to the flow field as a quantum state,
|¢). We consider this a starting point for QVD. This is fol-
lowed by a sequence of operations that process states (Fig. 2),
which we introduce below. The goal is to perform either a
regression or classification task, e.g., assigning a degree of
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FIG. 2. Quantum circuit used to perform feature extraction in
QVD. Quantum data in the form of a multidimensional flow field
are encoded into state |y¢). A shift gate followed by a permutation
gate are applied to select a window from this flow whose elements are
encoded into the top register of state |1,). Another permutation gate
is applied to select a circular contour from the window whose ordered
elements are encoded into the top register of state [v.). The QFT
is applied to calculate the power spectrum of the contour, resulting
in state |ys). The low-frequency band of this power spectrum is
extracted from state |yg,s) by measuring the bottom register of the
circuit. This circuit assumes that ny > n,, > nc > nyg,, where ny, n,,,
ne, and mygys, TEspectively, refer to the number of qubits in the sub-
registers encoding the flow field, selected window, extracted contour,
and processed low-frequency power spectrum.

vorticity or classifying turbulent versus laminar flow. Given
that we sequentially study patches, we can typically infer the
number of vortices, alongside their locations, at the expense
of repeated circuit evaluations.

The quantum vortex detection circuit requires the follow-
ing operations represented by individual blocks in Fig. 2.
Starting from an n-qubit input state, a shift block corresponds
to

2"—1

S(n,d) =) |(j +d) mod 2")(jl, 2)
j=0

which cyclically shifts the computational basis states by a
fixed offset d. Mathematically, operations in Eq. (2) corre-
spond to generalized Pauli matrices [110]. These are closely
related to Toeplitz matrices that can be block-encoded ef-
ficiently [111]. In our setting, the shift operator performs
a translation of the discretized flow field by one or a few
grid units. This operator is inherently sparse and possesses
the structure. As shown in Ref. [112], such sparse struc-
tured operators can be efficiently block-encoded, with circuit
depth scaling logarithmically in the sparsity and requiring
O[poly(n)] two-qubit gates coming from the decomposition
of multicontrolled (Toffoli-like) gates. These operators were
shown to compile efficiently (linearly in system size) with
parallel implementation strategies [113]. Note that powers of
shift operators also can be compiled efficiently with O(n?)
complexity [112].

The second step of the QVD circuit corresponds to permu-
tation blocks that structure our quantum data into a suitable
form. A permutation operation can be written as

21

P(n, 1) =Y i)l jll, 3)

J=0

which permutes the set of computational basis states H =
{1j )}5":51 according to the array oy, such that order o[ j] spec-
ifies the index of the state mapped to |j). This represents a
bijective map and correspondingly a unitary operator. Exact
compilation of P(n, [) depends on the system and the required
order. While the general complexity of permuting bitstrings
is exponential in the worst case [114], in our setting the
permutation acts only on a subset of basis states S = {|j)*}
corresponding to localized regions of the discretized flow field
while ignoring the H-S subset. The cardinality ds = |S],
therefore, scales with the number of active subregions rather
than with the total Hilbert space dimension. For practical
discretizations used in the QVD workflow, permutations scale
with ds and remain polynomial in the problem size, requiring
O(dsn) operations [115]. As our goal is to bring the compu-
tational space into a block-type structure, the complexity can
also be inferred from the quantum Schur transform, which is
polylogarithmic in system size [116]. At extremely fine spatial
resolutions, however, the subset size could grow exponen-
tially, in which case additional coarse-graining or hierarchical
encoding would be required.

Finally, the quantum Fourier transform (QFT) is added
to enable processing over the low-frequency spectrum rather
than a wide-support quasiprobability distribution. The corre-
sponding bijective operator reads

2"—1

QFT(n) = (1/v/27) Y exp[=2mi(jk/2IK) (I, (4)

Jk=0

with Q = {|k)}i;’01 denoting the frequency basis states. The
corresponding map QFT : Q — H and its reverse can be
implemented with O(n?) two-qubit gates in its textbook form
[117] and compiled efficiently to various gatesets. Approxi-
mate versions of QFT can also be run in linear gate complexity
and logarithmic depth [118].

One more ingredient is the k-frequency projector I1(m) =

iigl |k)(k|. This is a rank-2" projector from the full
2"-dimensional Hilbert space. It can be implemented by mea-
suring the first n-m qubits and postselecting on |0)®"=™
[119], or using a coherent ancilla-based projection.

The QVD workflow is designed with fault-tolerant im-
plementations in mind, as the circuit depth and use of
multicontrolled operations make execution on near-term de-
vices challenging. However, advances in high-coherence qubit
platforms indicate that implementation of medium-scale in-
stances could become feasible in the future.

B. Sequential QVD

We proceed to consider a step-by-step example for the
QVD approach, and we visualize its element. We start with
a two-dimensional vorticity flow field v; ; in the xy-plane that
is encoded into an n¢-qubit quantum state |v¢). The encoding
of this flow onto two registers is represented by

onf 1

W) = e, y) = D v li) ® 1), (5)

i,j=0

where the basis state |i) stores the column index correspond-
ing to the x-register, and the basis state | j) stores the row index
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FIG. 3. Examples of performing feature extraction in QVD. (a) A
two-dimensional vorticity flow in the xy-plane. A sliding window is
selected, and the contour points within each window (indicated by
white crosses) are extracted. Note that this example is course-grained
for brevity. (b) Two seven-qubit windows are shown with five-qubit
circular contours extracted. The top window is representative of a
featureless background, and the bottom window is representative
of a centrally located vortex. (c) The vorticity amplitudes extracted
from the two contours. (d) The power spectra of the background
and vortex, where frequencies are indexed by window pixel ; ;.
The power spectra are shown for the encoded window (QFT|,) on
seven qubits), contour (|,) on five qubits), and low-frequency band
(I¥nips) on three qubits), as obtained with the quantum circuit from
Fig. 2. The inset explicitly shows the magnitude of the low-frequency
power spectra for the background and the vortex, illustrating a fea-
tureless spectrum for the background and a pronounced peak for the
vortex. Note that the vorticity and the power spectrum are measured
in arbitrary units.

corresponding to the y-register. This is repeated for each flow
to create a quantum dataset {p} = {|v¢ ;) (l/ff,ql};v:l consisting
of N encoded flow-field solutions. The workflow outlining
how features are extracted from these flows is shown in Fig. 3.
In particular, the workflow is designed to identify rotational
symmetries in the states, which signal the presence of vortices.

Next, in a similar vein to the CNN, a window is selected
from the flow domain. A schematic of a sliding window
traversing a vorticity flow field is shown in Fig. 3(a). To
achieve this, a shift gate S(n, d) is applied to |i¢) to select the
desired window. This shift gate is followed by a permutation
gate P(n, l) which moves the elements of the window to the
top register of the circuit. This results in a state |y) which
encodes the window in the top n,, qubits. For a detailed step-
wise example of these operations, refer to the Appendix. In the
QVD model, the step size between consecutive window eval-
uations is treated as a tunable parameter ««. This helps reduce
the number of circuit evaluations while ensuring that there is
sufficient space between windows to detect all vortices.

Next, a circular contour is selected from each window.
An example of a circular contour as extracted from two
distinguishable windows is demonstrated in Fig. 3(b), with
one representing the background and the other representing
a vortex. Extracting the contour enables tracing the variation
in the magnitude of vorticity while accounting for rotational

symmetry, effectively producing a state that encodes the vor-
ticity amplitudes. Analyzing the contour of a vorticity window
allows us to isolate regions where amplitudes exhibit certain
structure. Figure 3(c) shows a comparison of the vorticity am-
plitudes of the contours extracted from both the background
window and the vortex window. To achieve this, a permutation
gate is applied to |y, ) to move the elements of the contour (in
either a clockwise or anticlockwise order) to the top register
of the circuit. This results in a state |y.) that encodes the
contour in the top n. qubits. For a detailed example of this
operation, refer to the Appendix. When comparing the vortic-
ity amplitudes, the contour from the background window has
a fairly flat profile, but the contour from the vortex window
has a distinguishable oscillatory profile. Since vortices are
typically characterized by oscillatory vorticity profiles due to
rotational symmetry, examining circular contours provides a
focused representation of how vorticity varies around a central
point. In the QVD model, the inverse contour radius is treated
as a tunable parameter 8 to account for variations in vortex
size and ensure optimal detection.

Given that features are hidden in oscillatoric patterns, we
use QFT for the contour (state |ys)) and sample the corre-
sponding power spectrum to identify signatures of vortical
structures (prominent low-frequency components along the
contour). Therefore, an adjustable circuit used to extract fea-
tures is represented by

[¥ps) = U e, B ne, iy, ne)|ye)
= QFT(nc)Plny, L(B)IP(ns, 11)S[ng, d()]ys).  (6)

Here, the shift operator selects the position of each window
according to the step size «, while the permutation operator
reorders the data specified by the contour with the inverse
radius 8.

Finally, the low-frequency region of the power spectrum
is extracted. This can be achieved by performing projective
measurements on the bottom part of the register (effectively
filtering out high frequencies). This results in a state |igps)
that encodes the low-frequency power spectrum in the top ifys

qubits, P = |H(n|fps)|1/fps)|2. More specifically, for contour
index p and flow-field index g € [1, N], this power spectrum
is given by

Prag= |n(”1fps)0p(aa ﬁ)hﬁf,q”z- @)

If each flow in the dataset p is indexed by ¢, the power
spectrum must be computed for every extracted contour p
as it moves through the field. Figure 3(d) shows the power
spectra of the different states extracted from the window, with
a particular focus on contrasting the low-frequency signals
between the background window and the vortex window. Vor-
tex signatures are typically present in the frequency region
[0, Mi¢], where Ny is 32 for our example in Fig. 3(d). The top
power spectrum of the background has a weak signal with
no detectable characteristics in the low-frequency band. In
comparison, the bottom power spectrum of the vortex has a
sharp peak in the low-frequency band with a maximum value
of approximately 2.4.

The features in |y5,) are analyzed to distinguish between
the presence or absence of a vortex. When a vortex is present,
there is a peak in the low-frequency power spectrum as
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demonstrated from Fig. 3(d). A threshold value for the peak
is used to classify whether a vortex is present or absent within
the window. We set the threshold as a tunable parameter y,
adjusted based on available data to separate vortex signal from
background fluctuations or noise.

We apply classical postprocessing to eliminate overcount-
ing and identify unique vortex detections. Each circuit applied
to each patch returns a binary value of M, ,(c, B, y). The
QVD model therefore often detects the same vortex multi-
ple times across neighboring contour evaluations. To count
unique vortices only, we average regions where multiple
detections occur, such that M,(a, B, y) provides 0 or 1
detection values over the set of contour values. This postpro-
cessing can also aid in determining the central locations of the
vortices.

Notably, the QVD model can be integrated into a machine
learning framework by treating the three parameters as tunable
variables with which to optimize vortex detections, based
on known examples of vortices. This leads to the physics-
informed QML approach, where inductive bias is derived
from the analysis of the low-frequency power spectrum and
optimized based on physically motivated variables.

C. Parallel QVD

As an important step to avoid repeated QVD application,
the quantum vortex detection approach can be parallelized.
This step is needed to accelerate the processing of flow-field
solutions and enable coherent feature selection. Specifically,
we suggest processing solutions with a linear combination
of positions (shifts) > |x) (x| ® U(a, B), selected such that
the window positions effectively cover the grid (as typical for
quantum phase estimation protocols [117]). Note that the grid
can be coarse-grained depending on the typical vortex size.
Next, we employ the readout strategy proposed in Ref. [120],
where the ancillary register stores positions in the amplitudes
of states |x), and the relevant (low k-frequency) component is
selected. For instance, this can be achieved by implementing a
rank-1 projector IT; = |k) (k| and acting on the shifted state as
i |¥ps). Finally, the QFT is applied on the ancillary register
such that we read out information about the spectral (i.e.,
global) properties of the flow field (Fig. 4). This higher-order
spectrum is referred to as the density spectrum. The associated
probability distribution p,(x) can be sampled on the ancillary
register and postprocessed to get the global properties of each
example.

Let us demonstrate the utility of this approach with the
following example. We consider two distinct types of flow
fields, separating samples into those with vortical and non-
vortical patterns [Fig. 5(a)]. Each quantum data sample is
processed coherently, such that selected low-frequency com-
ponents are pushed to the ancillary register, forming a state
that contains information about the entire field (its spectral
properties). Next, the QFT is applied on the ancillary register,
aiming to highlight states with flat profiles (i.e., frequency
response from all positions is similar but noisy) as compared
to those with significant k-frequency components (i.e., certain
areas show pronounced response while other parts of the flow
have a low signal). The corresponding examples are shown
in Fig. 5(b). The density spectrum of a nonvortical field is

Iz
QFT

U2 ud

V)
C

QFT
proj

FIG. 4. Quantum circuit for parallelized feature processing in
quantum vortex detection. Conditioned on the superposition state
|4)®", operators corresponding to different shifts are applied (each
corresponding to an associated ancilla state |x)), followed by
permutations and QFT. Projecting out the bottom register, the low-
frequency amplitudes are pushed to the ancilla register, which is to
be sampled in the frequency basis.

distinct from that of a vortical field containing any number of
vortices. This higher-order spectral analysis is necessary for
identifying the density of peaks in the power spectrum P(k),
which reflects the underlying vortex density of the flow-field
solutions.

Given the variability in vorticity, as well as the number,
location, and strength of vortices, it is useful to compute
a representative density spectrum distribution for each flow
category. These distributions capture the characteristic spec-
tral features of each class, enabling more robust comparison
and feature extraction across different datasets. To construct
such distributions, the density spectrum of each field is first
computed and then repeatedly sampled (via usual projec-
tive measurements). The resulting measurement results are
concatenated to form the class-level distributions shown in
Fig. 5(c), which are representative of the density spectra pro-
duced by fields in each class of the quantum dataset. The
nonvortical distribution pyv(x) does not exhibit distinctive
features, while the vortical distribution py(x) is nonzero only
at certain frequencies. This shows that the spectral signatures
of nonvortical and vortical fields are sufficiently different to
enable clear class separation.

Access to a representative distribution for each class can
thus be leveraged for efficient classification. Empirical distri-
butions can be sampled from their respective representative
distributions pnv(x) and py(x). These empirical distributions
can be postprocessed by training a classical ML classifier
that learns the separation between nonvortical and vortical
regimes. Upon training, we obtain empirical test distributions
by sampling the density spectrum of a new field that did not
form part of the original dataset composed in Fig. 5(a). This
test distribution can then be fed into the classifier to determine
if its underlying field is nonvortical or vortical.

III. RESULTS

In this section, we discuss the use of supervised quantum
machine learning to develop an optimized vortex detection
model based on the Lamb-Oseen vortex solution of the vis-
cous Navier-Stokes equations. For simplicity in exhibiting
how the QVD model is performed, the solutions used for
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FIG. 5. Quantum data-driven feature processing in QVD. (a) A quantum dataset containing vorticity flow field solutions [; ;) categorized
into nonvortical and vortical classes. (b) The density spectra for each pair of vortical and nonvortical fields, where frequencies are indexed
by single power spectrum values of contours N, processed in parallel. These spectra are obtained with the quantum circuit from Fig. 4 and
truncated to seven qubits. The top vortical density spectrum corresponds to a field with four vortices and the bottom to one with seven vortices.
(c) The representative density spectrum distribution of the nonvortical and vortical classes obtained from sampling the individual density
spectra of all fields in the dataset. Note that the density spectrum is measured in arbitrary units.

training and testing are obtained from classical simulations
using the model from Eq. (1). It is a separate challenge to pre-
pare the input data (often with ancilla overheads that prevent
testing), and here we concentrate on the readout procedure.
Vorticity fields for representative Lamb-Oseen solutions
are prepared as quantum states and used as inputs to the QML
model, forming the quantum dataset {p}. It contains vorticity
fields, each with grid dimensions of 200 x 200. The two-
dimensional velocity fields v = (v,, v,) are first generated by
randomly placing a set of Lamb-Oseen vortices of different
strength, size, and orientation onto the grid [68], achieved by
sampling the parameters A, vy, and r in Eq. (1) as well as
randomly selecting the number of vortices M € [4, 8], their
location, and orientation. We overlay each flow field with a
random velocity field defined with a smoothed Gaussian filter
to act as noise. The vorticity fields ¢ = V x v are then cal-
culated. The baseline setup assumes vortices are sufficiently
separated to be individually identifiable. Nonetheless, we con-
sider the proposed method to be adjustable such that it can be
extended to handle more closely packed vortex configurations.

A. Sequential QVD

To effectively implement and evaluate the QVD model
as used for supervised vortex counting, we use an optimiza-
tion procedure for selected model parameters (window step
size, inverse contour radius, power spectrum threshold) and
evaluate the performance of trained models. Specifically, we
minimize a mean squared error (MSE) loss function that
encapsulates the number of correctly detected vortices. The
MSE is given by

N

MSE(. B.y) =Y

g=1

[Mq - Mq(av :Br )/)]2
N

) ®)

where M, is the estimated number of unique detections pro-
duced by the QVD model for the flow field ¢ and parameter
set {a, B, y}. Optimization is also performed to maximize
the accuracy of detections. The accuracy is defined as the
proportion of exact matches between true and predicted vortex
counts.

We show the results obtained using a Bayesian optimiza-
tion procedure in Fig. 6. The training stage for the QVD model
is demonstrated with the MSE loss history in Fig. 6(a). The
optimization is summarized over five instances as applied to
a sample set of N = 60 flow fields that is split into a 75%
training set and a 25% testing set. The optimization is able
to retrieve a MSE of less than 1 in fewer than 15 epochs.
The physically motivated parameters directly influence the
sensitivity and accuracy of the vortex detection model, as
reflected in the initially high MSE that decreases significantly
during early optimization stages. The generalization of the
QVD model is demonstrated with the accuracy in Fig. 6(b).
Here, the optimization procedure identifies the best param-
eters for vortex detection by maximizing accuracy on an
increasing number of training samples. The performance is
then measured via the accuracy on the test set, which con-
tains a randomized selection of 30 flow fields not seen during
training. This accuracy measures the success rate of vortex
detection and how well the optimized parameters of the QVD
model generalize to unseen data when trained on datasets of
increasing size. This result demonstrates how performance
differs from large to small training sets and shows that an
accuracy of 80% is achievable with as few as 30 fields used
for training.

In Fig. 7 we show the output of the vortex detection model
as applied to an example vorticity field. This vorticity field is
derived from a randomly generated Lamb-Oseen velocity field
consisting of seven vortices. This result is achieved through
an exhaustive grid search on all N fields, which identifies
the optimal model parameters based on a ground truth MSE
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FIG. 6. Trainability and generalizability of the QVD model using
Bayesian optimization. Curves and dots represent the median, and
shaded areas represent the interquartile range as obtained from five
instances with different seed values. (a) Training and testing of the
model where we use optimization to minimize the MSE with respect
to the model’s parameters. The loss history is shown for a model
trained on 45 fields and tested on 15 fields. A final MSE loss of 0.6
for the train set and 0.7 for the test set is reached after 20 epochs.
(b) The generalizability of the model where optimization is used
to maximize the accuracy with respect to the model’s parameters.
Accuracy is optimized on a growing training set and evaluated on a
separate test set of size 30 containing only unseen fields.
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FIG. 7. Example of the output obtained from the vortex detec-
tion model as applied to a Lamb-Oseen flow. The two-dimensional
vorticity flow field is shown in the xy-plane and has a dimension
of 200 x 200. The flow contains seven Lamb-Oseen vortices of
varying size, strength, and orientation positioned randomly on the
grid. Black circles represent all detections made by the model, while
green circles indicate the final unique detections after averaging
across all detections to remove overcounting. The model uses the
optimal parameter values consisting of a window step size of @ = 8,
a contour with an inverse radius of § = 3, and a power spectrum
threshold of y = 0.9, resulting in a MSE of 0.25.

of 0.25. The black circles represent the contours where their
low-frequency power spectrum peaks above the threshold, as
used to indicate the presence of a vortex. The green circles
represent the unique vortices, as obtained from averaging over
regions where multiple contours overlap. This model output
has accurately detected both the number of vortices in the flow
field and the central positions of each vortex, demonstrating
high accuracy of detection on quantum data.

B. Parallel QVD

To assess the QVD algorithm as used for classification,
we use classical ML models trained on empirical (sampled)
density spectra distributions. In this classification task, we aim
to separate flow behavior into nonvortical or vortical classes.
This can later be used to verify if an unseen density spectrum
was generated from a nonvortical or vortical field, enabling
predictions of system properties without tomographic proce-
dures. Each empirical distribution is sampled with a fixed
number of shots. The number of empirical distributions in
each set is such that each set contains exactly 10000 mea-
surements; when shot size is low, the number of repetitions
is high and vice versa. We consider this procedure to provide
consistency in assessing classification accuracy as a function
of the number of shots.

In Fig. 8 we show results obtained using a standard random
forest classifier. The underlying dataset contained N fields, 30
fields in each class. The nonvortical fields contain no vortices,
just random fluctuations, while vortical fields contain M €
[1, 8] Lamb-Oseen vortices. Each field is processed using the
parallel QVD algorithm, with optimal parameters determined
by Bayesian optimization as provided in Fig. 7. We then
compute the density spectrum for each field and truncate it to
eight qubits. These density spectra are sampled and concate-
nated to generate representative distributions for each class.
We generate the empirical distributions, with sample sets for
different shot sizes used to train and test independent clas-
sifiers. Each sample set undergoes fivefold cross-validation,
after which the F1 score and area under the curve (AUC)
are calculated. The F1 score is a measure that summarizes
how well a classifier identifies the correct examples of each
class [121]. It combines two aspects of performance: how
many of the predicted positives are correct (precision) and
how many of the actual positives are found (recall). A higher
F1 score indicates a better balance between these two and thus
a more reliable classification performance. The AUC (area
under the receiver operating characteristic curve) measures
how well the classifier distinguishes between the different
classes overall, regardless of the threshold used for making
decisions. An AUC of 1 corresponds to perfect separation,
while 0.5 indicates performance no better than random guess-
ing. As expected, the result shows that classification accuracy
improves with more measurement shots. Notably, the results
indicate that a high F1 score of approximately 94% can be
achieved with as few as five shots (for the given system size).
Additional tests on more closely packed vortex configurations
yielded comparable accuracy of approximately 89% with five
shots, indicating that the QVD approach remains effective
even when vortices are not well separated.
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FIG. 8. Classification from compressed feature representation
using spectral density. Classification is performed on empirical den-
sity spectra sampled from the representative distributions of the
nonvortical and vortical classes using a random forest classifier. The
representative distributions are generated from an equally balanced
dataset of 60 vortical and nonvortical flow fields, with density spectra
computed using parallel QVD truncated to eight qubits. Curves and
dots represent the average F1 score and AUC metrics, and shaded
areas represent the standard deviation obtained with fivefold cross-
validation. The number of samples used to generate the empirical
density spectra are given by the number of shots. The number of gen-
erated distributions used for classification is given by 10000 shots to
ensure each model run contains the same number of measurements.

To assess the performance, we need to establish baselines.
For this, we consider the most typical quantum machine learn-
ing approaches based on parametrized quantum circuits (also
known as quantum neural networks). The QVD model demon-
strates excellent performance compared to other variational
QML approaches in the classification of quantum vorticity
field data. A comparison in the brute-force classification of
quantum data into vortical (turbulent) and nonvortical (lami-
nar) regimes using different methods is shown in Table I. Each
model is trained on a quantum dataset similar to Fig. 5(a), con-
sisting of N = 40 field solutions, each encoded into quantum
states using 16 qubits. The classification accuracy is evaluated
on test sets across four independently generated datasets. In
the QVD implementation, the representative density spectrum
distribution for each class is constructed from all N flows, and
the subsequent empirical distributions used in classification
are sampled with 10 shots. The benchmark QML models
include the quantum deep neural network (QDNN) and the
QCNN [96,102]. Each neural network architecture uses a

TABLE I. Comparison of different classification methods.
Scores for different approaches (QNN-based and QVD) are sum-
marized for distinguishing turbulent and laminar flows in quantum
vorticity field data. Each model is trained on 30 fields and tested
on 10 fields. Accuracy is measured on the test set, with averages
and standard deviations computed over four runs using different seed
values. Classical neural networks are not applicable as we work with
quantum datasets.

Method Test Accuracy (%)
QDNN 63 + 30
QCNN 63 +£32
QVD 93+0.3
CNN (classical) not applicable

hardware efficient ansatz, trained using the Adam optimizer
with a learning rate of 0.1 over 50 iterations. The comparison
to a classical CNN is not appropriate, since the use of quantum
data renders classical approaches inapplicable. The result of
this comparison shows the importance of developing bespoke
quantum algorithms and the need to design quantum CFD
workflows that operate natively within quantum simulation
environments.

IV. CONCLUSION

We proposed an algorithm for vortex detection on quantum
data, where solutions to differential equations are analyzed
with circuits of specific structure. The approach, named quan-
tum vortex detection (QVD), relies on extracting features of
flow fields via sliding windows (motivated by convolutional
approaches), followed by Fourier analysis along contours
to identify signals inherent to structures with vorticity. We
described the required sequence of operations for shifting,
permuting, and transforming states, and demonstrated QVD
on examples that encode Lamb-Oseen vortices. In particular,
we showed that vortices can be detected with high accuracy
when using a few-parameter model trained to set an optimal
detection threshold. Using the coherent sample loading via
quantum parallelism, we performed classification of vorti-
cal versus nonvortical solutions, greatly outperforming other
quantum neural network approaches for quantum data.

As a direction for future works we consider extensions of
these quantum readout tools to other coherent structures, such
as eddies, which are often more chaotic and challenging to
detect [122]. The modular and adaptable nature of the QVD
workflow opens the possibility of extensions to detect closely
spaced vortices or vortex trains through spectral feature pro-
cessing, consistent with classical approaches in reduced-order
modeling. Also, it would be beneficial to investigate how
this detection model can work in a quantum-inspired regime
with differential equation solutions stored as a tensor network
[123]. Finally, an intriguing possibility for detecting topolog-
ical flow features is using quantum methods for topological
data analysis [124—128], if modified appropriately for the type
of data in question.
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APPENDIX

To provide an explicit demonstration of the window con-
tour extraction workflow introduced in the main text, we
present a stepwise visualization for an example of quantum
register manipulation (Fig. 9). Here, quantum states are visu-
alized as heatmaps, where the top rows represent amplitudes
stored in the upper registers of the quantum circuit, and the
bottom rows correspond to amplitudes in the lower registers.
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FIG. 9. Illustration of how the sequence of shift and permutation operations transforms the quantum state encoding the flow, enabling
extraction of the contour for a selected window within a chosen flow field. The process shows how specific elements are repositioned and
compressed as the circuit evolves until only the correctly ordered contour points remain encoded in the topmost portion of the register. The
heatmaps depict quantum state representations and the sparse matrices depict unitary quantum operations. Black borders bound the important
elements that belong to the selected window, whose contour is highlighted with white crosses.

The black borders are used to visualize the selected window to
be rearranged. The unitary quantum operations used to trans-
form the states are visualized using sparse matrix notation,
where dots represent the locations of 1’s and empty space
represents 0’s.

We start with a quantum state represented by 64 ampli-
tudes, where the flow is visualized as a heatmap. The chosen
flow contains a single vortex in the bottom right corner (Fig. 9,
left). The objective is to select the window with the black
border and extract the contour points marked by white crosses.

The first step is to select the desired window of length 16.
Application of the shift gate S(n = 6) promotes the chosen
window from the bottom of the register to the top, effectively
reindexing the circuit such that the relevant subregion pop-
ulates the highest-order qubits. The structure of the required
shift matrix is shown in the first sparse matrix representation.
The window is now mapped to the upper half of the register.
This is indicated by the relocation of the black-bordered vor-
tex to the top (see the heatmap in the middle). We then apply

the first permutation gate P(n = 6) (Permute Flow), whose
structure is shown in the second sparse matrix representation.
This operation rearranges the window elements in the top
half to further localize them within part of the register (top
qubit lines). The second permutation gate P(n = 4) (Permute
Contour), whose structure is shown in the third sparse matrix
representation, is then applied. This operation acts within the
top quarter to order the contour sites themselves into the very
top of the register, ensuring that the ordered contour is stored
in the top three qubits. From here, the features for a clockwise
vortex can be extracted.

As aresult of these sequential operations, only the relevant
contour points which are ordered according to the original
flow geometry are encoded in the topmost register of the
circuit. This isolation procedure extracts the low-dimensional
state required for downstream vortex detection. The procedure
can be repeated to extract contours from different windows
that are located within the flow by applying modified shift and
permutation operations.
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