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Abstract

The adult cerebral cortex is a heterogenous structure with prominent functional
differences between regions. However, less is known about how different
regions acquire and maintain their functionality. Here, we leveraged
connectomes and brain transcriptomes from human foetal and adult brains of
both sexes to investigate early and late differences between cortical regions.
We show that at 24 post-gestational weeks fronto-temporal regions are
disproportionally connected to subcortical regions, highlighting their role in
early integrative cortical-subcortical communication. In adulthood, fronto-
temporal cortex has lower myelin content and exhibits lower expression of
marker genes of perineuronal nets, while showing higher expression of
undifferentiated progenitor cells markers. These results suggest that in the
adult brain the function of fronto-temporal regions reflects a heightened state
of plasticity, possibly to maximise flexible neural responses. In contrast, the
function of parietal and occipital regions aligns with decreased plasticity
needed to support stable neural dynamics. Linking physiology to pathology, we
show that the greater plasticity of the fronto-temporal cortex is coupled to
higher oncogenic vulnerability - frontal and temporal regions have greater
incidence of gliomas and express higher levels of genes upregulated in glioma
even in the absence of malignancy, suggesting a greater glioma-like normative
expression state. Together, these findings highlight the divergent patterns of
connectivity in utero, and plasticity in adulthood between cortical regions and
provide a framework in which functional differences across cortical regions
reflect differences in connectivity and plasticity.
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Significance statement

Here we leveraged foetal neuroimaging and adult brain transcriptomes to investigate
early and late differences between cortical regions. We present new evidence that
already at mid-prenatal development, the fronto-temporal lobes are disproportionally
connected to subcortical regions, potentially reflecting an early route to their
establishment as integrative cortical centres. In adulthood, the fronto-temporal cortex
had increased plasticity of its connections and cellular state which was coupled to
greater oncogenic vulnerability. The combination of increased early connectivity and
long-term plasticity might serve to maximise flexible neural representations and

support the domain-general function of fronto-temporal regions.

Introduction

The adult cerebral cortex exhibits marked functional heterogeneity. High-level
cortical regions support complex, integrative computations enabling flexible cognition,
and context-dependent behaviour, whereas low-level sensory regions support stability
by faithfully mapping to the source of their activation (Mesulam, 1998),(Margulies et
al., 2016). However, we know less about how these regions acquire and maintain their
distinctive functionality. A simple principle is that the functional properties of different
cortical regions will be, to some extent, a consequence of the pattern of their structural
connections laid early in development. However, little is known about the
developmental mechanisms guiding the early divergence of cortical regions, and in
particular, whether particular regions are connectivity hubs already during early brain
development. In network neuroscience a connectivity hub is a brain region that exhibits
a disproportionately large number of connections and thus plays a central integrative
role in the organization of the brain network. Understanding the early signatures of
divergent in utero development across cortical regions has widespread implications

for their functional properties in the adult brain.

In addition to early developmental differences, the remarkable integrative
properties of the higher order regions likely reflect differences in postnatal plasticity
mechanisms that enable these regions to flexibly integrate information. Throughout

postnatal development there are two main processes that contribute to the reduction
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of neural plasticity: myelination (McGee et al., 2005),(Xin et al., 2024) and the
formation of perineuronal nets (PNNs) (Fawcett et al., 2019),(Reichelt et al., 2019).
The well-established consequence of myelination is that it increases the speed of
neural signals, thus supporting fast and stable communication. However, it also
decreases neural plasticity and contributes to the closure of critical periods (McGee et
al., 2005),(Xin et al., 2024). This is caused by the dual role of fast communication: fast
conduction times support stable signals, but the lack of delay in signal transduction
inherently impedes flexibility as it prevents a region to recognise and integrate signal
patterns across longer periods of time. Interestingly, association regions are the last
one to myelinate (Sydnor et al., 2023),(Baum et al., 2022) and even when fully

myelinated have less myelin than sensorimotor regions (Glasser & van Essen, 2011).

The second main plasticity-repressing mechanism is PNNs. PNNs are extracellular
matrix structures that preferentially surround parvalbumin-positive GABAergic
inhibitory neurons and are responsible for synaptic stabilization by acting as
electrostatic insulators (Fawcett et al., 2019),(Reichelt et al., 2019). Similarly to myelin,
PNNs limit plasticity by decreasing the ability of a neuron to store electrical charge
across its membrane, thus forcing it to fire rapidly. In contrast to myelination, much
less is known about differences between cortical regions in the abundance of PNNs in
the human brain, likely due to the lack of imaging correlates via standard neuroimaging
techniques. In the rat cortex association regions have fewer PNNs compared to
sensorimotor regions (Galtrey & Fawcett, 2007). It is not known whether this pattern

is evident in the human brain and when during development this difference emerges.

Here we asked: how do high-level cortical regions achieve its remarkable ability to
integrate information, allowing it to support increasingly abstract levels of
representation? We reasoned that an integrative region must have the following
properties: 1) have more connections early in development to provide greater source
of inputs, 2) keep these connections plastic for longer to maximise integrative
communication and, 3) harbour an intrinsically more plastic cellular state. To that end,
we first characterised foetal structural connectivity and gene expression to quantify
regional differences in number of early connections and cell type markers. With
respect to the second and third properties, we combined cortical myelin maps derived
from T1w/T2w with brain transcriptomics to investigate whether in adulthood fronto-

temporal regions maintain heightened state of plasticity. Finally, we linked physiology
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to pathology by exploring whether regions with heightened plasticity in adulthood

harbour a higher oncogenic potential.

Materials and Methods
Diffusion-weighted imaging (DWI), fibre tracking and connectome construction

Human foetal diffusion data was taken from the Developing Human Connectome
Project (dAHCP). The dHCP is a collaborative effort between King’s College London,
Imperial College London, and Oxford University that collects foetal and neonatal
neuroimaging data. Detailed description of acquisition parameters and pre-processing
steps is provided in Price et al., 2019 and Wilson et al., 2023). We restricted our
analyses on foetal brains aged 23-25 post-gestational weeks (n = 22) to avoid the
effect of myelination on connectivity estimates in older subjects. The earliest that
myelination has been microscopically observed is at 25 p.g. weeks with the first myelin
sheaths appearing in the globus pallidus, pallido-thalamic fibres of the posterior
internal capsule, and ventral lateral nucleus of the thalamus (Hasegawa et al., 1992).
In-utero imaging of foetuses of that age presents challenges, such as reduced
anisotropy, however, unmyelinated white-matter tracts still show signal intensity
changes consistent with anisotropic water diffusion et al, 1998). Using dMRI previous
work has successfully reconstructed major white matter tracts as early as 22 post-
gestational weeks (Wilson et al., 2021),(Calixto et al., 2025). We validated anatomical
tracts that are expected to be present at this developmental stage (Supp Fig 1a, 1b)
and compared their fractional anisotropy (FA) values to published values for similarly
aged foetal samples. Our FA values were comparable to published FA values in that

developmental period (Supp Fig 1c).

Pre-processed scans were reconstructed in DSI studio (Yeh et al., 2010) via
generalized g-sampling imaging using a sampling length ratio of 1.25 in native space.
Deterministic fibre tracking was performed in DSI Studio with 1000000 seeds.
Visualisation of whole-brain fibre tractography across all subjects is shown in Supp
Fig 1d. To prevent radial glia and spurious short fibres being incorrectly included in
the connectivity estimates we restricted the minimum fibre length to 30mm.
Streamlines resulting from the fibre tracking were parcellated with a foetal volumetric

atlas that corresponded to the gestational age of the subject (either 23, 24 or 25 post-
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gestational weeks) taken from http://crl.med.harvard.edu/research/fetal brain_atlas/

(Gholipour et al., 2017). This atlas contains 78 distinct cortical parcellations. As short-
range local connectivity between regions within the same lobe may not be reliable at
the foetal stage of brain development, we modified the atlas by grouping all regions
within their respective lobes into a single mask, which resulted in 4 cortical regions:
frontal, temporal, parietal, and occipital. The subcortical regions included in the foetal
atlas were the left and right, hippocampus, parahippocampal region, amygdala,

caudate, putamen, and thalamus.

After manual inspection 8 foetal scans were removed from the analyses for incorrect
reconstruction and fitting of the atlas parcels to the anatomical structures/brain
orientation. The remaining 14 foetuses had a mean age of 23.92 pgwk (range: 23.43
—24.71), 8 male, 6 female.

The structural connectome of each subject was constructed by parcellating the whole-
brain tractography with 16 regions (4 cortical + 12 subcortical regions) derived from
the foetal atlas. The connectivity matrix was calculated by using the fibre density which
represents the number of streamlines connecting each pair of regions. All connections

within the same regions were excluded.

Human foetal transcriptomics data and cell type enrichment analysis

RNAseq data was obtained from the publicly available BrainSpan Developing Brain

atlas (https://www.brainspan.org), covering the period from 12 post-gestational weeks

to adulthood. The data used in the current analyses included gene expression from 11
cortical: dorsal frontal cortex (DFC), medial frontal cortex (MFC), orbito-frontal cortex
(OFC), ventral frontal cortex (VFC), motor cortex (M1C), somato-sensory cortex
(S1C), auditory cortex (A1C), inferior parietal cortex (IPC), superior temporal cortex
(STC), inferior temporal cortex (ITC), visual cortex (V1C). Data from corresponding
regions in the left and right hemispheres were pooled together. The obtained gene
expression data were in reads per kilobase per million (RPKM) values. To allow
normalized comparisons across regions and timepoints, RPKM values were converted
to transcripts per million (TPM) according to the formula:

RPKM

_ 6
TPM= 10"~ Sim (RPKM)
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A Uniform Manifold Approximation and Projection (UMAP) across the expression of
all genes was performed for dimensionality reduction. The UMAP results indicated that
at 37 weeks the expression patterns transition to a distinct state compared to earlier
foetal and ex utero expression, replicating the previously reported transcriptomic
transition beginning during late foetal development (10). As a result, and to facilitate
for compatibility between our connectivity and transcriptomics analyses, we excluded
data from 37 pgwk and constrained our analyses on the remaining early-to-mid foetal
samples from 12 to 24 post-gestational weeks (pgwk). This resulted in 13 donor
samples (6 female, 7 male): 3 donors at 12 pgwk, 3 donors at 13 pgwk, 3 donors at
16 pgwk, 1 donor at 17 pgwk, 1 donor at 19 pgwk, 1 donor at 21 pgwk, 1 donor at 24
pgwk. As there was only one region to represent the expression in the occipital lobe
(V1) donors without expression data from V1 cortex were removed from the analysis

to ensure no individual differences bias in expression.

First, we cross-referenced known brain cell type marker genes with a developmentally-
relevant single-cell RNAseq data which were derived from frontal cortex tissue across
developmental timepoints from early foetal to adulthood (K. Zhu et al., 2023).
Expression of maker genes were referenced across a set of pre-defined neuronal cell
types: early foetal excitatory neurons (EN foetal early), late foetal excitatory neurons
(EN foetal late), postnatal excitatory neurons (EN), foetal inhibitory neurons (IN foetal),
medial ganglionic eminence-derived inhibitory neurons (IN-MGE), caudal ganglionic
eminence-derived inhibitory neurons (IN-CGE), oligodendrocyte progenitor cells
(OPC), oligodendrocytes, astrocytes, microglia, radial glia, intermittent progenitor cells
(IPC), endothelial cells, pericytes, and vascular smooth muscle cells (VSMC). After
ensuring that the marker genes are expressed uniquely in a cell-type, we investigated
whether expression of these markers in the bulk RNA samples from the BrainSpan

Developing Brain atlas differed between the cortical lobes.

Cortical myelin map, plasticity-related, and glioma-upregulated gene expression

in adulthood

T1w/T2w cortical myelin maps were taken from the Human Connectome Project

(Glasser et al., 2016) and parcellated with the Desikan-Killiany (DK) cortical atlas
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(Desikan et al., 2006) to derive a cortical myelination value for each region of the
atlas. Normalized gene expression maps were taken from The Allen Human Brain
Atlas (AHBA) using the abagen toolbox (Markello et al., 2021) and were also

parcellated with the DK cortical atlas.

When comparing the 4 cortical lobes, the following DK regions were included in each
lobe: 1) frontal: caudal anterior cingulate, caudal middle frontal, frontal pole, lateral
orbito-frontal, medial orbito-frontal, pars opercularis, pars orbitalis, pars triangularis,
rostral anterior cingulate, rostral middle frontal, superior frontal; 2) temporal: bankssts,
entorhinal, fusiform, inferior temporal, middle temporal, parahippocampal, superior
temporal, temporal pole, transverse temporal; 3) parietal: inferior parietal, isthmus
cingulate, paracentral, posterior cingulate, precuneus, superior parietal,
supramarginal; 4) occipital: cuneus, lateral occipital, lingual, pericalcarine, inferior
parietal, isthmus cingulate, paracentral, posterior cingulate, precuneus, superior
parietal, supramarginal. Regions from the atlas not included in the cortical lobe

classification were the insula, precentral, and postcentral.

There were 451 upregulated genes in glioblastoma identified in (Neftel et al., 2019).
325 of these genes matched to genes in the AHBA transcriptome, and 221 matched
to genes in the BrainSpan atlas after removing the genes with low average expression
values (<1 TPM). For each of the matching genes, we z-scored the expression levels
across the cortical regions and then averaged the z scores of regions across the 4

cortical lobes.

Results
Structural connectivity differences across the cortex in the mid-prenatal period

A simple first step towards understanding very early differences in connectivity
between cortical regions is to look at differences in connection numbers early in
development. We measured in utero brain connectivity from foetal diffusion MRI scans
(dMRI) in 14 healthy foetuses from the Developing Human Connectome Project
(dHCP). To avoid the potential effect of myelination beginning after 25 post-gestational

weeks (p.g. wks) we focused on the youngest available foetal brains scan aged 23-25
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p.g. wks: mean age of 23.92 p.g. wks. For each individual we performed whole-brain
fibre tracking and constructed individual connectomes by parcellating the whole-brain
tractography with a foetal atlas of the corresponding age. The pattern of connectivity
between regions was consistent across individuals as indicated by an average
between-participants correlation of connectomes of r = 0.77 (Supp Fig 2a, 2b). We
averaged the individual connectivity matrices and compared the connections between
each cortical lobe with the rest of the lobes and subcortical regions in the atlas (Fig
1a). Next, to statistically compare the number of connections between the 4 lobes, for
each individual we calculated the total number of connections, the cortical (between-

lobe) connections, and the subcortical connections of each cortical lobe.

The frontal and temporal lobes had significantly more total connections than the
parietal and occipital (ANOVA with FDR-corrected multiple comparisons: F (3, 52) =
18.61, p < 0.001), (Fig 1b). This pattern was primarily driven by the higher number of
subcortical connections to the frontal and temporal lobes (ANOVA with FDR-corrected
multiple comparisons: F(3, 52) = 54.30, p <0.001, (Fig 1d). The increased connectivity
of the frontal and temporal lobes to the subcortex was evident across all subcortical
regions in the atlas and cannot be attributed to a single strong subcortical connection
(Fig 1a) or the physical distance between the lobes and subcortical structures (Supp
Fig 3e, 3f). The increased fronto-temporal connectivity to subcortical regions was
consistent in all of the 14 individual subjects (Supp Fig 2c¢), and present when the
number of subcortical connections to each lobe was normalized by the voxel size of
each cortical mask (Supp Fig 3). However, although both the frontal and temporal
lobes were enriched in subcortical connections, there were some differences in their
pattern of subcortical connectivity. The increased fronto-subcortical connectivity was
driven by a higher number of connections with the basal ganglia (caudate and
putamen), whereas the increased temporo-subcortical connectivity was driven by

connection between the temporal cortex and hippocampus (Fig 1a).

There was also a significant difference between the lobes in the number of
connections to cortical regions, with the highest cortical connectivity in the temporal
and parietal lobes ANOVA with FDR-corrected multiple comparisons: F (3, 52) = 4.83,
p = 0.005 (Fig 1b), but this effect was not as strong and consistent across all subjects

(Supp Fig 2c).
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Frontal and temporal cortices were enriched in inhibitory neurons in the mid-

prenatal period

Next, we investigated whether the observed increased connectivity between the
fronto-temporal cortex and subcortical regions covaries with differences in abundance
of specific cell types. We contrasted the expression levels of marker genes for different
cell types between cortical regions (see Materials and Methods). As gene expression
from only a limited number of cortical regions was available, and to facilitate the
comparison with our connectivity analysis, we grouped all cortical regions into lobes
before statistically comparing them. Marker genes are a set of genes with highly
enriched expression in a particular cell type (Fig 2a), and relative differences in their
expression can be used to estimate differences in cell types across bulk RNAseq
samples taken from different regions (Jew et al., 2020),(Seidlitz et al., 2020),(Mandal
et al., 2021a). Specifically, we explored expression differences in marker genes in the
bulk RNA samples from the BrainSpan Developing Brain atlas for radial glia,
astrocytes, inhibitory neurons, excitatory neurons, microglia, oligodendrocyte

progenitor cells (OPCs) and oligodendrocytes.

We observed consistently higher expression across all inhibitory neuron markers
(GAD1, GAD2, DLX1, DLX2, SST, LHX®6), in regions within the frontal and temporal
cortex relative to regions within the parietal, occipital and motor cortex, ANOVA with
FDR-corrected multiple comparisons: F(3,20) = 146.8, p<0.001, (Fig 2b, 2c). As we
had a limited number of regions across the lobes, it is difficult to ascertain with certainty
whether the results reflect lobar differences or sensorimotor-association differences.
However, the pattern of results may herald the early emergence of sensorimotor-
association gradient: for example, anatomically the motor cortex is part of the frontal
lobe, yet, the expression levels of inhibitory neuron markers align with that of
sensorimotor regions. Similarly, across temporal regions (ITC, STC, A1C) the A1C
(which is sensorimotor in adulthood in contrast to ITC) showed lower expression of
inhibitory markers comparable to other sensorimotor regions (M1, S1, V1). The higher
expression in the frontal regions of marker genes for inhibitory neurons was confined
to the foetal period when inhibitory neurons have an excitatory function (Murata &
Colonnese, 2020),(Ben-Ari, 2002),(D. D. Wang & Kriegstein, 2009),(Owens et al.,
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1996), with little differences in postnatal expression (except SST) (Fig 2d). The pattern
of higher expression in fronto-temporal regions holds valid both for markers whose
expression was highest postnatally (GAD1, GAD2 and SST) as well as inhibitory
markers with highest expression in the foetal period (DLX71, DLX2 and LHX6). There
was also a statistically significant difference in expression levels across
oligodendrocyte marker genes at p<0.05, but the absolute levels of expression, as well

as the differences, were very low (Supp Fig 4).

Increased plasticity in fronto-temporal cortical regions in adulthood

To be an integrative hub, a region does not only need to be well connected, but also
to process the incoming information flexibly. Flexibility is a function of the plasticity of
connections, as well as the collective functional properties of the cells comprising the
region. To that end, we next investigated whether in adulthood high-level association
regions maintain heightened state of plasticity to maximise integrative communication.
Specifically, we explored differences across cortical regions in three processes directly
related to plasticity: myelination and formation of PNNs - which repress plasticity, and
markers of progenitor cells (stem cell-like states), which promote plasticity. We
parcellated the brain with the Desikan-Killiany atlas and compared cortical myelination
(T1w/T2w) and the expression levels of Myelin Basic Protein (MBP) as markers of
mature myelin content across the adult cortex. PNNs are composed of the chondraoitin
sulfate proteoglycans neurocan, versican, brevican, and aggrecan which bond to
hyaluronan (Fawcett et al., 2019). For assessing abundance of PNNs, we used the
expression level of the gene ACAN encoding the proteoglycan aggrecan which is
selectively expressed in PNNs (Rowlands et al., 2018). We focused on two broad
categories of undifferentiated cell marker genes: 1) oligodendrocyte progenitor cells
(OPCs) markers, and 2) neural stem cells (NSCs) markers. The OPCs marker genes
ID4, SOX5, SOX6 and PDGFRA have been shown to maintain OPCs in their
undifferentiated state and repress myelin gene expression (Li et al., 2009),(S. Wang
et al., 2001),(Kondo & Raff, 2000),(Stolt et al., 2006),(Q. Zhu et al., 2014). The NSCs
marker genes SOX2, PAX6, HES1, HESS5, VIM, NES, GLI3 are expressed by
immature progenitor cells of the nervous system (Zhang & Jiao, 2015),(Vinci et al.,
2016).
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We show that cortical myelin content (T1w/T2w) and MBP expression were positively
correlated (Fig 3c) and both were lower in the frontal lobe relative to the rest of the
cortex (Fig 3a, 3b), while ACAN expression was significantly lower in the frontal and
temporal compared to the parietal and occipital lobes (Fig 3a, 3b). We further
compared expression levels of genes promoting plasticity. Expression levels of the
genes /D4, SOX5, SOX6 and PDGFRA, which are expressed by OPCs to maintain an
undifferentiated state and suppress myelin production were enriched in the frontal and
temporal, relative to parietal and occipital regions (Fig 3a, 3b). To assess whether the
variation in cortical myelin (T1w/T2w) values across brain regions (DK atlas parcels)
is related to the gene expression patterns for MBP, ID4, SOX5, SOX6 and PDGFRA,
we performed a series of Pearson’s correlations. There was a significant negative
correlation between the level of expression of these myelin-suppressing genes and
the cortical myelin content across the adult cortex (Fig 3¢). Finally, the expression of
NSCs marker genes was also increased in frontal and temporal cortex (3a, 3b).
Overall, across all plasticity-related mechanisms analysed here, with the exception of
myelin content and MBP expression (which were highest in the frontal cortex), the

frontal and temporal cortex were equally enriched in plasticity markers.

To investigate when during development do these differences in plasticity emerge, we
used the developmentally-enriched BrainSpan transcriptome atlas. We first replicated
our findings of higher expression of plasticity-related processes in the frontal and
temporal cortex in the samples of adult brains with the BrainSpan transcriptome atlas
(Fig 3d). Next, we grouped the regions into association (frontal cortex: MFC, OFC,
DFC, VFC; inferior temporal cortex: ITC) and sensorimotor (M1C, S1C, V1C) and
compared the expression across the lifespan for MBP and ACAN as marker for
plasticity-repressing myelination and PNNs, respectively. Expression of MBP was
higher in association relative to sensorimotor regions soon after birth (4 months old
sample) and continued to differ during childhood through adolescence (until 19 years
old), after which expression levels were similar (Fig 3e). This is consistent with prior
work showing that postnatally myelination proceeds along a sensorimotor —
association gradient (Sydnor et al., 2023). In contrast, differences in expression of
ACAN between association and sensorimotor regions emerged in late

childhood/adolescence and were most pronounced in adulthood (Fig 3f).
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Increased plasticity confers increased vulnerability to glioma

We found that the frontal and temporal cortex are enriched in expression of NSCs and
OPCs markers. This increased state of cellular plasticity led us to postulate that these
regions will hold higher oncogenic potential and thus be more vulnerable to
carcinogenesis as stems cells are the putative cells of origin in glioma (Altmann et al.,
2019),(Lee et al., 2018),(Alcantara Llaguno et al., 2009). To that end, we compared
the frequency of adult glioma across the cortex by collating previously published data
(n =317 cases) (Larjavaara et al., 2007),(Neftel et al., 2019),(Scarpace L, 2019). The
distribution of gliomas across the cortex revealed an extraordinary imbalance: ~45%
of gliomas were found in the frontal cortex, ~37% in temporal, ~14% in parietal and
only ~3% in the occipital lobe (Fig 4a). To check whether the higher glioma frequency
in frontal and temporal cortex remains after adjustment for the volume difference
across lobes, we calculated a normalized glioma frequency by dividing the %
frequency of glioma in each lobe by the number of voxels in that lobe. The frequency
of gliomas per voxel in each lobe was: frontal: 0.0016, temporal: 0.0023, parietal:
0.001, occipital: 0.0004, indicating that he higher glioma frequency in frontal and
temporal cortex remained after adjustment for their volume difference. The higher
oncogenic potential of the fronto-temporal suggests that they might have a higher
expression of genes typically expressed in gliomas. To test this, we used an existing
database of genes which were upregulated in glioblastoma samples relative to normal
brain tissue (Neftel et al., 2019), (see Materials and Methods). Next, we mapped the
expression of these glioma-upregulated genes across the cortex of adult brain
samples using two brain transcriptomic atlases — the Allen Human Brain Atlas and
(AHBA) and the adult samples from the BrainSpan Atlas. Across the two independent
brain transcriptome atlases, the expression of glioma-upregulated genes was
constantly higher in the frontal and temporal cortex relative to parietal and occipital
cortical regions (Fig 4b, 4c, 4d), (AHBA: F(3, 1296) = 23.18, p<0.0001; BrainSpan:
F(10, 2310) = 20.96, p <0.0001). This suggest that expression levels of glioma-
upregulated genes across the cortex in the absence of glioma mirrors the cortical

pattern of glioma frequency and underlying plasticity.

Discussion
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Here we leveraged foetal neuroimaging prior to myelination to investigate the
connectivity signatures of cortical lobes. The frontal and temporal cortex were enriched
in connections with the subcortex, potentially reflecting an early route to their
establishment as integrative cortical centres. In adulthood, the fronto-temporal regions
showed lower levels of myelination and expression of perineuronal nets markers, and
increased expression of progenitor cells markers, suggesting a heightened state of
plasticity. Together, our results suggest that the early establishment of subcortical
connections and prolonged maturation might enable the association fronto-temporal
cortex to flexibly integrate information and support increasingly abstract

representations.

What are the mechanisms leading to the higher subcortical connectivity of the
fronto-temporal cortex? A possible mechanism might be through GABA signalling.
Using gene expression from foetal brains, we report higher expression of inhibitory
neuron marker genes in regions of frontal and temporal cortex compared to parietal
and occipital regions. This finding has been demonstrated previously (Al-Jaberi et al.,
2015),(Molnar et al., 2019) and is thought to reflect a genetically determined
preferential inhibitory neuron generation in the fronto-temporal cortex (Al-Jaberi et al.,
2015). GABA is the main inhibitory neurotransmitter in the brain and acts primarily by
binding to GABAA or GABAB receptors which is critical for the development of cortical
circuits (Peerboom & Wierenga, 2021). While GABA neurons are inhibitory in the
postnatal brain, they have an excitatory function during foetal cortical development
(Murata & Colonnese, 2020),(Ben-Ari, 2002),(D. D. Wang & Kriegstein, 2009),(Owens
et al., 1996), with a shift towards their established inhibitory function at around the first
postnatal week in humans (Kilb, 2012). Crucially, GABA inhibitory neurons have been
demonstrated to preferentially generate action potentials in pyramidal neurons of
layers V and VI of the immature cortex (Rheims et al., 2008), which are the layers that
form corticofugal projections to subcortical regions such as the basal ganglia and
thalamus (Usrey & Sherman, 2019),(Baker et al., 2018), providing a potential
mechanism for the covariance between subcortical connections and the number of

inhibitory neurons across the developing cortex.

We restricted the connectivity analysis only to the narrow 22-25 p.g. weeks age
range in order to avoid the effect of myelination on connectivity estimates in older

subjects and thus, derive a measure of connectivity based solely on axonal tracts.
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Connectivity strength of a given region after the start of myelination likely reflects a
combination between the number of axonal connections and their myelination levels,
however, their relative contribution to the strength of connectivity measured is unclear
(Oldham & Fornito, 2019). As such, determining which cortical regions are connectivity
“hubs” throughout the lifespan would be influenced by the relative prevalence of axonal
connections and myelination in these regions, which itself varies temporally and
spatially. For example, the occipital lobe does not have as many early connections as
the frontal lobe however, it is one of the first cortical regions to myelinate which would
overestimate its connectivity in the early post-natal period. In contrast, association
regions tend to be the last ones to myelinate which would overestimate their relative
gain of connections during the adolescence-adulthood transition. Indeed, a shift in
“hubness” of regions between primary and association regions has been documented
during the transition from neonatal to childhood/adolescence periods (Oldham &
Fornito, 2019). However, we recognise that the structural connectivity we measured
during 22-25 p.g. weeks window may not necessarily be representative of future
connectivity as there are both further extension of axons as well as retraction of
exuberant axons during the late gestational and early postnatal periods (Innocenti &
Price, 2005),(LaMantia & Rakic, 1990).

The finding that the frontal lobe has more connections in the 24-week foetal
brain is somewhat counterintuitive to the fact that its connections are the /ast to
myelinate (see also (Sydnor et al., 2023),(Baum et al., 2022),(Lebel et al., 2008)). We
propose that it is precisely the combination of early over-connectivity and later
myelination that enables the frontal cortex to serve its function as an integrative hub
supporting increasingly abstract levels of representation throughout the human
lifespan. There are two main properties that a cortical region needs to satisfy in order
to perform flexible integration of information: 1) connect to multiple regions and 2) keep
long-term plasticity of these connections to incorporate changing inputs at differing
rates from other regions as they mature. To this end, our results demonstrate that the
frontal cortex is particularly enriched in connections to the subcortical regions, which
are hubs in the brain (Oldham & Fornito, 2019). This is consistent with the previously
reported increased functional connectivity of the frontal cortex during foetal
development (Karolis et al., 2023). In line with the second property, the frontal cortex

develops myelination of its connections last and has less myelin compared to other
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cortical regions even when fully matured in adulthood. Although, myelination
contributes to faster information transfer and therefore serves a more efficient
communication, it is also one of the processes that inhibits brain plasticity and closes
critical periods (McGee et al., 2005),(Hubener & Bonhoeffer, 2014). Thus, by setting
up early connections and allowing for these connections to be plastic (less myelinated)
over a longer time, the frontal cortex may flexibly integrate information. The question
of what factors delay the formation of myelin to the frontal region postnatally, and more
broadly, what factors underly the extraordinary postnatal neoteny of the frontal cortex,

constitutes a most promising field for future investigations.

Over two independent transcriptome datasets we found that in adulthood the
association fronto-temporal cortex remain more plastic as it harboured the lowest
levels of marker genes for PNNs. Although much less is known about differences
between cortical regions in the abundance of PNNs in the human brain, prior work in
the adult rat cortex suggests that association regions have less PNNs compared to
sensorimotor region (Galtrey & Fawcett, 2007). Our transcriptomic results suggest that
this spatial pattern might be conserved in the adult human brain and that differences
between sensorimotor — association regions become most prominent in
adolescence/adulthood, although histological verification would be required.
Consistent with the idea of increased plasticity, the fronto-temporal cortex also
expressed higher levels of marker genes for undifferentiated progenitor cells (OPCs
and NSCs). Here we want to emphasize that our results are agnostic to the exact
process contributing to the increased gene markers for progenitor cells. Unlike
neurons, OPCs continue to differentiate throughout adulthood (Crawford et al., 2014),
thus the OPCs markers likely reflect yet undifferentiated oligodendrocyte progenitors.
However, itis well established that there is no neurogenesis in the adult cortex (Rakic,
1985),(Kornack & Rakic, 2001),(Spalding et al., 2005) suggesting that the NSCs
markers expression does not stem from bona fide neuron progenitors. As cells can
exist in different “states” (Trapnell, 2015), one possibility is that the NSCs markers are
expressed by mature, differentiated neurons to drive a more plastic cellular state.
Another alternative is that the increased expression of NSCs markers captures a state
of dedifferentiation where mature cells gradually lose their differentiation and transform
into stem cells (Mills et al., 2019),(Corti et al., 2012),(Yang et al., 2010). The blurred

borders between cell types and cell states have been discussed extensively elsewhere
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(Trapnell, 2015),(Mills et al., 2019). Here, we seek to highlight that whether the
increased cellular plasticity is attributed to truly undifferentiated progenitor cells, or
mature cells acquiring more plastic stem-like cellular states, our results, nevertheless,

suggest that the association cortex harbours more plastic cellular potential.

When observing regional differences in plasticity across the cortex, one
specious conclusion is to view the regions with higher plasticity in some sense as
exceptional or “high-level”. This is particularly tempting in light of the well-established
association between the frontal cortex and complex cognitive abilities, as well as its
disproportional evolutionary expansion in humans (Miller et al., 2002). We want to
stress that the appropriate development and functionality of the association cortex, as
well as the execution of complex cognitive tasks, necessarily relies on stable inputs
from less plastic regions. In this view, plastic responses could be maladaptive when
stable signals are required. In other words, to support intelligent (adaptive) behaviour,
both stable and plastic neural responses are of equal value. Differences between
individuals in the developmental timing and extent of processes driving plasticity
(myelination, PNNs formation) are propitious candidate mechanisms for investigating

individual differences in cognition and behaviour.

Finally, we linked typical physiology to pathology by showing that greater
plasticity confers greater oncogenic vulnerability. Our analysis, as well as extensive
previous work (Larjavaara et al., 2007),(Mandal et al., 2021b),(Romero-Garcia et al.,
2023),(Altmann et al., 2019) demonstrated that glioma involving the cortex is
preferentially located in the fronto-temporal regions relative to other cortical regions.
This pattern is specific to gliomas as metastases to the cortex from non-neural primary
cancers do not show the same cortical distribution (Cardinal et al., 2022),(Kwon et al.,
2020),(Bonert et al., 2023). Stem cells are the likely cells of origin in glioma (Altmann
etal., 2019),(Lee et al., 2018),(Alcantara Llaguno et al., 2009), and differences in their
abundance across the cortex has been linked to the different rates of gliomas across
the cortex (Mandal et al., 2021b),(Romero-Garcia et al., 2023). As gliomagenesis is a
probabilistic event, the observation that the frequency is higher in fronto-temporal
regions suggests that stem cells might be disproportionately supplied in those regions
in adulthood, relative to regions in the parietal and occipital lobes, which is in line with
our findings of increased stem cell-like expression. However, if gliomagenesis was

only a function of the abundance of stem cells, one would expect higher glioma rates
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in utero and early postnatal life. Given that the peak incidence of glioma is between
45-75 years of age (Altmann et al., 2019), the higher glioma frequency in the
association cortex would likely involve immune and inflammation factors (which may
themselves be higher in frontal cortex due to the increased metabolic rate there
(Castrillon et al., 2023)), independent of stem cells abundance. Our results contribute
to the literature by showing that fronto-temporal cortical regions express higher levels
of genes upregulated in glioma even in the absence of malignancy, suggesting that
their higher oncogenic potential is, at least in part, due to greater glioma-like normative
expression state, potentially providing more conductive environment for

gliomagenesis, progression, and survival.

In conclusion, we demonstrated that at 24 post-gestational weeks fronto-
temporal regions are disproportionally connected to subcortical regions, highlighting
their role in early integrative cortical-subcortical communication. In adulthood, the
fronto-temporal cortex had lower myelin content, lower markers of perineuronal nets,
and increased markers of undifferentiated progenitor cells, suggesting heightened
plasticity of its connections and cellular state. However, the association regions
showed an increased incidence of gliomas, as well as expression of glioma-associated
genes in the absence of disease, suggesting that the heightened plasticity confers
greater oncogenic vulnerability. Together, our results provide evidence of divergent
patterns of connectivity in utero, and plasticity in adulthood between cortical lobes and
support a framework which views functional differences across cortical regions as

manifestations of differences in connectivity and their plasticity.
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Figure legends

Figure 1. Structural brain connectivity at 24 post-gestational weeks. a. Average
number of connections between each cortical lobe with the other lobes and subcortical
regions. b. Number of connections between each cortical lobe and all regions in the
atlas. ¢. Number of connections between each cortical lobe and the other 3 cortical
lobes. e. Number of connections between each cortical lobe and all subcortical regions
in the atlas. Error bars represent +1 SEM.

Figure 2. a. Marker genes show distinct expression for specific cell types; b and c.
Higher expression of marker genes for inhibitory neurons (GAD1, GAD2, DLX1, DLX2,
SST, LHX®6) in frontal and temporal regions relative to parietal and occipital regions
during early-to-mid foetal development (12-24 p.g. wks); d. Normalized expression
levels (TPM) of inhibitory neuron marker genes from 12 p.g. wks to adulthood (40
years) in the frontal + temporal (MFC, OFC, DFC, VFC, ITC, STC, A1C) versus parietal
+ occipital cortex (IPC, M1C, S1C, V1C). Inhibitory markers had higher expression
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levels in the frontal and temporal cortex during early-to-mid foetal development (12-24
p.g. wks), and this was limited to the foetal period, with no difference in expression in
postnatal development (except SST).

Figure 3. a. Cortical myelin content and relative gene expression levels across cortical
regions (Desikan-Killiany atlas) of markers for myelin (MBP), perineuronal nets
(ACAN), oligodendrocyte progenitor cells (OPCs) (ID4, SOX5, SOX6, PDGFRA),
neural stem cells (NSCs) (SOX2, PAX6, HES1, HESS, VIM, NES, GLI3), and myelin
abundance (top row). Values represent fold over row mean; b. Regions across the
frontal and temporal cortex have significantly lower myelin and expression of PNNs
markers (which repress plasticity) but are enriched in processes promoting plasticity
(OPCs and NSCs markers); ¢. MBP expression positively correlates with cortical
myelin content (T1w/T2w) across the cortex, whereas genes suppressing myelination
(ID4, SOX5, SOX6, PDGFRA) correlate negatively; d. Replication with an independent
gene expression dataset (BrainSpan) in adult brains (18-40 years old). Association
regions (frontal and inferior temporal cortex) are enriched in plasticity-promoting
genes; e. Normalized expression (TPM) of MBP as a marker for active myelination
shows that association - sensorimotor difference emerges soon after birth and is most
prominent during childhood; f. In contrast, difference in PNNs (ACAN expression) was
most pronounced in adulthood.

Figure 4. a. Frequency of glioma occurrences in adults across the four cortical lobes;
b. Relative expression levels of glioma-upregulated genes across cortical regions
(Desikan-Killiany atlas); c. The frontal and temporal cortex show significantly higher
expression of glioma-upregulated genes in adult brains in the absence of glioma (Allen
Human Brain Atlas); d. Replication of results with 6 adults brain samples from the
BrainSpan transcriptomic atlas.
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