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Abstract

Tropical glaciers are important indicators of climate change, provide freshwater
resources for downstream communities, and form an important component of the
hydrological cycle. Understanding the dynamics and patterns of behaviour of tropical
palaeoglaciers is important for interpreting their sensitivities and vulnerabilities. Gla-
cier advances in the high tropical Peruvian Andes occurred multiple times during the
last glacial cycle and Holocene, leaving complex geomorphological evidence on the
landscape. The substantial topographic, geological and climatic variability in this
region leads to high geomorphic diversity. However, few detailed geomorphological
studies have been conducted to date, leading to considerable uncertainty in the
behaviours and drivers of tropical palaeoglaciers. Here, we provide a detailed geo-
morphological analysis of the Cordillera Vilcanota, Cusco region, southern Peru
(71°W, 13.7°S), and use morphostratigraphic principles to reconstruct the former
maximum icefield extent and palaeoglacier advances. Across this domain, we mapped
~23,000 features encompassing five key environments: glacier, subglacial, ice-
marginal, fluvial and lacustrine. The mapped features show evidence of both modern-
day polythermal and temperate ice margins, with low meltwater volumes leading to
small-scale glaciofluvial landform formation. However, larger moraines, beyond those
well-dated to the Younger Dryas and Antarctic Cold Reversal, assumed to represent
Last Glacial Maximum and earlier advances, suggest that conditions were temperate
and drained by more substantial rivers, with coupled flow of ice and till, and evidence
of subglacial scouring, drumlin formation and the deposition of substantial moraines
and large palaeosandar. Our reconstructed maximum icefield covers 2,660 km? and
was drained by multiple topographically constrained ice lobes across the region. In
the north, these ice lobes reached an elevation of 3,500 m asl, but were limited to
above 4,500 m asl in the south, likely reflecting the dominant moisture sources. Our
geomorphological mapping reveals seven clear ice margins, morphostratigraphically
correlated across the study region, reflecting at least seven palaeoglacier advances

during the last glacial cycle, including the Late Glacial period and the Holocene.
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Andes, Geomorphology, Glacier, Peru
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1 | INTRODUCTION

In the Andean Tropics from 11°N to 17°S, glaciers are restricted to
very high altitudes, with highly seasonal precipitation patterns, year-
round melt and high solar radiation. This high solar radiation means
that snow falling off-glacier melts very quickly. The tropical glaciers in
the Andes are, as a result, very important for meltwater, especially
in the dry season (Buytaert et al., 2017; Soruco et al., 2015), and
sustain important hydropower schemes and irrigation (Immerzeel
et al., 2020). They are sensitive indicators of climate change (Licciardi
et al., 2009), with accelerating glacier thinning and recession; Andean
glaciers are thinning by an average of —0.69 m y~1, 35% faster than
the global average (—0.46 m y~1) (Hugonnet et al., 2021). This makes
moraine sequences important palaeoclimatic indicators. Accurate doc-
umentation of past glacier fluctuations here is important to better
understand the climatic processes, thresholds and drivers of mass-
balance sensitivities. These insights can help understand mechanisms
for natural climate variability in the Tropical Andes.

Glacial advances are recognised in the tropical Peruvian Andes
during the global Last Glacial Maximum (gLGM; c. 23 to 19 ka;
Hughes et al. (2013)), Antarctic Cold Reversal (ACR; 14.7 to 13.0 ka;
Pedro et al. (2016)) and Younger Dryas (YD; 12.9 to 11.7 ka;
Rasmussen et al. (2006)), as well as during the ‘Little Ice Age’ (LIA)
chronozone (1,250 to 1860 CE; Wanner et al. (2022)) (Carrivick

Hl RGI6.0 Glaciers
— Rivers
~ It Vilcanota sub-catchment

— Urumbamba - Vilcanota
catchment

[ Major hydrological basins

Elevation (m) [ Major hydrological basins A Mountain
o 6750 T I Vilcanota sub-catchment P Lakes
[ sibinacocha Plateau Rivers
- 0 500 m contours [ 1 RGI6.0 Glaciers
4 Automatic weather station (AWS)
© Village

et al,, 2024; Glasser et al., 2009a; Jomelli et al., 2011, 2014, 2017;
Kelly et al., 2015; Lee et al., 2022; Sagredo et al., 2016), leaving a dis-
tinctive glaciated landscape. However, the resultant geomorphology,
glacier dynamics and thermal regimes under different palaeoclimates
and atmospheric CO, concentrations are poorly understood in the
tropical Andes, with high spatial and topographic variability across
the tropical Andes and few detailed glacial geomorphological studies
available (lturrizaga, 2018; Matecki et al., 2018; Narro Pérez
et al., 2023; Rabatel et al., 2006). Understanding the dynamics and
patterns of behaviour here is important for interpreting contemporary
tropical glacier drivers, sensitivities and vulnerabilities.

In this study, we seek to map and understand the significant scars
and marks left on the landscape in the high Peruvian Andes and use
morphostratigraphic principles to reconstruct palaeoglacier advances.
We use these data to provide an insight into past glacier behaviour,
which is critical to understand past and current glacier-climate
interactions and offers empirical data for model-data comparisons.
This research, therefore, aims to use a geomorphological approach to
understand the evolving relationships between glaciers, geomorphol-
ogy and climate. Detailed geomorphological maps are critical for
establishing future cosmogenic chronologies and for understanding
the relationship between glaciers, glacial geomorphology, hydrology
and the high-altitude wetlands known locally as bofedales (see Davies

etal, n.d.).

Elevation (m) (TanDEM-X 12 m) B 4,500 - 4,750 N
> 3,000 Il 4,750 - 5,000
3,000 - 3,500 I 5,000 - 5,250

[0 3,500 - 4,000 I 5,250 - 5,500

I 4,000 - 4,250 5,500 - 6,000

[0 4,250 - 4,500 6,000 - 6,500

FIGURE 1 Study domain: Cordillera Vilcanota in the high Peruvian Andes. A. The Urubamba-Vilcanota hydrological catchment within Peru.
B: The Vilcanota catchment within the broader Vilcanota-Urubamba catchment and significant cities. C: The study domain, along with the
Sibinacocha Plateau (purple). Hydrological basins and basin-wide rivers from Hydrosheds (Lehner et al., 2008). The glaciers and rivers here are

tributaries to Rio Vilcanota. Elevation from TanDEM-X (12 m).

2SUAOIT suowwo)) aanear) ajqeorjdde ayy £q pauraaoS are saonIe YO asn Jo sA[NI 10J AIeIqr aur[uQ K3[IA\ UO (SUONIPUOD-PUL-SULIA)/ WO K3[1M" KIeIqI[aul[uo//:sdny) suonipuo) pue swd [, ay) 23S "[9707/20/01] uo Kreiqry auruQ Lo[IM * ATAIAIAHS 40 ALISYAAINN - PIRUIAYS $8200y uad( £q 9120 dsa/z001°01/10p/wod Kajim: Kreiqrautjuo//:sdny woly papeo[umod ‘z ‘970T ‘LES6960T



DAVIES €T AL

'reDl | 3 of 32

2 | STUDY AREA

21 | Topography and geology

Cordillera Vilcanota (71°W, 13.7°S) lies in the Cuzco region of Peru
(Figure 1A,B), straddling the Vilcanota and Inambari hydrological
catchments. The Rio Vilcanota sub-catchment of the Vilcanota-
Urubamba hydrological basin lies south of the ice divide (Figure 1).
Both of these catchments drain towards the Amazon River basin
(Drenkhan et al., 2015). The Vilcanota-Urubamba River and its tribu-
taries (Figure 1) supply the rural pastoralist Quechua communities and
urban areas with water for multiple activities, including irrigation for
local and export agriculture, livestock, domestic use, hydropower and
tourism (Drenkhan et al., 2019; Mufioz et al., 2024; Perry et al., 2014;
Salzmann et al, 2013; Vergara et al, 2007). Lake Sibinacocha is
dammed at the southern margin and used for hydropower generation
at the far outlet of the Vilcanota-Urubamba basin, where the impor-
tant Machu Picchu and Santa Teresa hydroelectric plants are located
(Bello et al., 2023).

Cordillera Vilcanota includes the Osjollo Ice cap with Mt Hatun
Uma (6,093 m), Nevado Ausangate (6,384 m) and Mt Chumpi
(6,106 m) (Figure 1C), which are all drained by tributaries of Rio
Vilcanota. These glacierised peaks bear the second largest coverage of
mountain glacier ice in Peru after Cordillera Blanca (INAIGEM, 2018,
2023). This range comprises resistant igneous granodiorite to quartz
monazite intrusions. Between the glacierised mountain peaks, for
example, near the peaks of Huila Aje, Chumpi or Hatun Nanu Punta
lie wide, over-deepened parabolic valleys, often with lakes along their
valley floor. Quelccaya Ice Cap (70.8°W, 13.9°S; 38.8 km? in the
INAIGEM 2020 inventory [INAIGEM, 2023)), at the southeastern mar-
gin of the Cordillera Vilcanota, is the world's second-largest tropical
ice cap after Coropuna Ice Cap in Cordillera Ampato, southern Peru
(72°38'W, 15°33’S; 42.4 km? in the INAIGEM 2020 inventory)
(INAIGEM, 2023; Kochtitzky et al., 2018). Quelccaya Ice Cap rests on
a raised ignimbrite plateau.

These aforementioned glacierised uplands arc around the
‘Sibinacocha Plateau’ (Figure 1C), an intramountainous depression,
which bears numerous lakes (such as the 15km long Lake
Sibinacocha) and wetlands. We here define the Sibinacocha Plateau
as the area of low slope between 4,800 and 5,200 m asl (mean
4,875 m asl) (Figure 1C). The Sibinacocha Plateau south of the
Cordillera is some 359 km?, with regional slopes generally below 5°. It
is some 25 km wide (west to east) and 30 km long (north-south).

The Sibinacocha Plateau comprises a range of (meta)sedimentary
facies, including slates and Early Palaeozoic and Cretaceous sedimen-
tary strata, within which there is an abundance of Triassic, Neogene
and Jurassic plutonic intrusive rocks and Permian-Triassic volcanics
(Audebaud, 1973; INGEMMET, 2025). These geological intrusions and
plateaux stand proud above the surrounding landscape. During past
glacial periods, the Quelccaya Ice Cap and the Cordillera Vilcanota
icefield combined and interacted to form a large icefield on this pla-
teau (Mercer & Palacios, 1977), which separated in the Early Holocene
(Mark et al., 2002). As a result, the plateau is dominated by glacial
landforms, including sequences of nested lateral and terminal
moraines.

The Sibinacocha Plateau in the centre of the study domain is dis-

sected by several main river valleys that drain from the high

HEd-WILEY

mountains (Figure 1C). The valley draining southwards from

Mt. Chumpi is occupied by Lake Sibinacocha. A weather station is
located at the dam at the foot of the lake (4,985 m asl). Moving east-
wards, the Phinaya Valley with Rio Phinaya drains southward from
Mt. Hatun Nanu Punta and Hapu Punta, with the village of Phinaya
located some 14 km down-valley of the peaks. The Phinaya Valley,
occupied by Rio Phinaya, extends to the southern margin of the
Sibinacocha Plateau, where it joins Rio Huancané. The next major val-
ley is the Quisoquipina Valley, with the Suyuparina and Quisoquipina
glaciers at the head of the valley. A weather station is located off-ice
at the head of the Quisoquipina valley (5,180 m asl). Quisoquipina
Valley joins Phinaya Valley within the Sibinacocha Plateau.

The Qori Kalis valley, with Rio Qori Kalis, drains from the
Quelccaya Ice Cap into the Rio Phinaya valley. Other significant val-
leys draining from Quelccaya towards Rio Phinaya include the smaller
Challpacocha Valley and the Huancané Valley, occupied by Rio
Huancané (Figure 1C). Quelccaya Weather Station is located at
5610 m asl on the plateau of Quelccaya Ice Cap. Rio Huancané, Rio
Phinaya and Rio Chillca eventually join Rio Vilcanota, some distance
down-valley of the study domain.

The lowest elevations in the domain, below 3,500 m asl, occur
north of the cordillera (Figure 1C). Away from the ice masses, the
south-western and north-eastern corners of the study domain are
dominated by steeply incised fluvial geomorphology, with no present-
day glaciers and only small-scale evidence of smaller mountain
palaeoglaciers.

In the western part of the study domain, the Chillca Valley, occu-
pied by Rio Chillca, drains southwards from Osjolla Anante Ice Cap,
with the high peaks of Pachanta (5,950 m) and Hatun Uma (6,093 m)
at the head of the valley. The Ausangate massif lies west of the Chillca

Valley. The village of Chillca lies mid-way down-valley.

2.2 | Climate and glaciers

Cordillera Vilcanota lies in the wet outer tropics. This region is
characterised by two distinct seasons, driven by the South American
Monsoon; the warm and wet season in the austral summer, with the
majority of the precipitation (October to April); and the dry and cold
season in the austral winter (May to September) (Espinoza
et al,, 2020; Perry et al., 2014; Sagredo & Lowell, 2012) (Figure 2).
Glacial meltwater sustains the water supply downstream, especially
during the dry season (Bradley et al., 2006; Buytaert et al., 2017,
Drenkhan et al., 2019; Gribbin et al., 2024; Schauwecker et al., 2014;
Vergara et al., 2007). The low latitude and high elevation here com-
bine to drive some of the highest levels of insolation anywhere on
earth (Cordero et al., 2023). Air temperatures are accordingly high for
the elevation, with the regional mean annual 0°C isotherm located
slightly above 5,000 m asl (Schauwecker et al., 2017) (Figure 2). Air
temperature and insolation both reach minimum values in the dry
season (Figure 2). During the wet season, enhanced cloud cover
reduces solar heating of the boundary layer, resulting in a relatively
subtle amplitude of temperature seasonality. The enhanced atmo-
spheric moisture content in the wet season also acts to decrease the
absolute value of the lapse rate due to latent heat release, meaning
that the amplitude of temperature seasonality increases with altitude
(Fyffe et al., 2021).
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FIGURE 2 Climatology of the Cordillera Vilcanota, from two automatic weather stations: Quelccaya weather station at the top of Quelccaya
Ice Cap (5,650 m) and Lake Sibinacocha weather station (4,895 m) (see Figure 1). In all panels, the vertical grey lines separate the dry season
(middle) from the wet season (ends). Dashed coloured lines are the day-of-year means, and the solid coloured lines are the first harmonic (best
fitting cosine wave with a period of 365.25 days). A: mean daily temperatures at Sibinacocha and Quelccaya summit. The black line represents
the lapse rate. B: Relative humidity for each weather station for each day of the year. C: Mean monthly precipitation for each weather station.

D: Solar radiation at the top of Earth’s atmosphere for both weather stations. Note that solar radiation peaks in the dry season. The black dashed
line shows the potential (top of atmosphere) shortwave radiation (at solar noon). Right-hand axis: also W m~2. Data sources: (Birkel et al., 2022;

Perry et al., 2017). The location of AWS is shown in Figure 1.

Precipitation events are mainly associated with backward air
trajectories originating from the north and northwest. The major river
valleys are the main way in which moisture is delivered to the
Vilcanota (Endries et al., 2018; Junquas et al., 2018). The daily precipi-
tation cycle is bimodal, with convective precipitation events in general
most frequent in the afternoon (Endries et al., 2018), with significantly
large-scale stratiform precipitation associated with airstreams arriving
from the Amazon occurring more often at night (Perry et al., 2014,
2017). The coincidence with lower nighttime air temperatures makes
these nocturnal precipitation events important contributors to high-
elevation snowfall and hence accumulation across the glacier surface.

The seasonality in shortwave radiation, temperature, humidity
and precipitation (Figure 2) together modulate glacier surface energy
balances in the Cordillera Vilcanota. Net shortwave heating, the
largest energy flux, peaks in the dry season (Figure 2D) despite the
lower potential insolation at this time of year, due to lower cloud
cover and reduced albedo (from less frequent snowfall events) (Fyffe
et al., 2021; Kronenberg et al., 2016). However, the increase in down-
welling longwave radiation and latent heat flux, from a warmer,
moister atmosphere, more than offsets the decline in net shortwave
heating so that melt energy peaks in the wet season (Fyffe

et al., 2021). Sublimation, driven by high levels of insolation and low

specific humidity, is also an important mechanism of mass loss in the
dry season, especially at higher elevations (Fyffe et al., 2021). There-
fore, ablation occurs in both the wet and dry seasons, but peaks in the
wet season from September to January at the Quisoquipina Glacier
weather station (Fyffe et al, 2021). Black carbon deposition on
glacier tongues, particularly during the dry season, is altering the local
energy balance, leading to enhanced glacial melting. This black carbon
originates from down-valley urban activities and vegetation burning
(Bonilla et al., 2023; Gilardoni et al., 2022; INAIGEM, 2023).

The tropical glaciers of the Cordillera Vilcanota include various
glacier types, including ice caps and mountain glaciers with reduced
glacier tongues. Periglacial features such as rock glaciers are also
present. Steep mountain glaciers terminate at 4700 to 5,000 m asl
(Salzmann et al., 2013), with equilibrium line altitudes (ELAs) at 5105
to 5,275 m asl (Mark et al., 2002). The glaciers are up to 270 m thick,
but many have a maximum ice thickness of under 100 m (Millan
et al., 2022). These mountain glaciers contrast with the low-slope
Quelccaya Ice Cap, which reaches maximum thicknesses of nearly
400 m (ibid.). Across the entire Cordillera Vilcanota, the INAIGEM
2020 inventory noted 58 rock glaciers (1.7 km?) (INAIGEM, 2023).
Glaciers here are thinning, losing 3.18 + 0.44 Gt of ice from 2000 to
2020 (Taylor et al., 2022). Total glacier area here shrank by 51% from
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1962 to 2020 (0.9% a~ %) (INAIGEM, 2023). Quelccaya Ice Cap
thinned by an average of —0.37 m a~* from 2010 to 2020 (data from
Hugonnet et al., 2021, clipped to 2022 glacier extent). Suyuparina and
Quisoquipina glaciers thinned at a glacier-averaged rate of —0.92 and
—0.42m a !, respectively (2010-2020) (Hugonnet et al., 2021).
Across the study domain, the mean of the glacier-averaged rate of
thinning is —0.53 m a~ . The fastest-thinning glaciers are fragmented

tongues and isolated glacierets on the periphery of the range.

2.3 | Palaeoclimate in the Tropical Andes
Palaeoclimate records spanning the length of the last Glaciation (MIS
2-4) and Holocene (MIS 1) are sparse. Tropical ice core records from
Peru indicate that the tropical Atlantic was 5-6°C cooler than today
during the global Late Glacial Maximum at 23-19 ka (Hughes
et al., 2013; Thompson, 2000; Thompson et al., 2017). Post-dating
this, the Antarctic Cold Reversal (ACR) is a cooling event recognised in
Antarctic ice cores, from 14.7-13 ka (Pedro et al., 2016). Andean cli-
mate variations captured in a sediment core from Laguna Llaviucu,
Ecuador, indicate the Last Glacial Maximum was followed by warming,
and then a ~ 1.5°C cold reversal coincident with the Antarctic Cold
Reversal (ACR) at ~14.4 cal. ka BP (Zhao et al., 2024). A cool, dry cli-
mate during the Younger Dryas period is recorded in Lake Compuerta
(3,950 m elevation) in the western Cordillera of the Peruvian Andes
(Weng et al., 2006). Cooling during the Younger Dryas is also evident
in ice cores from Huascaran, north-central Andes of Peru
(Thompson, 2000).

Ice core records indicate that the period from 8,400 to
5,200 years before present was the warmest Holocene interval
(Thompson et al., 2017). A warm-dry event from 9,500 to 7,300 cal. yr
BP is also recorded in Laguna do Cochos, northern Peru (Bush et al.,
2005). During this warm period, glaciers retreated, with Quelccaya Ice
Cap having an extent similar to present from 7,000 to 5,200 years
before present (Buffen et al., 2009), and possibly smaller than present
(Vickers et al., 2021). The climate then cooled, culminating in a Little
Ice age, 500-200 years ago (Thompson, 2000; Thompson et al., 2013,
2017). Warming in recent decades is unusual in the Peruvian tropics in
the last 2000 years, when compared with ice core records from
Quelccaya Ice Cap (Thompson et al., 2006). Annual dry seasons remain

identifiable in ice cores (May-October) (Thompson, 2000).

2.4 | Palaeoglacier fluctuations in the
Tropical Andes

Tropical glacier advances in the Andes have typically tracked global
ice volume changes (Rodbell et al., 2022). During the last glacial cycle,
glacier advances were synchronous with changes in regional monsoon
strength, linked to temperature changes recorded in Greenlandic ice
cores, indicating interhemispheric connections. The timing of the local
Last Glacial Maximum (LLGM) in Peru is poorly constrained, with
estimates ranging from 32 to 18 ka (Mark et al., 2017; Palacios
et al., 2020). Smith et al. (2005a) argue that in Peru and Bolivia, gla-
ciers reached their greatest extent at ~34 ka. The LLGM in Cordillera
Vilcanota is undated, but maximum-limiting radiocarbon ages around

Pacchanta, north of the icefield (Figure 3A,D), suggest that the outer

moraines likely date from this time, and a pre-Global Last Glacial Max-
imum (gLGM, the timing of the global sea level lowstand [Hughes
et al., 2013]) advance is possible based on radiocarbon ages of 32 to
35 cal. ka BP (Figure 3A; (Mercer & Palacios, 1977)). Conversely, in
the Cajamarca region of northern Peru, cosmogenic exposure ages
from terminal moraines indicate that the glaciers during the LLGM
deposited moraines at 23.5 + 0.5 and 21.2 + 0.8 ka (Shakun
et al., 2015), before the end of the gLGM. In Cordillera Carabaya, in
the Cordillera Oriental in southern Peru, terminal moraines are dated
to 28.6 + 0.4 ka, earlier in MIS 2 (Bromley et al., 2016).

Theories of an older advance that predates the gLGM (Smith
et al., 2005a, 2005b; Zech et al, 2009) conflict with studies
suggesting that glaciers advanced during the time of the global LGM
and global sea level lowstand (Palacios et al., 2020). However, an older
advance predating the global LGM has been noted in Patagonia
(Davies et al., 2020) and New Zealand (Darvill et al, 2016; Eaves
et al.,, 2016). This ambiguity impedes our ability to examine climatic
circulation patterns, mechanisms and controls. After the gLGM, the
structure of tropical palaeoclimate remains uncertain, with millennial-
scale cooling events typically antiphased between the northern and
southern hemispheres (Zhao et al., 2024).

Advances of tropical glaciers in Peru and Bolivia have been noted
at 16.1 + 1.1 kyr, during Heinrich Stadial 1 (Bromley et al., 2016; Mark
et al., 2017). Glacier advances are also clearly recorded in the tropical
Andes during the Antarctic Cold Reversal (Jomelli et al., 2014, 2017),
with substantial moraines in sites nationwide dated to ~14.0 ka. An
Antarctic Cold Reversal readvance is evident in Cordillera Vilcanota,
with the Hu-llla moraines in the mid-Huancané valley (Figure 1C;
Figure 3C) predating 14.2 cal. ka BP (Mercer & Palacios, 1977). Just
in-board of this, cosmogenic nuclide ages on the Hu-lll moraines in
the Huancané valley have a mean exposure age of 13.5 ka (Kelly
etal.,, 2015).

Glacier advances are also recognised in the tropical Andes during
the Younger Dryas (~12.9-11.6 ka) (Kelly et al., 2015). Cosmogenic
nuclide dating on boulders on moraines in Cordillera Blanca, Peru,
indicated outer moraines dated to 12.4 ka, with inner moraines
indicating readvances in the Holocene (10.8, 9.7 and 7.6 ka) (Glasser
et al., 2009a). In Cordillera Vilcanota, cosmogenic nuclide dating on
the Hu-lla moraines in the Huancané valley, western Quelccaya
(Figure 1C; Figure 3C), yielded a mean age of 11.6 ka (standard devia-
tion of 0.45) (Kelly et al., 2015), which is in close agreement with inde-
pendent radiocarbon dating (Goodman et al., 2001; Mark et al., 2002;
Mercer & Palacios, 1977).

Mid-Holocene (Licciardi et al., 2009) and Late Holocene read-
vances are also noted across the Andes (Bromley et al, 2011;
Carrivick et al., 2024; Sagredo et al., 2016). Late-Holocene advances
in Cordillera Vilcanota are specifically noted in the upper Huancané
Valley, with the Challpachocha | moraines yielding ages of 0.3-0.8 cal.
ka BP (Mercer & Palacios, 1977) (Figure 3C). In the Qori Kalis valley,
11 1°Be ages from boulders on the Qori Kalis moraines yield a mean
age of 0.5 ka (standard deviation 0.1, one anomalous boulder of
5.2 ka excluded) (Stroup et al., 2014). Five boulders taken from the
innermost moraines at the lake margin yield a mean °Be exposure
age of 0.2 ka (standard deviation 0.01) (Figure 3C). Finally, °Be expo-
sure ages from the Phinaya | moraines, from the Huila Aje massif
(Figure 1C; Figure 3B), yield a mean age of 0.36 ka (standard deviation
0.25) (Sagredo et al., 2016).

ASUDIT suowo)) danear) afqedrjdde ayy £q pauIsAos aIe sa[onIR Y {asn Jo sa[ni 10j K1eiqr] auruQ A3[IA\ UO (SUONIPUOD-PUER-SULIA) /WO’ K[ 1M KIeiqi[aurjuo//:sdiy) suonipuo)) pue swia], ay) 3§ ‘[970¢/c0/01] uo Areiqry aurjuQ A[ip * A TAIAAAHS 40 ALISYAAINN - PIPYJAYS ssa00y uadQ £q 940, dsa/z001°01/10p/wod Ka[im* K1eiqrjaurjuo//:sdny woiy papeojumo( ‘g ‘970¢ ‘L£869601



6 of 32 Wl LEY— ESPL DAVIES ET AL.

S
f@

= Key moraines P Radiocarbon (cal. ka Moraine (this study) e Radiocarbon (cal. ka
D Sibinacocha Plateau BP) Rivers BP)
[222 500 m contours ¥¢ '°Be Exposure Ages (ka) isicas Y& '°Be Exposure Ages (ka)
o Vvillage 07\ Glaciers 2022

FIGURE 3 Published chronology from the Cordillera Vilcanota area. Radiocarbon ages (Goodman et al., 2001; Mark et al., 2002; Mercer &
Palacios, 1977) are recalibrated using the Calib version 8.20 1“C calibration programme (Stuiver & Reimer, 1993), and are presented as calibrated
ages (cal. ka BP), using the IntCal20 dataset (Reimer et al., 2020). Published cosmogenic nuclide ages (Kelly et al., 2015; Sagredo et al., 2016;
Stroup et al., 2014, 2015) are recalculated using the LSDn scaling scheme (Borchers et al., 2016; Lifton et al., 2014) and the global production rate
(Borchers et al., 2016).
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3 | METHODS

We mapped glacigenic landforms across a~ 4,569 km? area
(Figure 1C) of the Cordillera Vilcanota and Quelccaya region in a Geo-
graphic Information System (GIS) (ArcGIS Pro), using field surveys
conducted in September 2023 and April 2024 and remote sensing
from satellite imagery and digital elevation models (DEMs). Mapping
was conducted through manual digitisation at a scale of 1:10,000.
Landforms in the field were mapped using a handheld GPS with a
documented accuracy of + 5 m. Topographic and elevation data were
derived from the TanDEM-X with 12 m spatial resolution, acquired in
2015, with hillshades (315° azimuth) and slope maps used to visualise
the landscape and support landform identification. Optical satellite
data utilised include the 1 m Digital Globe imagery, part of the ESRI™
World Imagery and SPOT-6 imagery (Table 1).

An uncrewed aerial vehicle (DJI Mavic 2) was used to observe
landforms aerially, and to generate original orthomosaics and DEMs
from aerial imagery (manually flown, camera height 30 m, camera
angle 90°, 30% overlap), over the Suyuparina Glacier forefield and the
Quisoquipina and Qori Kalis Il Moraines. These products were gener-
ated using structure-from-motion techniques in Pix4D (Table 1), fol-
lowing standard procedures (Chandler et al., 2018; Le Heron
et al., 2019, 2021; McCerery et al., 2024).

Landforms were identified and classified according to established
glacial geomorphological criteria (Davies et al., 2022; Lee et al., 2022;
Matecki et al., 2018; Martin et al, 2019; McCerery et al., 2024)
(Table 2). Here, we group landforms into topographic, glacial, subgla-
cial, ice-marginal, fluvial and lacustrine assemblages. Hydrological
basins and regional-scale rivers were obtained from Hydrosheds v1
(Lehner et al., 2008). Glacier outlines were manually edited from the
RGI V.6.0 (Randolph Glacier Inventory Consortium et al., 2017) to
reflect glacier extent in the 2022 Sentinel image (Table 1). Outlines
and ice divides were visually checked against the INAIGEM 2020
inventory (INAIGEM, 2023). Lakes were manually mapped, and the
resulting shapefiles expanded on previous lake inventories that were
restricted to within 3,000 m of the ice margin (Wood et al., 2021) and
included lakes across the domain. The resultant lake inventory was

compared manually against other published inventories (Drenkhan

TABLE 1 Data sources used in the study.

Date
acquired

Tandem-X DEM 2015 12m

ESp 7~‘—Wl LEYM

et al,, 2019; INAIGEM, 2023; Wood et al., 2021). For both glaciers
and lakes, a minimum size threshold of 2-3 pixels (200-300 m?) was
applied to avoid misclassification.

Roadside and river cuttings provided sediment exposures. Sedi-
mentological and stratigraphical studies followed standard procedures
(Evans & Benn, 2014, 2021). Clast morphology data (lithology, shape
and roundness) were collected from representative facies to investi-
gate transportation and erosion histories (following Powers, 1953;
Benn, 1994, 2004, 2007; Lukas et al., 2013). Clast shape data for peb-
bles (8-64 mm) were plotted on a general shape ternary diagram, and
C4o indices were calculated (Benn & Ballantyne, 1993; Sneed &
Folk, 1958). 30 stones were counted in each sample.

Published cosmogenic ages (Kelly et al, 2015; Sagredo
et al., 2016; Stroup et al., 2014, 2015) were collated using the ICE-D
database and the literature, and are presented recalculated using the
Version 3 CRONUS-Earth online exposure age calculator, to provide
chronological context for mapped features. The full dataset (shapefiles
and spreadsheet) is provided in the Supplementary Information. Sam-
ples are presented on maps at 0.1 ka temporal resolution, calculated
using the LSDn scaling scheme (Borchers et al., 2016; Lifton
et al, 2014) and the global production rate of 3.92 atoms
gt yr~Y(Borchers et al., 2016). We also calculated ages using the
Kelly et al. (2015) production rate (3.97 + 0.09 atoms g~ yr~%). This
leads to an average difference in age of 293 years, with a mean differ-
ence between the ages of 5.8%. This is smaller than the external age
uncertainties, and certainly smaller than the resolution of the ages
presented in the figures throughout the paper. Published radiocarbon
ages were collated from the literature and recalibrated using the Calib
version 8.20 4C calibration programme (Stuiver & Reimer, 1993), and
are presented as calibrated ages (cal. ka BP), using the IntCal20
dataset (Reimer et al., 2020).

Finally, morphostratigraphic methods are used to create a recon-
struction of the icefield during its maximum configuration and during
retreat. Morphostratigraphic principles (cf. Boston et al., 2015;
Lukas, 2006) are applied, using geomorphological variations (such as
ridge crest width, slope angle, vegetation development), stratigraphic
position in the valley and chronological ages where available, in the

reconstruction.

Resolution  Source and Properties

Acquisition method: Interferometric Synthetic Aperture Radar (InSAR) from the

TanDEM-X satellite pair

18.06.2022 10m
30.06.2016 1.5m

Sentinel imagery
SPOT-6 imagery

Drone-derived Digital Surface Model (DSM)s and orthomosaics

Image ID: T18LYK_20220618T145741_B08_10m
Image ID: DS_SPOT6_201606301434572_FR1_FR1_SE1_SE1_WO071S14_01871

Qori Kalis Moraines I 17.09.2023 0.0165m 785 images from DJI Mavic 2 drone
Area covered: 0.2372 km?
RMS Error (m) in XYZ: 0.45,0.57, 3.87
Suyuparina forefield drone DEM 22.09.2023 0.032 m 552 images from DJI Mavic 2 drone.
Area covered: 0.203 km?
RMS Error (m) in XYZ: 0.41, 0.39, 0.81.
Quisoquipina Moraines drone 22.09.2023 0.014 m 1971 images from DJI Mavic 2 drone
DEM Area covered: 0.201 km?

RMS Error (m) in XYZ: 0.80, 1.18, 4.05
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TABLE 2 Mapping criteria for classification of landforms and surface features. After multiple sources (Davies et al., 2022; Glasser et al., 2008; Lee et al., 2022; Leger et al., 2020; Matecki et al., 2018; Martin

et al,, 2019; McCerery et al.,, 2024).

Feature
Topographic features

Exposed bedrock (not ice-scoured)

Basalt and ignimbrite plateaux

Mountain
Glaciers

Snowline

Crevasses
Glaciers

Supraglacial debris

Glacier cusps
Subglacial landforms

Overdeepenings

Drumlin

Flutings

Rectilinear ridges (crevasse-fill ridges)

Streamlined bedrock lineation (roche
moutonnée and whalebacks)

Visual appearance on satellite imagery

Bedrock that is not noticeably ice scoured; structures remain
visible. May be a scarp with a cliff, steep, sediment-free, strong
colour variation due to geological control. Difference in colour
to glacial sediments. Rough or lumpy appearance.

Low-slope bedrock, dark colour (basalt) or light coloured
(ignimbrite), flat plateau with steep scarp around

Highest summit on the digital elevation model

Transition from white snow to grey glacier ice. Higher albedo

reflects a brighter white colour in snow. Snowlines mapped from

Sentinel imagery listed in Table 1.
Dark grey lines on the glacier surface

White surfaces, smooth, occupying upper parts of the
landsystem, may be crevasses and pockmarks visible.

Rough, brownish areas on the glacier surface, may be circular
depressions, back-wasting scarps and boulders visible

Circular depressions on the glacier surface

Parabolic-shaped valley, often with lakes or bofedales infilling
the valley floor. Wide valley floor and steep-sided.

Depositional linear hills, oval to ellipsoidal shape, positive relief,
aligned in the direction of former ice flow. Non-undulating and
grey to brown in colour.

Linear, elongated, parallel features formed in sediment, often in
groups, different to bedrock structure, ~1 m wide, 10-200 m
long.

Short, straight and rectilinear lines, forming in cross-cutting
lattice patterns. Discontinuous and small. May be too small to
be visible on satellite imagery

Highly linear, parallel ridges within areas of polished bedrock.
Different colour to glacial sediments.

Sedimentary characteristics

Sediment free bedrock

Exposed bedrock. Ignimbrite weathers to
produce a coarse sand.

Ice visible; thin and chaotic layer of gravel and
boulders, typically angular

Large-scale features observed as over-
widened, over-steepened valleys, often with
specific over-deepenings infilled with lakes or
bofedales.

Ridges of sandy gravel and diamicton, often
with a boulder or bedrock at their head,
consistent orientation, contain faceted, edge-
rounded and often striated clasts.

Sharp-crested, small features, characteristic
lattice framework

May show asymmetrical profile, a plucked
face, abraded surface, striations, consistent
orientation, associated with ice-scoured
bedrock

Significance

May form above trimlines and help quantify ice thickness.
Often geologically controlled. Indicates limited till deposition
and glacial abrasion.

Uplifted areas that currently or previously held ice caps, such

as Quelccaya Ice Cap

Significant topographic feature

Indicates transition from zones of net accumulation to
ablation. Features above this are largely snow-covered.

Indicate ice-flow regime

Indicates high debris input onto glacier ice.

Indicative of ablative processes

Over-deepened, parabolic-shaped valleys are characteristic of
erosive glaciated landscapes; contrasts significantly with
landscapes dominated by fluvial processes and incision.

Associated with temperate ice flowing fast on low-gradient
slopes, saturated sediments and deforming substrate.

Indicative of former flow of warm-based ice, may be highly
attenuated.

Marks injection of basal sediment into fractured glacial base
followed by downwasting.

Shows presence of plucking, abrasion and sliding; temperate
ice; shows ice-flow direction. May suggest high ice-flow
velocities.

:i]—AE[’—l IMW
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TABLE 2 (Continued)

Feature

Ice-scoured bedrock

Ice-marginal landforms

Cirque

Trimline

Moraine

Moraine crests

Pedestal moraine

Hummocky moraine

Kame terrace

Abandoned meltwater channel

Fluvial and lacustrine

Lake

Palaeosandar

Rivers and streams

Gravel braided river

Visual appearance on satellite imagery

Areas of bare bedrock, with visible inherent structures, dark
brown to light grey, distinctive from sediment cover.

Bowl or amphitheatre-shaped depressions in the side of valleys
or high relief ground

Sub-horizontal lines on valley sides separating areas of glacial till
and moraine and rough bedrock. Usually associated with latero-
terminal moraines

Moraine ridges are linear, curvilinear or arcuate. Ridges of
positive relief, orientated parallel, subparallel or perpendicular to
the valley side. Smooth texture distinct from bedrock.

Crest along moraine.

Moraines formed on top of large sediment accumulations
composed of talus material, may be hundreds of metres high.
Form from glacier flows onto thick debris accumulations raised
above the valley floor (Iturrizaga, 2018).

Mounded appearance, dry and without wetland development,
inside moraine crests.

Flat-topped surface above valley floor, extending from valley
side, steep ice-contact face.

These palaeochannels form shallow depressions or deeper
incisions, may have gently or steeply sloping sides or scarps,
incised into fluvial, glaciofluvial or glacial deposits. May be
sinuous, braided and extensive. Currently contains no water.

Smooth surface, dark blue to light grey colour. Found within
overdeepenings and depressions.

Flat, well-drained area, may have meltwater channels developed
on the surface.

Linear, sinuous water courses, may be surrounded by
glaciofluvial sediments

Valley-floor accumulations of sediment, light-grey colour,
smooth surface, dissected by braided rivers and streams

Sedimentary characteristics

May show smoothing and striations as well as
P-forms in the field

Sharp altitudinal change, colour and texture
difference

Often found in association of glacially
transported boulders. Sedimentary structure.
Commonly subangular to subrounded clasts.

Sharp crest, may have boulders

Hummocky appearance with some order to
the ridges. Strewn with boulders and kettle
lakes. Subangular to subrounded clasts.

Visible in field as a large flat-topped feature,
steep sided, extending down-valley, abruptly
placed against steep valley side.

Visible in the field as deep gorges or shallow
laterally extensive channels.

Water is present

Gravel, may have subtle meltwater channels,
subangular to rounded clasts, some sorting of
material

Water present in the channel. May form a
narrow braided gravel-bed river. May have
silt-rich water from a high suspended
sediment load.

Meltwater channels composed of gravel and
boulders, outwash plains, subangular to
subrounded clasts.

Significance

Shows areas of extensive ice at the pressure melting point.

Indicates the headwall of glacier ice, characteristic of glaciated
landscapes.

Indicates area of active erosion, especially the area glaciated
during the Late Holocene neoglaciation, resulting in the
freshest features.

Mark position of former ice margin. Mapped showing the
extent of the moraine.

Predominantly avalanche-nourished and debris-covered
glaciers, though can be clean-ice. High sediment supply and
poor removal capacity.

Marginal ice context. May indicate drying of the landscape
following fluvial downcutting.

Marks position of former lateral or frontal ice margin, and
indicates palaeoglacier ice thickness. Can indicate meltwater
ponding at the lateral glacier margin.

Indicative for former river or stream flow.

Ponding of water, often forming in over-deepened valleys.

Indicates the former drainage regime of a glacier

Indicates the lowest elevation within a valley.

Glaciofluvial sediments, indicates a high sediment load
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4 | GLACIAL GEOMORPHOLOGY OF THE
CORDILLERA VILCANOTA

The mapped area (domain in Figure 1C; Figure 3; Supplementary Map)
can be divided into three distinctive regions: (i) north of the Cordillera
Vilcanota, with less extensive moraines; (ii) the Sibinacocha Plateau,
with substantial and extensive moraines; and (iii) areas dominated by
fluvial, rather than glacial, geomorphology, situated some distance
away from the ice masses. Overall, within the domain, we mapped
~23,000 features, within six assemblages: topographic, glacier, sub-
glacial, ice marginal, fluvial and lacustrine (Figure 3; Table 3).

Elevation transect AA (Figure 3, Figure 4) captures the difference
in elevation north of the mountain range and onto the plateau, and
the different distances from the ice divide of moraines deposited on
either side of the ice divide. Elevation transect BB (Figure 4) shows
the broad Sibinacocha Plateau, dissected by the wide river valley
(Transect CC) and bounded by the steep mountains at either end.

Moraine sets follow names already used in the literature where
available. For moraines with no names, we use the convention of
naming moraines sequentially down-valley, named after the local river
or valley. For example, in the Phinaya valley, the moraine set closest
to the glacier are the ‘Phinaya I’ moraines, followed down-valley by

the Phinaya Il, I, IV, V and VI moraines.

4.1 | Glaciers

The study area contains several types of glaciers, including both
shallow-gradient mountain glaciers such as Suyuparina and
Quisoquipina glaciers, at the head of Quisoquipina valley (Figure 6;
Figure 7); ice caps drained by outlet glaciers (Quelccaya Ice Cap and
Qori Kalis Glacier, Figure 8); and steep mountain glaciers. There are
also three small rock glaciers identified in the INAIGEM 2020 inven-
tory (INAIGEM, 2023).

Suyuparina and Quisoquipina glaciers were visited during field-
work in 2023 and 2024. The rapidly thinning (—0.92 m a~%, 2010-
2020 (Hugonnet et al., 2021)) Suyuparina Glacier, which in 2022
covered 0.75 km? and was just 1,493 m long, has an elevational range
of 400 m and maximum ice thicknesses of 105 m (Millan et al., 2022).
Like the adjacent Quisoquipina Glacier, the surface in the ablation
zone is pockmarked with semicircular depressions, called here ‘cusps’
(Table 3; Figure 6B; Figure 7B). At the glacier termini are detached
blocks or narrow ‘sails’ of glacier ice (Figure 7C), and the ice margin
has a cuspate configuration that reflects the downwards ablation of
the cusps. The terminus of Suyuparina Glacier forms an ice cliff
~20 m high with little evidence of deformation of ice (Figure 7A).

Vertical ice-marginal ice cliffs like this are characteristic of cold-
based alpine-style glaciers and locations with high radiation and
enhanced sublimation (Atkins, 2013; Lorrain & Fitzsimons, 2011). The
low altitudinal range, thickness and low ice-surface slope (mean 10.7°)
of Suyuparina Glacier also likely promote a limited gravitational driv-
ing stress and hence limit ice deformation. However, a small number
of fragile bent icicles in subglacial cavities (Figure 7D) under the ice
suggests the presence of at least some sliding as the ice moved slowly
over the area. Sliding has been observed at other cold-based glacier
margins (Atkins, 2013; Cuffey et al., 1999). The presence of flutes in

the glacier forefield is also suggestive of sliding at the ice-bed

interface (see: Subglacial assemblage) (Evans et al., 2010, 2012;
Roberson et al., 2011).

4.2 | Subglacial features

Interpretations of the character of the subglacial environment come
from two main lines of evidence: the large, wide, over-deepened gla-
cial valleys and the landforms visible in the forefields of present-day
glaciers, including flutes, polished, streamlined, ice-scoured bedrock

and rectilinear ridges (Figure 5; Table 2; Table 3).

421 | Flutings

Flutes are common in proglacial areas (Figure 5; Figure 8; Table 3).
These en masse flutes, which often have boulders or ice-scoured bed-
rock at their heads (Figure 7G), form an ensemble of streamlined and
aligned sedimentary forms across large areas of the glacier forefields.
They are commonly interrupted by small push moraines, and do not
continue on the down-ice side of the moraine (Figure 6D; Figure 7H;
Table 3).

Flutes have been observed in front of and beneath both temper-
ate and polythermal glaciers (Roberson et al., 2011). The lodged boul-
ders suggest that seeding was related to sediment deformation in a
lee-side cavity under the ice (Evans et al., 2010). Squeezing sediment
into cavities under the ice suggests that these landforms form under
thicker, temperate ice, where meltwater is present and the substrate
is deformable (Roberson et al., 2011). These flutings therefore indicate
the presence of warm-based conditions within the recently deglaci-
ated neoglacial moraine arc (Evans et al., 2012). This glacier forefield
with well-developed subglacial bedforms such as flutings, combined
with ice features suggesting a cold-based glacier terminus (see com-
ments regarding Suyuparina Glacier above), indicates that Suyuparina
Glacier, at least, is polythermal. However, other present-day thicker
glaciers in the region may remain temperate throughout.

422 | Rectilinear crevasse-fill ridges

At Suyuparina Glacier numerous low-sinuosity, geometric, cross-
cutting ridges were observed in the forefield (Figure 6; Figure 7F H;
Table 3). They overprint the flutes noted above. These ridges are
interpreted to have formed as basal sediment was squeezed upwards
within crevasses in glacial ice, thus preserving the spatial pattern of
crevassing (Benn & Evans, 2010; Evans et al., 2012), and are com-
monly termed ‘crevasse fill ridges’, associated with ice stagnation
(Evans et al., 2022; Rivers et al., 2023; Sharp, 1985). While delicate
crevasse squeeze ridges are often associated with surging glaciers
(Ben-Yehoshua et al., 2023), geometric rectilinear crevasse fill ridges
could also form in environments such as the Suyuparina forefield
where, in the cold, frozen ice marginal zone, rapid ablation in a high
irradiation environment results in slow ice movement and rapid subli-
mation. Crevasse fill features such as these are associated with till
squeezing in marginal environments into basal crevasses (Rivers
et al., 2023). The overprinting of flutes indicates a switch in subglacial

conditions at the glacier terminus, from a more warm-based
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TABLE 3 Landform inventory from geomorphological mapping across the Cordillera Vilcanota. See Table 2 for landform identification criteria.

Feature

Topographic features

Exposed bedrock
(not ice-scoured)

Basalt/ignimbrite
plateau

Mountain summit

Glacier features
Rock glaciers

Snowline

Crevasses

Glaciers (2022
inventory)

Supraglacial debris
cover

Glacier cusps

Subglacial features

Drumlin

Flutings

Other streamlined
landforms

Boulder at head of
flute

Rectilinear
crevasse-fill ridges

Number of
observations

273

13

25

3,493

237

281

67

1,430

10

33

186

Total area,

km?

62.52

36.9

0.09 km?

246.0

23

Mean area,

km? (SD)*

0.2 (0.5)

18.4(10.5)

0.03km?

1.0(1.6)

0.3(0.6)

Mean altitude,

m asl (SD)*

5,085 (189)

5,141 (167)

5,814 (395)

4,976 (12)
5,280 (129)

5,466 (174)

5,315 (169)

5,345 (100)

4,808 (145)

5,105 (161)

4,845 (13)

5,155 (15)

Description

Geological intrusions interrupt the landscape, with bedrock
ridges prominent in the landscape. Ridges of bedrock or steep
bedrock slopes, that have been subjected to little polishing or
scouring under the glacier ice.

Two main ignimbrite plateaux, in addition to the plateau beneath
Quelccaya Ice Cap. Both plateaux are now ice-free and are
located immediately south of Quelccaya Ice Cap, with
surrounding moraines that suggest that ice caps existed here
previously. Elsewhere, friable sedimentary rock form lower,
softer and more rounded mountain ridgetops.

4,958 to 6,384 m (Ausangate), with rugged exposed bedrock
visible at high altitudes (Figure 3)

Mapped in the 2020 inventory (INAIGEM, 2023).

A clear snowline is only rarely observed; many glaciers remain
snow-covered to their tongues.

Transverse crevasses are widely observed on steep mountain
glaciers, associated with extending flow. Rarely splaying crevasses
observed at glacier terminus (e.g., Quisoquipina Glacier).

Glacier inventory from year 2022 AD.

Most glaciers are clean ice, with only small areas of debris cover
on the ice surface mapped (0.93%). All debris-covered glaciers
were mapped around Mt. Pachanta (Figure 3). Only one glacier,
which calves into a proglacial lake and drains westwards from
Mt. Pachanta, has any significant proportion of its area debris-
covered (37%).

Observed on the terminus of many glaciers, for example,
Suyuparina and Quisoquipina glaciers (Figure 6B; Figure 7B), and
terminus of Morajani Glacier on Quelccaya Ice Cap (Figure 8).

Large, regular, subdued, streamlined sedimentary ridges up to
10 m high, 800 m long and up to 180 m wide

Common in relatively flat proglacial zones within the bounds of
the Late Holocene moraines, where they extend down-ice
aligned parallel to former ice-flow direction. Often with boulders
at their heads.

At Suyuparina Glacier (Figure 6; Figure 7), the sedimentary flutes
extend linearly down-ice for distances up to 100 m, with fairly
consistent heights (~0.4 m) and widths (~1.5 m). These flutes are
composed of diamicton with large cobbles, and faceted and
broken gravel clasts, which often exhibit clear striations.

The flutes extend over both deformable substrate and diamicton.
Flutes emerging from the ice at the ice margin show sediment
deformation squeezed into elongated subglacial cavities

(Figure 7E). These subglacial grooves at the ice margin show
close association with deformed, bent icicles (Figure 7D).

Occur on the palaeosandar outside the Vilcanota Moraines I.

Where present, initiating boulders are typically subangular to
subrounded with clear faceted faces, and often have a prow of
sediment at their down-ice end.

These sharp-crested rectilinear ridges are ~1 m high and ~0.2 m
wide at the crest, and are formed of diamicton with edge-
rounded, faceted and striated stones. They are symmetrical in
cross-profile and orientated perpendicular or oblique to ice-flow
direction. These rectilinear ridges with a small range of
orientations are interpreted as crevasse-fill ridges.

(Continues)
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TABLE 3 (Continued)

Number of Total area, Mean area, Mean altitude,

Feature observations  km? km? (SD)* m asl (SD)* Description

Streamlined 974 5,083 (244) The roche moutonnées frequently have an abraded up-ice face

bedrock lineation with striae and a plucked face, as observed in the recently

(roche moutonnée) exposed forefield of Quelccaya Ice Cap.

Ice-scoured 466 62.9 0.1(0.4) 5,049 (218)

bedrock

Ice-marginal features

Trimline 107 5,055 (198) Associated with, and often contiguous with, Late-Holocene
moraines, denoting the margin of the last neoglaciation during
the ‘Little Ice Age’.

Moraine crests 11,479 4,921 (268) Moraines were largely limited to an altitude of above 4,200 m
and are sparse below this.

All moraine 2,266 196.1 0.09 (0.3) 4,849 (292) Range from large moraines with wide, rounded crests to fresh,

polygons sharp-crested moraines close to current glaciers

Angular boulders 248 Substantial supraglacial input from rockfall from surrounding

on moraine crest topography, for example, at the Qori Kalis Moraines Il (Figure 11)

(from supraglacial

rockfall)

Cirque 63 Widely observed in the mountain regions, often occupied by
glaciers.

Abandoned 93 Occur between and through moraine crests, not currently

meltwater channel occupied by meltwater

Kame terrace 1 Only example observed in association with the Quisoquipina
Moraines Il. Flat-topped terrace with elevation level with the col
at the terminus of the moraines, interpreted to be the palaeo
spillway for a moraine-dammed lake.

Fluvial and lacustrine features

Rivers and streams 206 Form in the valley floors. Rivers fed by glaciers are often milky
wide and form braided gravel-bed rivers.

Lake 1,079 62.5 0.06 (0.9) 4,828 (182) Frequently form in the glacially eroded overdeepenings behind
moraines, and on glacially scoured bedrock. Rare outside
glaciated limits.

Palaeosandar 8 13.7 1.7 (1.5) 4,898 (68) Forms outside moraines.

environment to a colder ice margin, likely as the glacier has thinned.
The lack of abundant proglacial meltwater in this environment pro-
motes preservation of these features.

Crevasse fill ridges were not observed at other ice margins visited
(such as Qori Kalis Glacier), where often the larger altitudinal range
and ice surface slope, deeper ice thickness and larger accumulation
areas may promote a more substantial gravitational driving stress and
more deformation of the ice at the ice margin.

423 | Ice-moulded bedrock
Polished bedrock characterised by striated, streamlined bedrock
bedforms, such as roche moutonnées with plucked faces and whale-
backs, are also common in the immediate forefield of many mountain
glaciers, within the bounds of the inboard, inner moraines (Figure 5;
Figure 8; Table 3). The polished bedrock recently exposed in front of
Quelccaya Ice Cap also exhibits features such as scalloped, furrow-
shaped, longitudinal P-forms (sensu Glasser & Bennett, 2004; Benn &
Evans, 2010).

These regions of polished bedrock are especially common in front

of the steeper mountain glaciers that are now receding up the steeper

slopes of the mountains of Cordillera Vilcanota. Quarrying of bedrock
to form the plucked faces of roche moutonnées has been associated
with thin, temperate ice, where ice overburden pressure is low
(Benn & Evans, 2010). Whalebacks may be more likely to form under
higher ice overburden pressure where bed separation and cavity pro-
duction are suppressed (Roberts & Long, 2005). Together, these fea-
tures indicate that the ice-bed interface was temperate, with sliding,
entrainment of debris within basal ice and abrasion and polishing of
the bedrock through asperities entrained in the ice (Glasser
et al.,, 2020). The P-forms indicate the presence of locally high basal
meltwater pressures over the bedrock (Glasser & Bennett, 2004) and
saturated till (Benn & Evans, 2010).

424 | Drumlins

Large, regular, subdued, streamlined sedimentary ridges up to 10 m
high, 800 m long and up to 180 m wide are observed only in a couple
of valleys (Figure 5; Table 3). The most convincing occurrence is in the
valleys draining westwards from Quelccaya and flowing into the Qori
Kalis Moraines Il and the Quisoquipina Moraines Il (Figure 5;

Figure 8). These elongated ridges are long and occur in the valley
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FIGURE 4 Overview geomorphological map of Cordillera Vilcanota and western Quelccaya Ice Cap, showing main landforms. The domain
shows the area covered in this study. Elevation transects are shown in Figure 4. The inset shows glaciers (black), lakes (blue) and the Vilcanota-
Urubamba catchment (red). Location of the main panel is shown in a black box. See Supplemental Online Map for further details. Landform
inventory available in Table 3. Elevation data provided by TanDEM-X (12 m). Rock glaciers from the INAIGEM 2020 inventory (INAIGEM, 2023).

floor, separated by regions of streamlined bedrock. Though low relief,
these features are characteristic of the length, width and size of
drumlins (Ely et al., 2016, 2018; Spagnolo et al, 2010). Their
arrangement in a regular field and alignment is also characteristic of
drumlins (ibid.).

Drumlin forms like this are typically formed under thick, temper-
ate ice masses, with coupled flow of ice and till (Clark et al., 2009; Ely
et al.,, 2018, 2023; Stokes et al., 2013). While often associated with
ice sheets, drumlins have also been observed under temperate glaciers
(Jonsson et al., 2016). These features suggest that these glaciers had
sufficient basal shear stress to deform subglacial sediment. They are,
to our knowledge, the first examples of drumlins recorded in the tro-
pics and altitudinally the highest drumlins recorded, though drumlins
have been recognised at slightly lower altitudes in the Himalaya (Pall
et al., 2019; Saha et al., 2016).

4.3 | Ice-marginal features

Regional geomorphological mapping around Cordillera Vilcanota and
Quelccaya Ice Cap revealed previously unmapped moraines south of
Lake Sibinacocha and across the Cordillera Vilcanota plateau
(Figure 3; Figure 5; Figure 6; Table 3). These moraines indicate
extensive southward-flowing lobes of ice on the Sibinacocha Plateau
that coalesced from Cordillera Vilcanota and Quelccaya Ice Cap,
with moraines forming ~50 km south of the ice divide. In the valleys

between moraine sets, streamlined sedimentary and bedrock ridges

record the passage of temperate ice flow and elucidate palaeoglacier
ice-flow directions. Extensive moraines, first mapped by Mercer &
Palacios (1977), are also visible north of the Cordillera Vilcanota
massif, documenting northward-flowing lobes of ice. Cirques
typically demarcate the upper limits of the glaciers of the northern
sector of Cordillera Vilcanota. In the east, the plateau edge of
Quelccaya Ice cap is also incised by cirques. Moraines were largely
limited to an altitude of above 4,200 m asl and are sparse below
this, reflecting the altitudinal (and resultant climatic) control that
effectively limits the smaller ice advances north of the Cordillera
Vilcanota ice mass.

Other ice marginal landforms include kame terraces, meltwater
channels and trimlines (Figure 5). Kame terraces are very rare,
suggesting limited glaciofluvial and glaciolacustrine activity. Aban-
doned meltwater channels commonly thread their way through and
between moraines and are especially clear in the Late Holocene
and more recently deglaciated regions. The poorly drained low points
in the swales between moraines are now often a site for the develop-
ment of bofedales wetlands. Trimlines clearly demarcate the extent of
more recent glaciation, likely during the Late Holocene, often continu-
ing from them towards the present-day ice limits (Figure 5; Table 3).
These trimlines often bound ice-scoured bedrock with roche
moutonnées.

In the sections below we describe the nested sequences of
moraines in specific valleys: the Phinaya Valley, Quisoquipina Valley,
Qori Kalis Valley and Huancané and Challpachocha valleys (see

Figure 1, Figure 4 and Figure 6 for locations).
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FIGURE 5 Elevation transects AA, BB and CC (see Figure 3 and Figure 5).

43.1 | Phinaya Valley

At the head of the Phinaya Valley, near the terminus of each glacier,
at ca. 5000 m asl, there is an assemblage of flutes, small moraines and
ice-scoured bedrock with roche moutonnées, bounded by large, fresh,
unvegetated moraines, which link with clear trimlines in the lateral
margins (Figure 6). These moraines typically have meltwater channels
between and incised through the moraine crests and often enclose a
lake within the over-deepened forefield. Clear trimlines typically
demarcate the extent of the most recent neoglaciation and align with
the latero-terminal moraines.

The innermost Phinaya | moraines near Lake Qasqara (Figure 6)
are characteristic of these moraines. They are securely dated using
cosmogenic nuclide ages to 0.2-0.7 ka (mean 0.2 ka, standard devia-
tion 0.01), during the ‘Little lce Age’ (Sagredo et al., 2016)

(Figure 3B). The main moraine complex lies just 0.9 km from the

present-day ice margin and, at 5035m, over 100 m below
the present-day ice margin. The well-defined main latero-terminal
moraine complex is some 600 m wide and lies on the low-slope val-
ley floor below the steep mountain glacier. In the swales between
moraine crests, there are small boggy areas, with bofedal wetland
development, and the moraine crests are cut by meltwater channels.
The moraines are fresh-looking, sharp-crested and closely spaced
and comprise a silty diamicton with numerous angular to sub-
rounded boulders. The amplitude of each moraine crest is some 5 m
and crest width is 1-2 m. Clast-form analysis at WP87 (Figure 11)
shows some angular material likely derived from supraglacial sources
given the overlooking topography, as well as more rounded and
blocky clasts. Between this large moraine complex and the 2022 gla-
cier terminus lie repeated small sawtooth-type moraines indicating
the shape of the ice margin, with no evidence of crevasse squeeze

ridges and few flutes.
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FIGURE 6 Geomorphology of the Sibinacocha Plateau, with moraine names mentioned in text. Transects shown in Figure 4. Shown on the
hillshaded TanDEM-X. Rock glaciers from the INAIGEM 2020 inventory (INAIGEM, 2023).

Downstream of the Phinaya | moraines are the geomorphologically
very similar and geographically adjacent Lake Qascara and Phinaya
Il moraines, indicating extended but separate glaciers in the upper
parts of the Phinaya valley (Figure 6; Figure 10C). These moraines

are located ~3.4 km down-valley from the present-day ice margin.
They have rounded crests ~2 m wide, with proximal slopes of 12°.
The moraines are approximately 20 m high. The Lake Qascara

moraines encircle an overdeepening infilled with lake and bofedal.
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FIGURE 7 Suyuparina Glacier, at the head of Quisoquipina valley. A: Suyuparina Glacier forefield. Hillshaded drone-derived DEM is
shown for the Suyaparina forefield (transparent polygon), superimposed on the Tandem-X hillshade. Flutings with initiating boulders where
present, rectilinear ridges and moraines are shown. B: Overview of Suyuparina and Quisoquipina glaciers, with the location of panel A shown
by red box. C: fluted surface at the present-day ice margin. D: small, sharp-crested moraines at the same location as pebble shape-roundness

count WP144.
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FIGURE 8 Photographs of Suyuparina Glacier terminus and forefield, at the head of Quisoquipina valley. A: Suyuparina Glacier, showing
subvertical ice margin. B: Suyuparina Glacier and forefield. B shows the ‘cusps’ or potholes on the tongue. C: Sail of ice disconnected from the
main terminus. D: A subglacial cavity. Surface melt has frozen overnight to form icicles, which are deformed as a result of glacier sliding. E:
Subglacial grooved cavity, infilled with a flute. F: Drone image of the forefield of Suyuparina Glacier, showing moraines, flutings and geometric
ridges interpreted as crevasse-fill ridges. G: Flute extending in the lee of a bedrock highpoint at the Suyuparina ice margin. H: Drone image
showing detail of the glacier forefield.
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FIGURE 9 Quelccaya Ice Cap glaciology and geomorphology.

Boulders litter the ridge crest, ranging from angular to faceted with
edge-rounded corners. The series of moraines continues down-
valley. South of the village of Phinaya are the Phinaya Ill moraines,
which may represent a final glacier stabilisation before the ice lobes
separated into their different valleys.

South of Lake Sibinacocha, down-valley and stratigraphically
older than the up-valley moraines, are the comparatively more volumi-
nous Phinaya IV moraines, forming along the western edge of the Rio
Phinaya valley (Figure 6D,E). This lateral-terminal moraine complex
comprises multiple moraine crests, with hummocky moraine extending
down the valley side towards Rio Phinaya (Figure 10E). The largest
outer moraines have clear, rounded ridge crests up to 10 m wide, con-
taining a hummocky topography with common kettle lakes and com-
mon boulders with a b-axis of >1 m of a wide range of lithologies.
River cuttings here reveal clast-rich, matrix-supported diamicton cov-
ered with river gravels (Figure 10D). These moraines reflect a substan-
tial advance of the ice lobes, extending some 50 km down-valley from
the present-day ice margin.

Outside of these moraines are the Phinaya V moraines. The
Phinaya Va moraines are lateral moraines from the Phinaya ice lobe,
located west of the Phinaya IV moraines (Figure 6, Figure 10F). The
Phinaya Va moraines comprise a north-south trending ridge crest,
littered with boulders of varying lithologies, commonly faceted. The
ridge is broad and 10-15 m wide, and up to 30 m high, extends from
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the southern margin of Lake Sibinacocha, and is exactly parallel with
the Phinaya VI moraines. The moraine comprises a pebble and cobble-
rich diamicton. Pebbles within the diamicton (WP31; Figure 11) are
mainly subrounded to subangular, and blocks to slabs in shape, typical
of subglacially transported clasts (Benn & Ballantyne, 1993; Lukas
etal., 2013).

The moraine stratigraphy shows that at the time of moraine for-
mation, the ice lobes had separated from ice flowing from the east
into distinctive lobes, one occupying the Phinaya river valley and one
flowing from ice sourced from Cerro Comercocha. The flat ground
between the Phinaya Va and Phinaya IV moraines may indicate that a
sandur previously occupied this area.

The Phinaya Vb moraines are arcuate terminal moraines, located
down-valley of the Phinaya IV terminal moraine complex. The Phinaya
Vb and slightly more ice-distal and final Phinaya VI moraines are both
characterised by a hummocky, degraded appearance, wide and low
ridge crests and scattered boulders. The ridge crests are wider and
more hummocky than the up-valley Phinaya IV moraines. The hum-
mocky moraine surface within the moraines is bounded by substantial
fluvial incision and river terracing.

Finally, the Phinaya VI moraines (Figure 10G) reflect the south-
ernmost limit of the ice lobe that occupied the Phinaya valley. They
are stratigraphically the oldest and most ice-distal in the study

domain.
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FIGURE 10 Examples of moraines from the Rio Phinaya valley.

4.3.2 | Quisoquipina Valley
Access to the Suyuparina Glacier terminus at the head of
Quisoquipina Valley allowed observation and analysis of moraines in

the immediate ice environment, using field and drone surveys. The
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forefield of Suyuparina Glacier covered by the drone-derived DEM
in Figure 6A lies within the boundary of the RGI glacier outlines
dated to the year 2003 (RGI 7.0 Consortium, 2023). This area, which
has an even, mean slope of 18°, is characterised by multiple small

moraine ridges up to 1-3 m high, with symmetrical proximal and
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FIGURE 11 Clast-form analysis from moraines around the Cordillera Vilcanota plateau. Locations in Figures 6, 7 and 9.

distal slopes of ~20-50° and comprised of a shale-rich silty
diamicton. These Suyuparina Moraines (Figure 7; Figure 12A) com-
prise ridges that are sharp-crested, and unlike the prominent mid-
valley moraines lower down-valley, form a sequence of repeated
moraine crests 5-20 m apart (Figure 6D; Figure 7F,H). These
moraines cross-cut abundant flutes and crevasse-squeeze ridges that
are abundant within their limits. The moraines are arranged in an
arcuate shape across the foreland (Figure 6A) and meltwater chan-
nels from the ice margin flow in between the moraine crests, even-
tually forming a braided stream.

A clast form analysis count from a latero-terminal moraine in the
Suyuparina Glacier forefield (WP 144; Figure 6A,D; Figure 7) yielded
numerous faceted and striated clasts, with a dominance of sub-
rounded and subangular pebbles and cobbles (Figure 11). No evidence
of degrading ice cores was observed in the moraines. The clast edge
rounding and the striations and faceting are indicative of active glacial
transport and imprinting within the subglacial traction zone and indi-
cate temperate ice conditions (cf. Matecki et al., 2018).

The RGlI outlines indicate that the moraines exposed here are less
than 20 years old, and, given there is a sequence of approximately
20 moraine crests within this area, they are likely formed annually.
These small moraines are typical of push moraines formed at an ice
margin with at least partially an active-temperate thermal regime
(Bradwell, 2004; Chandler et al., 2020).

A total of 1750 m down-valley in the Quisoquipina valley are the

Quisoquipina | moraines (Figure 6; Figure 12B), which are

morphostratigraphically similar to the Phinaya | moraines dated
securely to the ‘Little Ice Age’ (Sagredo et al., 2016) (Figure 3B).
These moraines link to trimlines indicating an enlarged and coalescent
Suyuparina and Quisoquipina Glacier occupying the head of
Quisoquipina valley at this time.

Where there is high rockfall input, moraines crop out as pedestal
moraines, raised above the valley floor on a ‘pedestal’ of talus, for-
ming the perched ‘pedestal moraines’ as seen in other regions of Peru
(cf. lturrizaga, 2018). There are only a few examples in the
Quisoquipina valley, on the valley sides, and in other locations, such
as at Montana de Siete Colores (colloquially ‘Rainbow Mountain’ or
Vinicunca) or Cerro Comercocha (see Figure 4 for locations). This is
because, compared with other regions of Peru, large rock walls sup-
plying abundant supraglacial debris are relatively rare.

A 9 km down-valley from the glacier terminus are the
Quisoquipina |l moraines (Figure 6; Figure 12C). These arcuate
moraines extend across the Quisoquipina valley and comprise a multi-
crested latero-terminal moraine complex. The moraine matrix material
exposed in the river cutting at WP179 shows the moraine to comprise
a massive matrix-supported, gravel-rich diamicton with abundant cob-
bles and boulders. Stones are commonly faceted and edge-rounded
and include a range of lithologies, including porphyries, granite, sand-
stone, shales and rhyolites. A clast-form analysis count at WP179
(Figure 11) shows a dominance of subrounded to subangular clasts.
Abandoned palaeochannels at the apex of the moraine and flat-

topped terraces interpreted as kame terraces within the Quisoquipina
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FIGURE 12 Moraines of the Quisoquipina Valley. For locations see Figure 6. Dashed black lines pick out moraine crests.

Il Moraines, and sorted clays present within exploratory shallow
Russian Core samples, indicate the presence of a former moraine-
dammed lake, which eventually drained through the fresher moraine
breach located at WP179.

These moraines are typical of temperate valley glacier terminal
moraines and reflect both a substantial, easily erodible debris supply
and temperate glaciers able to erode, transport and deposit material
within the subglacial traction zone (Evans & Twigg, 2002). These large
moraines reflect quasi-stable positions of the ice margin, with glaciers
temporarily in equilibrium with the environment (Evans, 2013). The
Quisoquipina Il moraines reflect a glacier that was stable within
the valley, independent of ice from Quelccaya or the Phinaya valley.

Downstream of these, some 16 km from the current ice margin,
are the substantial Quisoquipina Ill moraines (Figure 6; Figure 12D).
This moraine complex is contiguous with the Qori Kalis Ill moraines,
but indicates an ice margin independent from the ice lobe in the
Phinaya valley. Moraines are broad, multi-crested, with numerous
scattered boulders.

433 | QoriKalis Valley

At the head of the Qori Kalis valley, fresh moraines enclose a
proglacial lake (Figure 6; Figure 13). The Qori Kalis | moraines com-
prise a piedmont lobe spreading out from the valley confines onto the

wide, flat valley floor. The main moraine complex is some 600 m wide

and comprises multiple moraine crests with meltwater channels
between (Figure 13). The moraines are sandy, reflecting the ignimbrite
sources available up-glacier and contain numerous ignimbrite
boulders, some of which are striated and which are commonly edge-
rounded and faceted. The innermost moraines at the lake margin con-
tain numerous angular boulders, suggesting significant supraglacial
input at this point; this is reflected in the clast angularity at WP228.
Ice-polished bedrock is visible at the ice margin above the lake. °Be
exposure ages from boulders on the Qori Kalis | moraines securely
date these most recent moraines to the latest Holocene, ca. 0.2 to
0.5 ka (Stroup et al., 2014) (Figure 3).

The Qori Kalis Ill moraines, some 14.8 km down-valley from Qori
Kalis Glacier, are much broader than the valley glacier moraines up-
valley and are similar in characteristics to the Quisoquipina Il
moraines (Figure 6; Figure 13). They have well-rounded ridge crests,
with meltwater channels and rounded kettle lakes on and between
crests. The moraine crest is almost flat, with sparse scattered
boulders.

Where there is overlooking topography, supraglacial debris input
is evident in some of these mid-valley moraines. For example, one
small part of the Qori Kalis Il moraines contains abundant blocky and
angular monolithic boulders, reflecting substantial rockfall input from
just up-valley (Figure 14; Table 3), as well as a sandy texture reflecting
the breakdown of ignimbrite boulders sourced from further up-valley.

The most ice-distal moraines from ice in the Quisoquipina

Valley, indicating ice independent from the Phinaya ice lobe, are
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FIGURE 13 QoriKalis Glacier and Qori Kalis | moraines.

the Qori Kalis IV moraines. These moraines are located on the
Phinaya River valley floor and are strongly washed and incised by
the Rio Phinaya.

434 | Huancané and Challopachocha valleys
The Huancané and Challpachocha valleys contain most of the chrono-
logical data in the study area (Figure 3C). The Hurancané valley con-
tains a similar suite of nested moraines to that of the Quisoquipina
valley, with the Hu-l moraines near Marajani Glacier likely rep-
resenting a readvance during the Little Ice Age, coeval with the Qori
Kalis | and Phinaya | moraines (Figure 9). The large Challpacocha |
moraines of western Quelccaya (Figure 3C) yield slightly older ages of
0.8-1.8 ka, suggesting another late Holocene advance (Stroup
et al., 2015). At 3.8 km from the ice margin down the Huancané val-
ley, the Hu-lla moraines in the Huancané Valley yield tightly clustered
boulder cosmogenic nuclide exposure ages of 11.3 to 11.9 ka (Kelly
et al., 2015) (Figure 3C).

At 1,600 m further down-valley, the Hu-lllb moraines (Figure 9)

have cosmogenic nuclide exposure ages of 13.0 to 14.0 ka (Kelly

et al., 2015) (Figure 3C). The Hu-llla moraines, another 1,300 m
down-valley and a total of 7.3 km from the year 2022 Morajani Gla-
cier margin, are dated to before ~14.2 cal. ka BP by radiocarbon ages
in a kettle lake inside the moraine arc (Mercer & Palacios, 1977)
(Figure 3C). These well-dated Hu-lll moraines are ascribed to the
Antarctic Cold Reversal. Finally, the Hu-IV moraines occupy the
valley-mouth position, 13 km down-valley from the contemporary ice
margin, and are geomorphologically similar to the large Qori Kalis Il
and Quisquipina lll moraines. In the adjacent Rio Churuyo valley to
the south, the Churuyo moraines also occupy the valley mouth posi-
tion (Figure 6).

4.4 | Fluvial and lacustrine features

Most valleys are occupied by rivers at their floor, which often flow
into wetlands. These rivers occur as milky-coloured gravel braided riv-
ers, reflecting their high suspended load. These small-scale
glaciofluvial braided rivers are indicative of the low-meltwater envi-
ronment, with limited precipitation in the dry season (Figure 2). At
higher altitudes, ablation is dominated by sublimation; at the summit
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FIGURE 14 QoriKalis Ill moraines with angular rockfall. A: Drone image of the moraines, showing angular blocky rockfall on the moraine
surface and small kettle lakes. B: Hillshaded drone-derived DEM of the Qori Kalis Moraines Il with regions of rockfall mapped. Location of camera
in panel A, and direction of the photograph is shown. C: location map; red box shows location of panel B.

of Quelccaya Ice Cap, sublimation accounts for 81% of ablation (Fyffe Many of the glacially eroded overdeepenings behind moraines are
et al, 2021). However, larger palaeosandar mapped beyond the occupied by moraine-dammed lakes, and bedrock-dammed lakes
moraine suggests a more active glacier-hydrological system during are common in the areas of exposed bedrock. Small lakes also occur
larger palaeoglacier extents. frequently in kettle lakes between and behind moraines, often
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associated with abandoned meltwater channels. Lakes are sparse out-
side the glaciated region. These fluvial and lacustrine landforms are

covered in more detail in Davies et al. (submitted).

5 | DISCUSSION

51 | Glacier dynamics

At Suyuparina Glacier, evidence of deformable ice and substrate
under temperate conditions includes the flutings, annual moraine for-
mation and the formation of glacial till alongside striated and polished
bedrock and cobbles. Conversely, evidence of a frozen margin
includes the preservation of delicate crevasse squeeze ridges (Evans
et al., 2022; Rivers et al., 2023; Sharp, 1985) and the vertical ice cliffs
with little evidence of ice deformation. This assemblage together sug-
gests a polythermal zone at the ice margin, with flutes formed further
up-glacier under thicker ice and preserved under a cold glacier snout
with limited ice deformation (Evans et al, 2012; Roberson
et al., 2011). This is likely to occur under many of the smaller glaciers
in the region.

Conversely, the larger, steeper mountain glaciers and the glaciers
draining from Quelccaya Ice Cap have an assemblage dominated by
large and repeated nested neoglacial moraines, with abundant
scratched and polished cobbles, striated and polished bedrock and
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overdeepenings infilled with bofedales wetlands or lakes and lack the
polythermal ice margin assemblage. Their greater size, thicker ice
(cf. Millan et al., 2022) and larger accumulation area likely results in tem-
perate ice throughout. This is aided by the fact that there is a limited
seasonal variation in air temperature, with seasonal means at 5000 m
asl remaining just above 0°C year-round (Schauwecker et al., 2017).

The larger moraines (e.g., Phinaya VI, Phinaya Va, Quisoquipina Il
and Ill moraines, Qori Kalis 1ll), likely dating from the Holocene, Late
Glacial and Last Glacial Maximum periods, are typical of temperate
glacier environments, with evidence of polishing bedrock region-wide,
the formation of drumlins along ice-flow corridors and the erosion
and deposition of substantial moraines and features. The large size of
the moraines likely reflects the volume of readily available sediment
within the catchment from friable bedrock. This also reflects the pro-
cesses of sliding, lodgement and ice deformation within the temperate
glaciers, evidenced by striated, faceted and edge-rounded boulders
and cobbles.

5.2 | Palaeo-icefield reconstruction

We used these geomorphological and chronological datasets to recon-
struct a palaeo-icefield, with multiple topographically constrained ice
lobes flowing across the plateau (Figure 15). We use the outer
moraine limits in each valley to demarcate the maximum icefield

FIGURE 15 Cordillera Vilcanota Icefield reconstruction for the maximum glaciation extent, with ice flow directions constrained by

geomorphology.
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reconstruction. Ice flow lobes are reconstructed using indicators of ice
flow (e.g. streamlined bedrock, drumlins, flutes), topography and ele-
vation and the pattern of moraines in each valley, following previous
practice (e.g. Davies et al., 2020). We note that the icefield recon-
struction has limited data to constrain ice thickness or vertical devel-
opment, though interactions with topography are well constrained by
geomorphology.

The substantial Cordillera Vilcanota North and the Chumpi North
lobes flowed northwards. At the southern limit of the plateau, these
lobes coalesced to form the large South Vilcanota Lobe, which crossed
to the lower limit of the Sibinacocha Plateau. Overall, the main icefield
was >70 km across in the east-west direction and ~50 km across in
the north-south direction. The main icefield covered 2,413 km? with a
total area of 2,700 km? across the domain (Figure 15).

The icefield was surrounded by numerous mountain glaciers and
smaller icefields, with lobes of ice extending down from the main
mountain range. The glacier termini likely reached their lowest eleva-
tions on the northern side of the ice divide. Here, the Cordillera
Vilcanota North lobe has moraines at an elevation of 3,500 m asl, with
the lobe forming a glacier 21.5 km long from the contemporary ice
divide to the terminus. The nearby Chumpi North Lobe reaches
3,160 m asl, perhaps reflecting the large accumulation area and height
of the Chumpi Massif. Further expansion was likely limited by the
rapid loss of altitude northwards (Figure 13). The Chumpi North Lobe
reaches 16 km from the contemporary ice divide to the lowest termi-
nus. In the west, the Q'’Ampa Lobe and the Quellacocha Lobe reach
4,120 m asl and 4,000 m asl, respectively.

The southerly flowing lobes do not reach such low altitudes; the
lowest terminus of the Chillca Lobe lies at 4400 m asl, and the
Phinaya Lobe remains just above the 4,500 m contour. These glaciers
are, however, longer, with the Phinaya Lobe reaching ~35 km from
the ice divide to the terminus. As the palaeoglaciers receded, they
separated into the Huancané and Qori Kalis lobes, draining from
Quelccaya Ice Cap; Quisoquipina lobe, draining from Suyuparina Gla-
cier and Quisoquipina Glacier; and the upper Phinaya Lobe and
Sibinacocha lobes, both draining from the main massif (Figure 14).
Glaciers draining eastwards from Quelccaya include the North and
East Quelccaya lobes, which converge and terminate at ~4,300 m asl.
These differences in altitude and size likely reflect not only the topo-
graphic constraints on the icefield, but also the dominant wind-borne
moisture sources at the time of maximum glaciation, likely associated
with airstreams arriving from the Amazon, as is the case today.

5.3 | Morphostratigraphic reconstruction

Our geomorphological mapping identifies multiple nested moraine
sequences across the study area. We focus here on the Sibinacocha
Plateau, where the moraine record is most complete, and where field
surveys were focused, providing the most comprehensive observa-
tions. There is a clear morphostratigraphic and geomorphological vari-
ation down-valley, with clear ridge-crest lowering and widening. A
repeated pattern is visible across the different valleys. These differ-
ences indicate the differential passage of time between the formation
of moraine sets, with stratigraphically older, more ice-distal moraines
being subjected to more subaerial weathering processes. We used

morphostratigraphic differences, stratigraphic position, patterns of
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moraines, indicators of ice flow (drumlins, flutes, streamlined bedrock,

topography), published chronological data and the ice-lobe recon-
structions to identify seven clear ice margins, hypothesised to be
stratigraphically correlative across the study region (Figure 16).

Here, we present an initial morpho-stratigraphic correlation of
moraines across the study area and suggest a preliminary temporal
framework, anchored by published ages where available. The large
and most ice-distal outer moraines are the stratigraphically oldest
moraines in the area. Of these, the oldest Phase 1 Phinaya VI
moraines represent the southern limit of the Phinaya Lobe at the mar-
gin of the plateau, and the most extensive ice margin. We tentatively
ascribe this advance to during or prior to the gLGM. Radiocarbon dat-
ing from the outermost moraines north of the icefield, around Pac-
chanta (Figure 3A, up to 35.6 cal. ka BP; (Mercer & Palacios, 1977)),
supports a large advance that predated the gLGM, as do studies from
other regions of Peru (Smith et al., 2005a).

Phase 2 is defined by a distinctive terminal moraine ridge
(Phinaya Vb moraines) and represents temporary stabilisation during
retreat. By Phase 2, the glacier outlet lobes are topographically con-
fined and, in the west, the Comercocha Lobe and the Phinaya Lobe
are separated, as indicated by the presence of the Phinaya Va lateral
moraines. The Phase 2 moraines (Phinaya Va and Vb) have a lower
elevation north of the ice divide than south, and are generally the low-
est in elevation of those across the study area (Figure 16). For exam-
ple, the stratigraphically oldest moraines in Chumpi North Lobe,
ascribed to Phase 2, have a ZMean of 3,604 m, compared with
4,658 m asl for Phinaya Lobe. The stratigraphically oldest and most
ice-distal moraines of the Q'/Ampa Lobe, in the northwest of the study
region, have a ZMean of 4,467 m asl.

The morphostratigraphically younger Phase 3, with fresher, less
weathered moraines, mainly includes the latero-terminal Phinaya IV
moraines south of Lake Sibinacocha. Phase 3 moraines are also tenta-
tively indicated in the middle of the valley for the Palccoyo Lobe. The
Phase 3 moraines have less hummocky topography and clearer
moraine crests. The ice lobes are clearly topographically confined,
with the Phinaya Lobe occupying the Phinaya valley, sustained by ice
from Quelccaya and Quisoquipina, separated from the ice from the
east (Palccoyo Lobe, Comercocha Lobe) (Figure 16). A sandar may
have formed in the ice-free land between these ice lobes at this time.

The ice marginal position of the Phinaya Lobe during the global
Last Glacial Maximum (late MIS 2) likely lies between the Phase 1 and
3 moraines, though this awaits further testing with numerical ages.
Here we tentatively ascribe Phase 1 and 2 to prior to the global LGM
and Phase 3 to late MIS 2 (cf. Hall et al., 2009; Smith et al., 2005b;
Zech et al., 2009). This advance of 50 km at the maximum ice margin
position is far larger than the 12.7 km advance ascribed to the Local
LGM in northern Peru (Lee et al., 2022).

Moraines set at an intermediate location in the centre of the val-
leys were likely formed at different phases during the Late Glacial.
Phase 4 moraines, including the Hu-IV and Qori Kalis IV moraines,
inset of the substantial Phase 1-3 limits, show the separation of the
Huancané and Phinaya lobes, with increasing influence of topography.

Phase 5 moraines, such as the Quisoquipina Ill, Qori Kalis Il and
Hua-llla moraines, show further separation into constituent ice lobes,
with the Quisoquipina, Qori Kalis and Huancané lobes all forming dis-
tinct, topographically separated lobes (Figure 16). The Phase 5 Hu-llla
moraines were dated by radiocarbon dating to before 14.2 cal. ka BP
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(Mercer & Palacios, 1977), and the Hu-Illb moraines to >13.9 ka by moraines dating to the Antarctic Cold Reversal in other parts of Peru
exposure ages (Kelly et al., 2015) (Figure 3). This indicates that they (Jomelli et al., 2014, 2017).

are equivocal with the Antarctic Cold Reversal. An Antarctic Cold Phase 6 moraines, including the more ice-distal Quisoquipina Il
Reversal advance in this area is supported by the presence of moraines and the more ice-proximal Phinaya Il and Lake Qascara
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Moraines, occupy a mid to upper-valley position in most lobes. They
comprise a series of well-defined, relatively sharp-crested, substantial
moraines. Around Quelccaya Ice Cap, some Phase 6 moraines (Hu-lIla)
are dated to 11.3 to 12.4 ka (Kelly et al., 2015). Elsewhere in Peru, in
Cordillera Blanca, moraines deposited in the Jeullesh Valley (10°S) are
also dated to the Younger Dryas Chronozone at 12.4 ka (Glasser
et al., 2009b), suggesting a widespread advance at this time. Further,
mid-Holocene advances postdating the Younger Dryas are also
reported in the Cordillera Vilcabamba (13°20°S) (Licciardi et al., 2009)
and Cordillera Blanca (Glasser et al., 2009b). We therefore hypo-
thesise that similarly positioned Phase 6 mid-valley moraines date to
the Younger Dryas, and moraines inset of these to the Early
Holocene.

Finally, Phase 7 moraines (e.g., Phinaya |, Qori Kalis |,
Challpacocha I, Hu-l) are substantial, unvegetated, ice-proximal,
sharp-crested and fresh looking with scattered boulders and a silty
diamicton matrix. They are the highest-altitude moraines in the study
region, with a rise in mean altitude of these features of 450.7 m asl
compared with the Phase 1 and 2 moraines that likely predate the
gLGM (Figure 16). They have been dated using 1°Be exposure ages
(Sagredo et al., 2016; Stroup et al., 2015) and lichenometry (Carrivick
et al., 2024) to the Late Holocene neoglaciation (0.2-0.5 ka), during
the ‘Little Ice Age’ (Figure 3B). Finally, moraines inset of these limits
were formed recently, with abundant moraines forming between ice
limits mapped in the RGI (year 2003) and 2022 glacier inventories,
some on an annual basis. Further numerical dating is required to test

these initial chronological hypotheses.

6 | SUMMARY AND CONCLUSIONS

We investigated the geomorphological imprint of palaeoglacier fluctu-
ations in the Cordillera Vilcanota, high Peruvian Andes. This aims to
provide insights into past glacier extent, dynamics and behaviour in an
area with sparse geomorphological work. This work, therefore, adds
to the currently small body of literature on past glacier behaviour in
high, tropical, Andean glaciers. These datasets, in turn, provide refer-
ence data for future glacier and climate modelling studies. Chronologi-
cal work to constrain the numerical exposure ages of the
palaeoglacier fluctuations is ongoing. Overall, we mapped ~23,000
features grouped into topographic, glacier, subglacial, ice-marginal,
fluvial and lacustrine assemblages, forming one of the most detailed
maps of a glacierised tropical mountain range to date. The
hydrogeological processes and ways in which these catchment fea-
tures interact with ground and surface water, including glacier runoff,
to support bofedales wetland development, are explored in a second,
associated publication (Davies et al., submitted).

Widescale geomorphological mapping reveals a landscape heavily
dissected by glacial troughs, with lakes frequently forming in the base
of the glacial valleys. Moraines formed in the latest Late Holocene
neoglacial (‘Little lce Age’) are substantial, often enclosing a geomor-
phological assemblage including flutes, annual moraines and lakes.
Beyond these moraines, a series of six further nested moraine
sequences documenting past palaeoglacier advances are well pre-
served across the Sibinacocha Plateau, immediately south of the main
ice divide and encircled by the Cordillera Vilcanota icefield and

Quelccaya Ice Cap. Within the limits of these moraines is ice-scoured
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bedrock with roche moutonnées and drumlins, and palaeosandar lie

outside moraines. This assemblage indicates temperate palaeoglaciers,
with sufficient basal shear stress to deform subglacial sediment. These
moraines document a series of glacier stabilisations or advances dur-
ing the Late Glacial period, likely during both the Antarctic Cold
Reversal and Younger Dryas. The largest and stratigraphically oldest
moraines reach up to 50 km distant from the ice divide. The
reconstructed icefield covers 2,660 km?, drained by multiple signifi-
cant and topographically constrained outlet glaciers. This icefield was
>70 km across (west-east) and 50 km across (north-south), and was
surrounded by multiple and likely independent small cirque and valley
glaciers and smaller independent icefields. These outlet ice lobes
reached elevations of 3,500 m asl north of the ice divide, but the
southerly flowing ice lobes draining across the Sibinacocha Plateau
were limited to above 4,500 m asl, which likely reflects the dominant
precipitation-bearing wind directions. In the north, the significant Cor-
dillera Vilcanota North Lobe reached 21.5 km from the modern ice
divide, with further extension likely limited by rapid altitude decline.
The southerly flowing large South Vilcanota Ice Lobe flowed ~35 km

across the Sibinacocha Plateau, ice divide to terminus.
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