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ABSTRACT

Allometry, the scaling of traits or biological rates with body mass, is central to a wide range of ecological research including dy-

namic food web modelling. There has been extensive focus on exponents (3/4 scaling laws), but little on the coefficients (normal-

isation constants). Coefficients that have been used since 2006 are derived from limited data and dated methodologies. Here, we

compiled a data set of over 1000 genera with body mass spanning 10 orders of magnitude. We updated metabolism and produc-

tion coefficients, deriving new genus and metabolic group levels estimates with phylogenetic hierarchical modelling providing

robust inference. Our coefficients were mostly lower than those previously estimated, with increased uncertainty estimates. We

used the Bioenergetic Food Web Model to evaluate their impact, finding increased biomass and species persistence but no change

in stability. Our coefficients pave the way for future simulations that take advantage of subsets of genus and metabolic group data.

1 | Introduction

Allometric relationships, which define how traits or rates
vary with body size, are at the heart of the Metabolic Theory
of Ecology (MTE) and a wide range of comparative analyses
(Brown et al. 2004; Peters 1986). The functional form is typically
aM?, where M is body mass, b is an exponent defining the scal-
ing and a is the allometric coefficient (a normalisation constant)
most commonly used to differentiate among guilds or classes
of species. Whilst the exponents have been extensively stud-
ied within and beyond the development of the MTE (Gillooly
et al. 2001; Glazier 2005; Norin and Gamperl 2018; Savage
et al. 2004; White et al. 2007; White and Kearney 2014; White

and Marshall 2023), the allometric coefficients have received far
less attention (Kaitaniemi 2008; Niklas and Hammond 2019).

Improving our knowledge of allometric relationships benefits
many areas of ecology from trait-based analyses to comparative
life history studies (Font et al. 2019; Jackson et al. 2022) where
accounting for phylogenetic distance is a crucial part of infer-
ence. Allometric coefficients are central to our understanding
of how biological rates differ across taxonomic and metabolic
groups, ecosystems and temperature ranges (Brose et al. 2019;
Carter et al. 2023; Deutsch et al. 2020; Digel et al. 2011). They are
also used to make inferences about rare or unmeasured species
via imputation (Johnson et al. 2021; Riek and Bruggeman 2013).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.
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Furthermore, they are a core component of recently devel-
oped mathematical models that are driving advances in mul-
tiple areas of biodiversity research. Perhaps the most widely
used of these is the Bioenergetic Food Web (BEFW) model
and its variant, the Allometric Trophic Network (ATN) model
(Schneider et al. 2016) which simulate the biomass dynam-
ics of tens to hundreds of species embedded in a network of
consumer-resource interactions (see Brose et al. 2006; Delmas
et al. 2017; Lajaaiti et al. 2025; Schneider et al. 2016; Williams
et al. 2007). These models have increased our understanding
of stability (Brose et al. 2006; Dominguez-Garcia et al. 2019),
species' persistence and diversity (Brose 2008; Stouffer and
Bascompte 2010), robustness to primary and secondary extinc-
tions (Binzer et al. 2011; Curtsdotter et al. 2011; Staniczenko
et al. 2010), non-trophic interactions (Kéfi et al. 2012), stress-
ors and interaction among stressors (Binzer et al. 2012, 2016;
Danet et al. 2025; Simmons et al. 2021) and ecosystem func-
tion (Delmas 2020; Miele et al. 2019; Rall et al. 2008; Schneider
et al. 2016; Leroux and Schmitz 2025). Within these models,
the coefficients help define key biological rates of populations.
The BEFW and ATN models categorise individual species by
metabolic groups—producers, ectothermic invertebrates, ec-
tothermic vertebrates and endothermic vertebrates (Brown
et al. 2004; Gillooly et al. 2001; Robinson et al. 1983)—and the
allometric differentiation among the groups is defined by their
allometric coefficients.

The current allometric coefficients specifically differentiate
among metabolic groups, metabolism, production and foraging
traits. These values were estimated and embedded in multi-
ple implementations of the model from as early as 2006, when
Brose et al. (2006) and then Williams et al. (2007) updated the
Yodzis and Innes (1992) values based on emerging MTE data
(Brose et al. 2006; Brown et al. 2004; Ernest et al. 2003; Gillooly
et al. 2001; Williams et al. 2007). These coefficients therefore
form rarely questioned assumptions, providing a foundation for
numerous studies over the past two decades, influencing pre-
dictions about persistence, biomass and stability. Therefore, in-
creases or decreases in any of these coefficients can potentially
have marked impacts on the estimated rates of biomass loss (me-
tabolism), production and transfer, thus influencing predictions
of species persistence, community/trophic level/species biomass
and the stability of ecological communities facing multiple
stressors.

1.1 | Improving Allometric Coefficients

There are two prevailing issues, and subsequent opportunities,
in the coefficient estimates underpinning allometric relation-
ships. First, sample sizes of traits and the number of taxa used for
estimation were small. Whilst foraging rate estimates have been
expanded to draw on 648 functional responses (Rall et al. 2012;
Uiterwaal et al. 2022), the allometric coefficients for metabolism
of invertebrates and biomass production of ectothermic verte-
brates are, for example, still currently based on 20 and 9 data
points, respectively (Brose et al. 2006; Ernest et al. 2003; Gillooly
et al. 2001). Second, the statistical methods used to derive these
historic values have not accounted for known sampling biases
such as greater observations in species that are easier to mea-
sure or have received more research attention. Coefficients are

therefore only representative of the biased statistical sample,
not the statistical population or complete taxonomic groups.
Further, by ignoring this bias, these approaches deliver conser-
vative estimates of variation (uncertainty).

Both data volume and phylogenetic relatedness are important
components in ensuring coefficients are representative of whole
metabolic groups. Fortunately, in the nearly two decades since
these parameters were introduced, the quantity of data avail-
able for coefficient estimation has increased dramatically, with
substantial increases in the coverage across habitat types, taxo-
nomic groupings, temperatures and body masses. Furthermore,
the statistical tools available to estimate the coefficients have
advanced, particularly those based on Bayesian hierarchical
models and the implementation of phylogenetic covariance
structures. By incorporating phylogeny we can account for
the fact that more closely related species have similar traits via
commonality of descent when considering the independence of
data points. These approaches not only increase the robustness
of the estimates, especially in the presence of biased taxonomic
sampling, but also provide flexible estimates of uncertainty
through their posterior distributions. This feature of Bayesian
approaches ultimately offers unique opportunities to explore the
sensitivity of predictions about stability, extinction dynamics
and ecosystem processes to assumptions about the values of the
parameters and develop models of communities aligned with
specific subsets of species or functional groups.

Here, we introduce new estimates for the allometric coefficients
for metabolism and the production of biomass (growth) across
all metabolic classes. We do this by compiling a data set based
on more than 20X the data used in the three key works that un-
derpin the coefficients currently in use, published in 2004, 2006
and 2007 (Brown et al. 2004; Brose et al. 2006; Otto et al. 2007).
We note that the 2006 coefficients remain the primary standard
in 95% of publications using the bioenergetic model. We imple-
ment updated methods based on Bayesian Phylogenetic Least
Squares (PGLS) modelling with specific incorporation of un-
certainty. Allometric coefficients are then subsequently derived
from the allometric intercepts of these new models.

We then explore the following questions: (1) Do higher vol-
umes of data, representing substantially more taxa, alongside
modern methods of PGLS, deliver estimates of allometric inter-
cepts that are higher or lower than existing estimates? (2) Are
estimates of variation (uncertainty) in the coefficients derived
from these intercepts larger after accounting for phylogenetic
non-independence? (3) Is there variation in intercept estimates
within and between metabolic categories? and finally (4) Do
these new estimates change predictions about final biomass,
species richness and stability when used in a bioenergetic food
web model?

2 | Material and Methods

We implemented a four-step process to calculate and evaluate
new allometric coefficients of metabolism and production rate.
First, we executed a literature search to acquire data for each
biological rate, temperature and the body mass of the taxonomic
units. Second, we constructed a phylogeny for our compiled
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FIGURE 1 | Temperature corrected biological rate variation according to body mass. (A) Metabolic rate in Watt; 1336 genera included. (B)
Production rate in kilogram per year; 1005 genera included. Colours display the metabolic categories for all individuals separated into; Endothermic
Vertebrate (red), Ectothermic Vertebrate (orange), Ectothermic Invertebrate (blue) and Producers (green).

data. Third, we applied Bayesian phylogenetic least squares to
estimate intercepts and their associated uncertainty. Fourth, we
converted the intercept estimates into allometric coefficients for
use in the bioenergetic food web modelling and assessed the im-
pact of our new estimates on biomass dynamics, persistence and
stability.

All statistical analyses were performed using R v.4.1.2 (R Core
Team 2023) with packages including tidyverse, revtools for
searching and acquisition of new data (Westgate 2019), ape
and rotl for phylogeny construction and analysis (Michonneau
et al. 2016; Paradis and Schliep 2019), and brms for Bayesian
modelling statistics (Biirkner 2017). Food web simulations and
dynamic models were run using Julia version 1.8.0 (Bezanson
et al. 2017) and the EcologicalNetworksDynamics.jl package
(Lajaaiti et al. 2025). We provide additional computational tool
references for methods inline below.

2.1 | Data Collection and Management
2.1.1 | Metabolic Rates

We conducted a systematic literature search using the terms
“(metabolic rate OR metabolism OR respiration rate) AND
(body-mass OR body-size OR allometr*) AND (temperature
OR warming OR cooling OR thermal)” on Web of Science,
Scopus and the revtools R package (Westgate 2019) to generate
a data set of metabolic rates. A total of 7632 measurements
were collected for multicellular organisms ranging in body
mass from 0.03ng to 3672kg and spanning 1336 genera: 552
ectothermic invertebrates, 259 ectothermic vertebrates and
525 endothermic vertebrates (Figure 1A) (Clarke et al. 2010;
Ehnes et al. 2011; Gillooly et al. 2001; Makarieva et al. 2008;
White et al. 2006).

Data includes individual body mass (M), temperature (T), tax-
onomic information and metabolic rate (X). Basal metabolic
rate (BMR) was used for endotherms and standard metabolic
rate (SMR) for ectotherms. X was recorded in Watts (W),

for rates measured using the rate of oxygen consumption, a
conversion factor of 20J per 1mL O, was used (Makarieva
et al. 2008). Temperature corrected rates (Xe?%*T) were deter-
mined using Boltzmann's constant (k) and activation energy
(E,) of 0.63eV (Brown et al. 2004; Ernest et al. 2003; Gillooly
et al. 2001). Body temperature was used for endotherms and
environmental temperature for ectotherms. If no tempera-
ture was stated for an endotherm a default value was used;
mammals 37°C, birds 39°C. (Ernest et al. 2003; Makarieva
et al. 2008; White et al. 2006).

2.1.2 | Production Rate

Data for yearly production rates (kg/yr) of multicellular organ-
isms was largely obtained from Hatton et al. (2019). This resulted
in 2536 measurements of production (R) over 1005 genera span-
ning a magnitude of body masses from 0.035ng to 84,639 kg: 19
producers, 142 ectothermic invertebrates, 46 ectothermic verte-
brates and 798 endothermic vertebrates (Figure 1B).

Temperature corrected rates (ReF¥*T) were determined as
above. For non-endotherm R, environmental temperature was
taken from the original studies. If these data were not available,
we obtained temperature values using the spatial coordinates of
the study site. For terrestrial organisms, annual mean tempera-
ture was extracted using the study coordinates and Worldclim
at a 2.5m resolution (Fick and Hijmans 2017). For Marine or-
ganisms, sea temperature data was extracted from NOAA
(NOAA 2015) by calculating the mean temperature of each spe-
cies range polygon (IUCN 2022) at the midpoint of their depth
range (www.fishbase.org; Froese and Pauly 2023).

2.2 | Determining Taxonomy and Phylogeny

Where present, taxonomic information was acquired from the
primary source. In cases where higher taxonomic levels were
missing, we implemented an Open Tree of Life (OTL) approach
using genera names and the OpenTree Synthetic Tree of Life
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version 13.4. We extracted taxonomy up to the Order level
(OpenTreeOfLife et al. 2019).

Phylogenetic trees were constructed according to the genera
subset specific to each rate and metabolic category (one tree
for each metabolic category) with genera level tips using the
OTL (OpenTreeOfLife et al. 2019) from the R package rotl
(Michonneau et al. 2016). Branch lengths were assigned using
the Grafen method and variance-covariance (VCV) matrices
were created for each tree using the R package ape (Paradis
and Schliep 2019) to include in the Bayesian PGLS analysis de-
scribed in the next section.

2.3 | Estimating Allometric Intercepts
2.3.1 | Statistical Models

New allometric intercepts were estimated for each metabolic
category using three different Bayesian models, incorporating
varying levels of phylogenetic information (Table S1). The base
model (M1) is a Bayesian version of the original linear model
(Brose et al. 2006) assessing how the temperature corrected
rate varies with a fixed effect of genera mass, omitting all
phylogenetic information. The taxonomy model (M2) builds
on M1 by including taxonomic information as the nested term
Order/Family and as a random effect. Finally, the Bayesian
phylogenetic hierarchical model (PGLS; M3) builds on M1 and
M2 by accounting for evolutionary relatedness between gen-
era, via the variance-covariance matrix (VCV) determined
from the phylogenetic tree. The combined use of Order and
phylogenetic (covariance) random effects within M3 accounts
for phylogenetic non-independence among genera, allowing
us to correct for evolutionary structure in our sample, that
is, upweighting less sampled parts of the phylogeny (Paradis
and Schliep 2019), increasing the alignment between the tar-
get population, in this case, all multicellular organisms, and
our sample. Phylogenetic signal in the data was estimated in
the model using Pagel's lambda (1) (Freckleton et al. 2002;
Symonds and Blomberg 2014).

These three models were fitted with the brms package in R
(Biirkner 2017) using mean data for each genus and unin-
formed priors. They were separated by metabolic category;
ectothermic invertebrates, ectothermic vertebrates and en-
dothermic vertebrates, plus producers when examining pro-
duction. We did not fix the exponent, so running separate
models for each metabolic category allowed exponents to
vary between groups (Table S3), consistent with the previous
methodology (Brose et al. 2006; Ernest et al. 2003; Gillooly
et al. 2001). A total of 21 models were fitted, 12 for produc-
tion (3 models X 4 metabolic categories) and 9 for metabolism
(3 models X3 metabolic categories) each run until conver-
gence (ﬁ < 1) (see Table S1 for models, iteration numbers and
units; Brose et al. 2006; Brown et al. 2004). Intercept values
were extracted as the median intercept (C) for each metabolic
category.

To allow for direct comparison with previous work, we fitted
a frequentist ANCOVA model to the original data following
Brose et al. (2006). This was used to verify that M1 produced

comparable results to the original models. Intercepts for me-
tabolism are measured in In(W) and production in logl0(kg/yr)
(Brose et al. 2006).

2.3.2 | Models and Intercept Estimates

Q1: To assess the effects of increased data on intercept esti-
mates, the ANCOVA and M1 were fitted using the data from
2006 and the new, more extensive dataset. The impact of
including phylogenetic information on intercept estimates
was tested by comparing the values produced using M1, M2
and M3.

Q2: The change in uncertainty around coefficient estimates
from including phylogenetic non-independence was com-
pared by examining the 95% Confidence Interval (CI) from the
original frequentist model (ANCOVA) and data, and the 95%
Credible Interval (CRI) from our new data and PGLS model
(M3). These metrics are from different statistical approaches;
however, as the Bayesian models were run using uninformed
priors and a large dataset, they produce CRIs that can be
compared to CIs in practice (Albers et al. 2018; Bayarri and
Berger 2004).

Q3: To assess variation in intercept estimates within and be-
tween metabolic categories we used the most appropriate model
to the new data (M3) and generated intercept estimates at the
metabolic group and genus levels. Genus-level estimates were
calculated.

By adding the predicted random effect level of that specific gen-
era’s Order and Phylogeny to their metabolic groups mean inter-
cept. These estimates for both rates can be found in Appendix S2.
Variation within metabolic categories is defined by the 95% CRI
of genus level intercept values within that group. The differences
between metabolic category level intercepts were assessed using
the overlap of the 95% Credibility Intervals (CRI; posterior dis-
tributions) around each groups median intercept (Table 1).

2.4 | Effects of Allometric Coefficients on BEFW
Outputs

Q4: Do these new coefficient estimates change predictions about
final biomass, species persistence and stability when used in a
bioenergetic model? To answer this, we needed to first translate
the intercept estimates from the PGLS models into allometric
coefficients which are parameters of the BEFW model. Figure 2
shows how metabolic group level intercepts estimated from our
data and PGLS model are converted into the form of allome-
tric coefficients of production (a,) and metabolism (a,) (equa-
tions 1-7) that are used in applications of the BEFW model.
Exponents (b) for each rate and metabolic group can be found
in Table S3.

We used the Julia implementation of the BEFW from Lajaaiti
et al. (2025) to estimate the effects of the new coefficients on
biomass dynamics, biodiversity dynamics and stability across
several levels of connectance, species richness and predator—
prey mass ratio (see Brose et al. 2006). We generated 800 food
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TABLE 1 | Comparison of allometric coefficients and the abbreviations used across rates and versions. This includes the original coefficient
values (Yodzis and Innes 1992), currently accepted coefficients (Brose et al. 2006) and our new coefficients (Blyth) produced using the PGLS model
and new data. Intercepts used to calculate the coefficient estimates for Brose and Blyth are noted along with their confidence (CI) or credible (CRI)
intervals and statistical type (Frequentist or Bayesian). Estimates generated for Brose coefficients were calculated with data from Ernest et al. (2003)

and Gillooly et al. (2001).

Yodzis
Blyth & Innes
Brose Brose Blyth Bayes Brose Blyth coefficient
Category Intercept Freq CI intercept CRI coefficient coefficient (kg®?3/yr)
Metabolism a, a, ap
Intercepts In(W)
Ecto Invert 17.17 16.97 16.65 14.78 0.314 0.13 0.5
17.44 18.45
Ecto Vert 18.18 18.01 17.4 16.46 0.88 0.274 2.3
18.29 18.28
Endo Vert 19.5 19.37 19.53 18.93 3.222 2.27 54.9
19.78 20.13
Production a, a, a
Intercepts log,,(kg/yr)
Producer 10.15 10.12 10.31 9.27 1 1 0.4
10.18 11.34
Ecto Invert 11.34 10.83 11.78 10.73 NAP NAP 9.2
11.86 12.99
Ecto Vert 10.85 10.67 10.78 9.37 NAP NAP 6.6
11.03 12.21
Endo Vert 10.29 10.25 9.83 9.16 NAP NAP 34.3
10.33 10.51

2Brose Endotherms a, unpublished, calculated here using the original data and ANCOVA method comparable to that used in Brose et al. (2006).

bNot published and unable to calculate from data used in Brose et al. (2006).

web structures using the niche model arising from 100 repli-
cates each of a 3-way factorial combination of two levels of con-
nectance (C=0.05 or 0.2), species richness (SR=40 or 100) and
predator-prey body size ratio (Z=10 or 100). SR, C and Z are key
metrics driving food web structure and are the most consistently
varied parameters in research on biomass dynamics, persistence
and stability (Brose et al. 2006).

We ran the BEFW for each replicate food web using the cur-
rently published allometric coefficients and the median M3
coefficients for metabolism (a, of ectothermic invertebrates
and ectothermic vertebrates) and production (a, of producers).
We extracted final species richness, total biomass, population
level stability (mean of the negative coefficient of variation
(CV); Delmas et al. 2017, Brose et al. 2006) and community
level stability (negative log average CV; Lajaaiti et al. 2025)
from the last 100 time-steps of each simulation, except com-
munity stability, which was extracted from the last 50. Because
simulation studies can inflate sample sizes, reduce standard
errors and deliver p-values associated with small differences,
we report n? effect sizes from Type II sums of squares anova
tables for the main effect of coefficient source (Brose vs. this
paper) and for the interaction between source and the topolog-
ical parameters SR, Z and C. We report these values for each of
the four response variables. We used the effectsize package for
R (Ben-Shachar et al. 2020).

3 | Results

We compiled data for metabolic and production rates from six
published meta-analyses, extracting data for 1336 and 1005 genera
respectively, covering a wide range of body sizes, taxa and envi-
ronment types. For example, the number of genera of invertebrates
represented in the data for metabolism and production increased
39 and 13-fold, respectively, when compared to the original dataset
used by Brose et al. (2006). Rates were corrected for mass and tem-
perature with organism masses ranging from 0.03ng for parasitic
protists to Bowhead whales (Balaena mysticetus) weighing over
84,000kg (Figure 1) and temperatures between —11.4°C to 45°C.

Q1: Do higher volumes of data, representing dramatically more
taxa, alongside modern methods of PGLS, deliver estimates of
allometric intercepts that are higher or lower than existing es-
timates? Using the ANCOVA and M1 models, the addition of
more data altered the allometric intercept values for all meta-
bolic categories. Metabolic rate intercepts declined for ectother-
mic vertebrates and increased for ectothermic invertebrates
and endotherms. The intercepts of production for all metabolic
categories decreased except for producers, which increased
(Figures S3 and S4).

The inclusion of phylogenetic information in the modelling
approach (PGLS model combined with new data, M3) resulted
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Calculate Temperature and Mass Specific Rates
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FIGURE 2 | Intercept estimates to BEFW parameters. Top: Calculating mass and temperature corrected rates used to estimate allometric inter-
cepts (C,,, p) (Figure 1). Equations 1 and 3 show how production (R) and metabolic (X) rate for consumer (c) or producer (p) are temperature corrected
using environmental (ectotherms and producers) or body temperatures (endotherms) (T), calculated with body mass (M), Boltzmann constant (k),
activation energy (E,=0.63) (Brown et al. 2004), allometric exponent (b) and allometric coefficient (a, and a , respectively). Equations 2 and 4 are
converting these rates to also be mass specific. Middle: Intercepts (C, orp
calculate allometric coefficients in the form used in BEFW modelling (equations 6 and 7). To calculate these for the mass and temperature corrected

) generated using equations 1 and 3, new data and PGLS model were used to

metabolism (x,) a conversion factor (C;,,=51.7) (Brose et al. 2006) is required, along with multiplying by 3 to convert from BMR to field metabolic
rate (FMR) (Nagy 1987). Production and metabolic rates used in the BEFW model are normalised by the basal producer's production rate (Rp) to infer
a timescale (equations 8 and 9). One unit of time is defined as the inverse of the smallest primary producer’s growth rate. This normalisation process
assumes the critical temperature (T,,,,,.,,) at which models are run is the temperature at which the basal producer’s mass and temperature corrected
production rate is theoretically 1 (r,=1, equation 5, calculated by rearranging equation 6) (Delmas et al. 2017; Williams et al. 2007). For BEFW model
simulation runs in subsequent sections, a T, . ., of 34.6°C is used. To be consistent with the previous historical coefficient calculations, when re-
calculating the currently accepted coefficients with the original data and comparable ANCOVA model an E,=0.6eV and T, =24.883°C are used
(Brose et al. 2006). Bottom: Simple schematic of a black box model of the BEFW.

in a further change in all intercepts compared to the original
models (Figure 3A,B). Phylogenetic models of metabolic rate
resulted in higher estimates for endotherms: 54.8% of the pos-
terior distribution was above the current value. Ectothermic
vertebrates and invertebrates had lower intercept values, with
92.6% and 71.4% of the posterior distribution below the cur-
rent values. For production rates, invertebrate and producer
estimates were higher, with 8.2% and 64.2% of the posterior
distribution above the current values. The estimates for ecto-
thermic vertebrates and endotherms were lower, with 57.5%
and 91.1% of the posterior distribution below the current val-
ues, respectively.

Q2: Are estimates of variation (uncertainty) in the coefficients
derived from these intercepts larger after accounting for phylo-
genetic non-independence? Including any level of taxonomic in-
formation in model structure resulted in an increase in variation
around median intercept estimates for all rates and metabolic
categories (Figures S3 and S4). The largest variation resulted
from the inclusion of phylogenetic relatedness in addition to tax-
onomic identity via the PGLS (M3).

Leave-one-out cross validation (LOO; Vehtari et al. 2017)
showed that the addition of any level of taxonomic information
improved predictive performance (Table S2). The best model for
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both rates varied between taxonomy (M2) and PGLS (M3) de-
pending on the metabolic category examined. On average across
metabolic categories, M3 had the best fit for production and M2
for metabolic rate.

As there was little difference in performance for M2 or M3
and both showed significant phylogenetic signal (metabolism
A: 0.58 to 0.87, production A: 0.69 to 0.91, Table S3), we used
the PGLS and the new data set to determine allometric inter-
cepts and subsequent BEFW model coefficients. All models
and convergence assessments are provided in Table S1 and
Figures S1-S4. The increased variance can be further illus-
trated by the fact that all of the original 95% CI estimates
(except for ectothermic vertebrate's metabolic rate) fell well
within the 95% CRI produced by our new data and PGLS
model (Table 1).

Q3: Is there variation in intercept estimates within and between
metabolic categories? Figure 4 highlights the distribution of
intercept estimates from our PGLS model (M3) within and be-
tween metabolic groups in relation to phylogeny (Figure 4A) and
each other (Figure 4B).

The largest variation of intercepts within a specific metabolic
group belonged to ectothermic invertebrates’ metabolism, with
values from 19.18 In(W) for a genus within Insecta to 15.4 In(W)
for a genus within Hydrozoa. This range was over 3 times larger
than that found within endothermic vertebrates.

Whilst some metabolic groups are distinct from each other, the
increase in intercept variation captured using the PGLS reduced
the distinctions among metabolic groups overall. For production,
endothermic vertebrates and ectothermic invertebrates' 95% CRI
were distinct from each other but still overlapped with ectothermic
vertebrates and producers. For metabolism, the endothermic ver-
tebrates were the only metabolic group where the 95% CRI did not
overlap at all with another group (Figure 4B, Table 1).

Q4: Do these new coefficient estimates change predictions about
final biomass, species persistence and stability when used in a
bioenergetic model?

This study produced new parameter values of a ,=0.13 versus
0.314 for invertebrates, ax:0.274 versus 0.88 for ectothermic
vertebrates and a,=2.27 versus 3.22 for endotherms (Table 1).
When compared to BEFW outputs using Brose et al. (2006) val-
ues, these new coefficients altered outputs and predictions about
the effects of species richness (diversity), connectance and the
predator-prey mass ratio on biodiversity, biomass and popula-
tion and community stability (Figure 5A-D, Table S4).

Interactions between structural (SR, C and Z) and allome-
tric (Blyth or Brose) parameters on outputs resulted in either
small or very small effect sizes (Table S4). The main effect of
altering the coefficient resulted in a large effect size on species
persistence (F=282, p<0.0001, »>=0.151) and total biomass
(F=997, p<0.0001, n*=0.386), and a very small effect size on
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population (F=6.97, p<0.01, 7>=0.00437) and community level
stability (F=1.83, p=0.177, »>=0.00115).

4 | Discussion

Here, we provide a comprehensive re-estimation of allometric
coefficients for metabolism (X) and biomass production (R).
We present new coefficients with updated estimates of uncer-
tainty derived from Bayesian hierarchical models accounting
for phylogenetic relatedness. These parameters are vital for top-
ics as wide ranging as differences in metabolic rates of fish at
various organisational scales (Barneche et al. 2014; Norin and

Gamperl 2018), the effects of temperature on carbon cycling in
ecological networks (Yvon-Durocher et al. 2010) and the impact
of invasive species (Lurgi et al. 2014).

These coefficients often represent deep level assumptions about
variation in biological rates among habitats, taxonomic, func-
tional and metabolic groups in models of biodiversity dynamics.
Ensuring their accuracy and estimating their precision (i.e., uncer-
tainty) is therefore important to ensure that any inference gained is
biologically realistic and precise. Estimating these intercepts with
their uncertainty (here from posterior distributions) further offers
opportunity for making more nuanced predictions of biomass, bio-
diversity and stability in a system and species-specific manner.
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predator prey body size ratio (Z=100 or 10). The BEFW was run on each of these food webs, once using the currently accepted allometric coefficients

(Brose, blue) and once with the new coefficients (Blyth, red) for a total of 1600 simulations. Error bars represent 95% confidence intervals.

4.1 | Data Volume, Phylogeny and Diversity

The coefficients for metabolism and production have long been
based on small sample sizes, low taxonomic and body-size vari-
ation, and methods that omit phylogenetic information (Brose
et al. 2006; Ernest et al. 2003; Gillooly et al. 2001). This com-
bination of features provides limited insight into coefficient
variation, restricting opportunities to evaluate the impact of
metabolic and taxonomic variation on outputs from the models
in which they were embedded.

It is important to consider the volume and taxonomic repre-
sentation of data because it can increase the accuracy of mean
estimates. Despite the increase in data here, further work is
still needed to fill remaining gaps in order to improve future

coefficient estimates. The proportion of mammal (61.6%) and
bird (38.4%) genera within the Endothermic Vertebrate metabolic
group is greatly different to the relative richness of these groups
(Burgin et al. 2018; IOC, Gill et al. 2024). PGLS modelling, in
part, helps account for the over- and under-representation of cer-
tain groups, that is, phylogenetic non-independence (Freckleton
et al. 2002; Freckleton and Rees 2019; Johnson et al. 2024).

When there is phylogenetic structure in the residuals (a form of
non-independence in the sample data) estimates controlling for
this typically lead to an increase in variation around the over-
all model parameters. However, by specifying the structure of
the residuals (adding phylogenetic terms to the model), our pre-
diction accuracy at the observation level increases. So, whilst
a strong phylogenetic signal can increase uncertainty at the
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intercept, it can also improve predictability at the observation
level (Johnson et al. 2021, 2024).

Introducing taxonomic information into our models increased
the variance recorded around estimates (Figures S3 and S4).
The 95% Credible Intervals from the Bayesian PGLS model
represent a probability distribution that accounts for genus
identity and metabolic classes. Capturing this variation is
crucial for generating representative intercepts and the sub-
sequent coefficients used to accurately predict changes in
biomass, biodiversity and stability under climate change and
multiple stressors.

4.2 | Challenges and Opportunities Afforded by
Bayesian PGLS

Current estimates of coefficients have been in use for two de-
cades in the bioenergetic framework to run simulations on large
food webs without the need for a fully resolved species list.
This reduces data collection and computational time by run-
ning simpler models with fewer parameters and aims to avoid
the over-complication of models whilst still being able to rec-
reate empirical dynamic patterns (Boit et al. 2012; Hudson and
Reuman 2013). However, when such allometric relationships are
derived from high volumes of data with taxonomic, metabolic
and habitat representation, biodiversity modelling can advance
from revealing general relationships between, for example, sta-
bility and complexity (Brose et al. 2006), to much more nuanced
or focused questions about specific communities or habitats fac-
ing multiple threats.

4.2.1 | Opportunities

The increased range of sizes and taxonomic representation in
our methodology allows for the estimation, with quantified un-
certainty, of coefficients at the scale of the genus. These results
can then be subset to genera that are present in a food web, rep-
resenting real communities at the genus level. For example, the
posterior distributions might allow longstanding questions about
differences among marine, terrestrial and freshwater commu-
nities to be addressed by sampling from appropriate taxonomic
and body size distributions (Brose et al. 2019; Digel et al. 2011;
Valdovinos et al. 2023; Xiong et al. 2024), thus increasing preci-
sion in the use of the models for predicting impacts on biomass
dynamics. Our new data and estimates facilitate this kind of in-
ference, leveraging the Bayesian phylogenetic least squares es-
timation of posterior distributions. One might also use the data
to simulate scenarios of spatial variation (Jordan et al. 2024;
Galiana et al. 2021; Tekwa et al. 2022; Ryser et al. 2021) in biodi-
versity based on subsets of species embedding additional model-
ling of turnover and nestedness among species (e.g., § diversity)
or temporal variation in species composition. Or as a foundation
for also exploring evolutionary and life history related questions
in dynamic, multi-species systems where body size is the key
trait (Loeuille and Loreau 2005; Luhring and DeLong 2020;
Naisbit et al. 2012).

Beyond opportunities to leverage these data on dynamic food web
models, such data will support continued work on the Metabolic

Theory of Ecology (MTE) and an associated range of compara-
tive trait analyses (e.g., functional traits (Messier et al. 2010) and
behavioural traits (Nakagawa and Schielzeth 2012)) that explore
the importance of variation, because a wider array of body sizes,
taxonomy and ecosystems are represented (Brown et al. 2004;
Isaac and Carbone 2010; Norin and Gamperl 2018; Peters 1986).

Furthermore, along with increasing the resolution of tax-
onomic information on which estimates are based (genus
level), the PGLS model increases the potential future uses of
biodiversity modelling across taxonomically unresolved data.
Phylogenetic covariance in residual errors of the PGLS model
on the data was recorded using Pagel's lambda (1) (Freckleton
et al. 2002; Pearse et al. 2025; Symonds and Blomberg 2014).
Our models showed a strong phylogenetic signal opening up
the possibility of imputation to infer coefficient estimates for
the missing taxa, including those that are underreported (rare
species), hard to measure or potentially newly discovered
(Johnson et al. 2021; Riek and Bruggeman 2013). To assist
with both of these points, our data and genus level intercepts
are available in Appendix S2.

4.2.2 | Challenges

Despite these opportunities, we note that distinctions among
metabolic groups have decreased. Using our PGLS approach, we
observed a large amount of within-group variation (Figure 4),
resulting in overlap between some groups. Our data reveal a
higher level of variability than has been assumed in the past.
Endothermic vertebrates are often described as simply birds and
mammals; however, some species of fish have been recorded
to have either whole-body endothermy such as Opah (Lampris
guttatus) (Wegner et al. 2015) or regional endothermy (ability
to maintain heat above ambient temperature in some but not
all tissues) such as White Sharks (Carcharodon carcharias)
and Atlantic Bluefin Tuna (Thunnus thynnus; Dickson and
Graham 2004). As endothermy is associated with increased
metabolic rates, inclusion of these ‘intermediate’ or regional
endotherms into ectothermic vertebrates (which currently in-
cludes all other fishes) would falsely inflate their a, value. As in
the opportunities section above, the data actually allow a more
nuanced and possibly accurate representation of biodiversity in
specific communities.

4.3 | Impacts of New Estimates on Biodiversity
and Biomass Dynamics

The allometric relationships in the bioenergetic model define
rates of biomass production (growth), loss (metabolism) and
transfer among species (consumption), thus underpinning the
dynamics that lead to patterns of persistence, biomass accu-
mulation/loss and stability under different conditions (Brose
et al. 2006; Delmas et al. 2017). They further allow research-
ers to resolve differences among metabolic groups and relate
basic rates driving the model dynamics to groups of organisms/
communities organised by body size. Increases/decreases in
metabolic rate, for example, will lead to less/more biomass loss
on average among species. The relationships deliver a differ-
ent baseline of energy availability to a community defined by
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complex patterns of direct and indirect effects underpinned by
production rates and foraging rates.

Most studies to date examining changes in population dynam-
ics of a food web focus on the effect of functional response
(Brose 2010; Kalinkat et al. 2013; Martinez et al. 2006), interac-
tion strengths (Brose et al. 2019; Emmerson and Raffaelli 2004;
Kartascheff et al. 2010; Tang et al. 2014), and trophic levels
(Plitzko et al. 2012). Whilst some incorporate the allometry
of metabolic rate (Brose et al. 2006; Heckmann et al. 2012;
Kartascheff et al. 2010), there has to date been no opportunity
to evaluate the effects of the coefficient values mapping through
structural network characteristics (SR, C and Z) on bioenergetic
output metrics (e.g., Blyth vs. Brose; Figure 5). This is critical to
understand if we want to use the BEFW on as many different
networks and ecosystem types as possible as no networks will be
the same. Our study showed that altering allometric coefficients
only had small or very small effects on the way structural met-
rics impacted species persistence and total biomass, and little to
no impact on stability. We do note that estimates of both species
persistence and total biomass do increase when the bioenergetic
food web models were run using our new, lower a,. This may
be due to lower a  values reducing mass-specific metabolic rate
for each organism, decreasing consumer energy loss (e.g., from
respiration), retaining more energy (biomass) in the system and
reducing the pressure across trophic levels so fewer species are
lost (Delmas 2020; Quévreux and Brose 2019). Yet overall, we
conclude that whilst there are changes, they do not appear to
alter the foundation for the last two decades worth of bioener-
getic food web model studies and the qualitative insights (e.g.,
Gauzens et al. 2020; Miele et al. 2019; Schneider et al. 2016) are
unlikely to be different. This is particularly important given
the connected nature and sheer scope of works that use allo-
metrically scaled metabolic rates (Schmitz and Leroux 2020;
Schramski et al. 2015).

5 | Conclusion

Our analysis has addressed a longstanding deficiency in data
and modelling of key assumptions linking allometry of biolog-
ical rates to the dynamics of biomass, biodiversity and stability.
We highlight historic overestimation of intercepts, underes-
timation of variance and potential phylogenetic bias towards
easy to study species. Our analysis also delivered novel inter-
cepts for endothermic vertebrates that were previously not
included at all for certain ecological models. Using our new
allometric coefficients led to quantitative changes in biomass
and persistence derived from bioenergetic food web models,
but with limited impact on the qualitative role of structural
parameters.

Perhaps the most important contribution of this work is the esti-
mates of uncertainty which provide model coefficients that can
define diversity in numerous ways—from metabolic groups to
habitats to taxonomic levels as low as genus. We expect these
new values and estimates of uncertainty will lead to a re-
assessment of previous work and opportunities for making bio-
diversity models more representative of the real-world scenarios
where climate change and multiple stressors are impacting eco-
logical communities.
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