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ABSTRACT

Allometry, the scaling of traits or biological rates with body mass, is central to a wide range of ecological research including dy-

namic food web modelling. There has been extensive focus on exponents (3/4 scaling laws), but little on the coefficients (normal-

isation constants). Coefficients that have been used since 2006 are derived from limited data and dated methodologies. Here, we 

compiled a data set of over 1000 genera with body mass spanning 10 orders of magnitude. We updated metabolism and produc-

tion coefficients, deriving new genus and metabolic group levels estimates with phylogenetic hierarchical modelling providing 

robust inference. Our coefficients were mostly lower than those previously estimated, with increased uncertainty estimates. We 

used the Bioenergetic Food Web Model to evaluate their impact, finding increased biomass and species persistence but no change 

in stability. Our coefficients pave the way for future simulations that take advantage of subsets of genus and metabolic group data.

1   |   Introduction

Allometric relationships, which define how traits or rates 
vary with body size, are at the heart of the Metabolic Theory 
of Ecology (MTE) and a wide range of comparative analyses 
(Brown et al. 2004; Peters 1986). The functional form is typically 
aMb, where M is body mass, b is an exponent defining the scal-
ing and a is the allometric coefficient (a normalisation constant) 
most commonly used to differentiate among guilds or classes 
of species. Whilst the exponents have been extensively stud-
ied within and beyond the development of the MTE (Gillooly 
et  al.  2001; Glazier  2005; Norin and Gamperl  2018; Savage 
et al. 2004; White et al. 2007; White and Kearney 2014; White 

and Marshall 2023), the allometric coefficients have received far 
less attention (Kaitaniemi 2008; Niklas and Hammond 2019).

Improving our knowledge of allometric relationships benefits 
many areas of ecology from trait- based analyses to comparative 
life history studies (Font et al. 2019; Jackson et al. 2022) where 
accounting for phylogenetic distance is a crucial part of infer-
ence. Allometric coefficients are central to our understanding 
of how biological rates differ across taxonomic and metabolic 
groups, ecosystems and temperature ranges (Brose et al. 2019; 
Carter et al. 2023; Deutsch et al. 2020; Digel et al. 2011). They are 
also used to make inferences about rare or unmeasured species 
via imputation (Johnson et al. 2021; Riek and Bruggeman 2013).
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Furthermore, they are a core component of recently devel-
oped mathematical models that are driving advances in mul-
tiple areas of biodiversity research. Perhaps the most widely 
used of these is the Bioenergetic Food Web (BEFW) model 
and its variant, the Allometric Trophic Network (ATN) model 
(Schneider et  al.  2016) which simulate the biomass dynam-
ics of tens to hundreds of species embedded in a network of 
consumer- resource interactions (see Brose et al. 2006; Delmas 
et al. 2017; Lajaaiti et al. 2025; Schneider et al. 2016; Williams 
et al. 2007). These models have increased our understanding 
of stability (Brose et al. 2006; Domínguez- García et al. 2019), 
species' persistence and diversity (Brose  2008; Stouffer and 
Bascompte 2010), robustness to primary and secondary extinc-
tions (Binzer et al. 2011; Curtsdotter et al. 2011; Staniczenko 
et al. 2010), non- trophic interactions (Kéfi et al. 2012), stress-
ors and interaction among stressors (Binzer et al. 2012, 2016; 
Danet et al. 2025; Simmons et al. 2021) and ecosystem func-
tion (Delmas 2020; Miele et al. 2019; Rall et al. 2008; Schneider 
et al. 2016; Leroux and Schmitz 2025). Within these models, 
the coefficients help define key biological rates of populations. 
The BEFW and ATN models categorise individual species by 
metabolic groups—producers, ectothermic invertebrates, ec-
tothermic vertebrates and endothermic vertebrates (Brown 
et al. 2004; Gillooly et al. 2001; Robinson et al. 1983)—and the 
allometric differentiation among the groups is defined by their 
allometric coefficients.

The current allometric coefficients specifically differentiate 
among metabolic groups, metabolism, production and foraging 
traits. These values were estimated and embedded in multi-
ple implementations of the model from as early as 2006, when 
Brose et al. (2006) and then Williams et al. (2007) updated the 
Yodzis and Innes  (1992) values based on emerging MTE data 
(Brose et al. 2006; Brown et al. 2004; Ernest et al. 2003; Gillooly 
et  al.  2001; Williams et  al.  2007). These coefficients therefore 
form rarely questioned assumptions, providing a foundation for 
numerous studies over the past two decades, influencing pre-
dictions about persistence, biomass and stability. Therefore, in-
creases or decreases in any of these coefficients can potentially 
have marked impacts on the estimated rates of biomass loss (me-
tabolism), production and transfer, thus influencing predictions 
of species persistence, community/trophic level/species biomass 
and the stability of ecological communities facing multiple 
stressors.

1.1   |   Improving Allometric Coefficients

There are two prevailing issues, and subsequent opportunities, 
in the coefficient estimates underpinning allometric relation-
ships. First, sample sizes of traits and the number of taxa used for 
estimation were small. Whilst foraging rate estimates have been 
expanded to draw on 648 functional responses (Rall et al. 2012; 
Uiterwaal et al. 2022), the allometric coefficients for metabolism 
of invertebrates and biomass production of ectothermic verte-
brates are, for example, still currently based on 20 and 9 data 
points, respectively (Brose et al. 2006; Ernest et al. 2003; Gillooly 
et al. 2001). Second, the statistical methods used to derive these 
historic values have not accounted for known sampling biases 
such as greater observations in species that are easier to mea-
sure or have received more research attention. Coefficients are 

therefore only representative of the biased statistical sample, 
not the statistical population or complete taxonomic groups. 
Further, by ignoring this bias, these approaches deliver conser-
vative estimates of variation (uncertainty).

Both data volume and phylogenetic relatedness are important 
components in ensuring coefficients are representative of whole 
metabolic groups. Fortunately, in the nearly two decades since 
these parameters were introduced, the quantity of data avail-
able for coefficient estimation has increased dramatically, with 
substantial increases in the coverage across habitat types, taxo-
nomic groupings, temperatures and body masses. Furthermore, 
the statistical tools available to estimate the coefficients have 
advanced, particularly those based on Bayesian hierarchical 
models and the implementation of phylogenetic covariance 
structures. By incorporating phylogeny we can account for 
the fact that more closely related species have similar traits via 
commonality of descent when considering the independence of 
data points. These approaches not only increase the robustness 
of the estimates, especially in the presence of biased taxonomic 
sampling, but also provide flexible estimates of uncertainty 
through their posterior distributions. This feature of Bayesian 
approaches ultimately offers unique opportunities to explore the 
sensitivity of predictions about stability, extinction dynamics 
and ecosystem processes to assumptions about the values of the 
parameters and develop models of communities aligned with 
specific subsets of species or functional groups.

Here, we introduce new estimates for the allometric coefficients 
for metabolism and the production of biomass (growth) across 
all metabolic classes. We do this by compiling a data set based 
on more than 20× the data used in the three key works that un-
derpin the coefficients currently in use, published in 2004, 2006 
and 2007 (Brown et al. 2004; Brose et al. 2006; Otto et al. 2007). 
We note that the 2006 coefficients remain the primary standard 
in 95% of publications using the bioenergetic model. We imple-
ment updated methods based on Bayesian Phylogenetic Least 
Squares (PGLS) modelling with specific incorporation of un-
certainty. Allometric coefficients are then subsequently derived 
from the allometric intercepts of these new models.

We then explore the following questions: (1) Do higher vol-
umes of data, representing substantially more taxa, alongside 
modern methods of PGLS, deliver estimates of allometric inter-
cepts that are higher or lower than existing estimates? (2) Are 
estimates of variation (uncertainty) in the coefficients derived 
from these intercepts larger after accounting for phylogenetic 
non- independence? (3) Is there variation in intercept estimates 
within and between metabolic categories? and finally (4) Do 
these new estimates change predictions about final biomass, 
species richness and stability when used in a bioenergetic food 
web model?

2   |   Material and Methods

We implemented a four- step process to calculate and evaluate 
new allometric coefficients of metabolism and production rate. 
First, we executed a literature search to acquire data for each 
biological rate, temperature and the body mass of the taxonomic 
units. Second, we constructed a phylogeny for our compiled 
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data. Third, we applied Bayesian phylogenetic least squares to 
estimate intercepts and their associated uncertainty. Fourth, we 
converted the intercept estimates into allometric coefficients for 
use in the bioenergetic food web modelling and assessed the im-
pact of our new estimates on biomass dynamics, persistence and 
stability.

All statistical analyses were performed using R v.4.1.2 (R Core 
Team  2023) with packages including tidyverse, revtools for 
searching and acquisition of new data (Westgate  2019), ape 
and rotl for phylogeny construction and analysis (Michonneau 
et  al.  2016; Paradis and Schliep  2019), and brms for Bayesian 
modelling statistics (Bürkner 2017). Food web simulations and 
dynamic models were run using Julia version 1.8.0 (Bezanson 
et  al.  2017) and the EcologicalNetworksDynamics.jl package 
(Lajaaiti et al. 2025). We provide additional computational tool 
references for methods inline below.

2.1   |   Data Collection and Management

2.1.1   |   Metabolic Rates

We conducted a systematic literature search using the terms 
“(metabolic rate OR metabolism OR respiration rate) AND 
(body- mass OR body- size OR allometr*) AND (temperature 
OR warming OR cooling OR thermal)” on Web of Science, 
Scopus and the revtools R package (Westgate 2019) to generate 
a data set of metabolic rates. A total of 7632 measurements 
were collected for multicellular organisms ranging in body 
mass from 0.03 ng to 3672 kg and spanning 1336 genera: 552 
ectothermic invertebrates, 259 ectothermic vertebrates and 
525 endothermic vertebrates (Figure 1A) (Clarke et al. 2010; 
Ehnes et al. 2011; Gillooly et al. 2001; Makarieva et al. 2008; 
White et al. 2006).

Data includes individual body mass (M), temperature (T), tax-
onomic information and metabolic rate (X). Basal metabolic 
rate (BMR) was used for endotherms and standard metabolic 
rate (SMR) for ectotherms. X was recorded in Watts (W), 

for rates measured using the rate of oxygen consumption, a 
conversion factor of 20 J per 1 mL O2 was used (Makarieva 
et al. 2008). Temperature corrected rates (XeEa/kT) were deter-
mined using Boltzmann's constant (k) and activation energy 
(Ea) of 0.63 eV (Brown et al. 2004; Ernest et al. 2003; Gillooly 
et al. 2001). Body temperature was used for endotherms and 
environmental temperature for ectotherms. If no tempera-
ture was stated for an endotherm a default value was used; 
mammals 37°C, birds 39°C. (Ernest et  al.  2003; Makarieva 
et al. 2008; White et al. 2006).

2.1.2   |   Production Rate

Data for yearly production rates (kg/yr) of multicellular organ-
isms was largely obtained from Hatton et al. (2019). This resulted 
in 2536 measurements of production (R) over 1005 genera span-
ning a magnitude of body masses from 0.035 ng to 84,639 kg: 19 
producers, 142 ectothermic invertebrates, 46 ectothermic verte-
brates and 798 endothermic vertebrates (Figure 1B).

Temperature corrected rates (ReEa/kT) were determined as 
above. For non- endotherm R, environmental temperature was 
taken from the original studies. If these data were not available, 
we obtained temperature values using the spatial coordinates of 
the study site. For terrestrial organisms, annual mean tempera-
ture was extracted using the study coordinates and Worldclim 
at a 2.5 m resolution (Fick and Hijmans 2017). For Marine or-
ganisms, sea temperature data was extracted from NOAA 
(NOAA 2015) by calculating the mean temperature of each spe-
cies range polygon (IUCN 2022) at the midpoint of their depth 
range (www. fishb ase. org; Froese and Pauly 2023).

2.2   |   Determining Taxonomy and Phylogeny

Where present, taxonomic information was acquired from the 
primary source. In cases where higher taxonomic levels were 
missing, we implemented an Open Tree of Life (OTL) approach 
using genera names and the OpenTree Synthetic Tree of Life 

FIGURE 1    |    Temperature corrected biological rate variation according to body mass. (A) Metabolic rate in Watt; 1336 genera included. (B) 

Production rate in kilogram per year; 1005 genera included. Colours display the metabolic categories for all individuals separated into; Endothermic 

Vertebrate (red), Ectothermic Vertebrate (orange), Ectothermic Invertebrate (blue) and Producers (green).
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version 13.4. We extracted taxonomy up to the Order level 
(OpenTreeOfLife et al. 2019).

Phylogenetic trees were constructed according to the genera 
subset specific to each rate and metabolic category (one tree 
for each metabolic category) with genera level tips using the 
OTL (OpenTreeOfLife et  al.  2019) from the R package rotl 
(Michonneau et al. 2016). Branch lengths were assigned using 
the Grafen method and variance–covariance (VCV) matrices 
were created for each tree using the R package ape (Paradis 
and Schliep 2019) to include in the Bayesian PGLS analysis de-
scribed in the next section.

2.3   |   Estimating Allometric Intercepts

2.3.1   |   Statistical Models

New allometric intercepts were estimated for each metabolic 
category using three different Bayesian models, incorporating 
varying levels of phylogenetic information (Table S1). The base 
model (M1) is a Bayesian version of the original linear model 
(Brose et  al.  2006) assessing how the temperature corrected 
rate varies with a fixed effect of genera mass, omitting all 
phylogenetic information. The taxonomy model (M2) builds 
on M1 by including taxonomic information as the nested term 
Order/Family and as a random effect. Finally, the Bayesian 
phylogenetic hierarchical model (PGLS; M3) builds on M1 and 
M2 by accounting for evolutionary relatedness between gen-
era, via the variance–covariance matrix (VCV) determined 
from the phylogenetic tree. The combined use of Order and 
phylogenetic (covariance) random effects within M3 accounts 
for phylogenetic non- independence among genera, allowing 
us to correct for evolutionary structure in our sample, that 
is, upweighting less sampled parts of the phylogeny (Paradis 
and Schliep 2019), increasing the alignment between the tar-
get population, in this case, all multicellular organisms, and 
our sample. Phylogenetic signal in the data was estimated in 
the model using Pagel's lambda (λ) (Freckleton et  al.  2002; 
Symonds and Blomberg 2014).

These three models were fitted with the brms package in R 
(Bürkner  2017) using mean data for each genus and unin-
formed priors. They were separated by metabolic category; 
ectothermic invertebrates, ectothermic vertebrates and en-
dothermic vertebrates, plus producers when examining pro-
duction. We did not fix the exponent, so running separate 
models for each metabolic category allowed exponents to 
vary between groups (Table S3), consistent with the previous 
methodology (Brose et  al.  2006; Ernest et  al.  2003; Gillooly 
et  al.  2001). A total of 21 models were fitted, 12 for produc-
tion (3 models × 4 metabolic categories) and 9 for metabolism 
(3 models × 3 metabolic categories) each run until conver-
gence (R̂ ≤ 1) (see Table S1 for models, iteration numbers and 
units; Brose et al. 2006; Brown et al. 2004). Intercept values 
were extracted as the median intercept (C) for each metabolic 
category.

To allow for direct comparison with previous work, we fitted 
a frequentist ANCOVA model to the original data following 
Brose et  al.  (2006). This was used to verify that M1 produced 

comparable results to the original models. Intercepts for me-
tabolism are measured in ln(W) and production in log10(kg/yr) 
(Brose et al. 2006).

2.3.2   |   Models and Intercept Estimates

Q1: To assess the effects of increased data on intercept esti-
mates, the ANCOVA and M1 were fitted using the data from 
2006 and the new, more extensive dataset. The impact of 
including phylogenetic information on intercept estimates 
was tested by comparing the values produced using M1, M2 
and M3.

Q2: The change in uncertainty around coefficient estimates 
from including phylogenetic non- independence was com-
pared by examining the 95% Confidence Interval (CI) from the 
original frequentist model (ANCOVA) and data, and the 95% 
Credible Interval (CRI) from our new data and PGLS model 
(M3). These metrics are from different statistical approaches; 
however, as the Bayesian models were run using uninformed 
priors and a large dataset, they produce CRIs that can be 
compared to CIs in practice (Albers et  al.  2018; Bayarri and 
Berger 2004).

Q3: To assess variation in intercept estimates within and be-
tween metabolic categories we used the most appropriate model 
to the new data (M3) and generated intercept estimates at the 
metabolic group and genus levels. Genus- level estimates were 
calculated.

By adding the predicted random effect level of that specific gen-
era's Order and Phylogeny to their metabolic groups mean inter-
cept. These estimates for both rates can be found in Appendix S2. 
Variation within metabolic categories is defined by the 95% CRI 
of genus level intercept values within that group. The differences 
between metabolic category level intercepts were assessed using 
the overlap of the 95% Credibility Intervals (CRI; posterior dis-
tributions) around each groups median intercept (Table 1).

2.4   |   Effects of Allometric Coefficients on BEFW 
Outputs

Q4: Do these new coefficient estimates change predictions about 
final biomass, species persistence and stability when used in a 
bioenergetic model? To answer this, we needed to first translate 
the intercept estimates from the PGLS models into allometric 
coefficients which are parameters of the BEFW model. Figure 2 
shows how metabolic group level intercepts estimated from our 
data and PGLS model are converted into the form of allome-
tric coefficients of production (ar) and metabolism (ax) (equa-
tions  1–7) that are used in applications of the BEFW model. 
Exponents (b) for each rate and metabolic group can be found 
in Table S3.

We used the Julia implementation of the BEFW from Lajaaiti 
et  al.  (2025) to estimate the effects of the new coefficients on 
biomass dynamics, biodiversity dynamics and stability across 
several levels of connectance, species richness and predator–
prey mass ratio (see Brose et al. 2006). We generated 800 food 
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web structures using the niche model arising from 100 repli-
cates each of a 3- way factorial combination of two levels of con-
nectance (C = 0.05 or 0.2), species richness (SR = 40 or 100) and 
predator- prey body size ratio (Z = 10 or 100). SR, C and Z are key 
metrics driving food web structure and are the most consistently 
varied parameters in research on biomass dynamics, persistence 
and stability (Brose et al. 2006).

We ran the BEFW for each replicate food web using the cur-
rently published allometric coefficients and the median M3 
coefficients for metabolism (ax of ectothermic invertebrates 
and ectothermic vertebrates) and production (ar of producers). 
We extracted final species richness, total biomass, population 
level stability (mean of the negative coefficient of variation 
(CV); Delmas et  al.  2017, Brose et  al.  2006) and community 
level stability (negative log average CV; Lajaaiti et  al.  2025) 
from the last 100 time- steps of each simulation, except com-
munity stability, which was extracted from the last 50. Because 
simulation studies can inflate sample sizes, reduce standard 
errors and deliver p- values associated with small differences, 
we report η2 effect sizes from Type II sums of squares anova 
tables for the main effect of coefficient source (Brose vs. this 
paper) and for the interaction between source and the topolog-
ical parameters SR, Z and C. We report these values for each of 
the four response variables. We used the effectsize package for 
R (Ben- Shachar et al. 2020).

3   |   Results

We compiled data for metabolic and production rates from six 
published meta- analyses, extracting data for 1336 and 1005 genera 
respectively, covering a wide range of body sizes, taxa and envi-
ronment types. For example, the number of genera of invertebrates 
represented in the data for metabolism and production increased 
39 and 13- fold, respectively, when compared to the original dataset 
used by Brose et al. (2006). Rates were corrected for mass and tem-
perature with organism masses ranging from 0.03 ng for parasitic 
protists to Bowhead whales (Balaena mysticetus) weighing over 
84,000 kg (Figure 1) and temperatures between −11.4°C to 45°C.

Q1: Do higher volumes of data, representing dramatically more 
taxa, alongside modern methods of PGLS, deliver estimates of 
allometric intercepts that are higher or lower than existing es-
timates? Using the ANCOVA and M1 models, the addition of 
more data altered the allometric intercept values for all meta-
bolic categories. Metabolic rate intercepts declined for ectother-
mic vertebrates and increased for ectothermic invertebrates 
and endotherms. The intercepts of production for all metabolic 
categories decreased except for producers, which increased 
(Figures S3 and S4).

The inclusion of phylogenetic information in the modelling 
approach (PGLS model combined with new data, M3) resulted 

TABLE 1    |    Comparison of allometric coefficients and the abbreviations used across rates and versions. This includes the original coefficient 

values (Yodzis and Innes 1992), currently accepted coefficients (Brose et al. 2006) and our new coefficients (Blyth) produced using the PGLS model 

and new data. Intercepts used to calculate the coefficient estimates for Brose and Blyth are noted along with their confidence (CI) or credible (CRI) 

intervals and statistical type (Frequentist or Bayesian). Estimates generated for Brose coefficients were calculated with data from Ernest et al. (2003) 

and Gillooly et al. (2001).

Category

Brose 

Intercept

Brose 

Freq CI

Blyth 

intercept

Blyth 

Bayes 

CRI

Brose 

coefficient

Blyth 

coefficient

Yodzis 

& Innes 

coefficient 

(kg0.25/yr)

Metabolism
Intercepts ln(W)

ax ax aT

Ecto Invert 17.17 16.97
17.44

16.65 14.78
18.45

0.314 0.13 0.5

Ecto Vert 18.18 18.01
18.29

17.4 16.46
18.28

0.88 0.274 2.3

Endo Vert 19.5 19.37
19.78

19.53 18.93
20.13

3.22a 2.27 54.9

Production
Intercepts log10(kg/yr)

ar ar ar

Producer 10.15 10.12
10.18

10.31 9.27
11.34

1 1 0.4

Ecto Invert 11.34 10.83
11.86

11.78 10.73
12.99

NAb NAb 9.2

Ecto Vert 10.85 10.67
11.03

10.78 9.37
12.21

NAb NAb 6.6

Endo Vert 10.29 10.25
10.33

9.83 9.16
10.51

NAb NAb 34.3

aBrose Endotherms ax unpublished, calculated here using the original data and ANCOVA method comparable to that used in Brose et al. (2006).
bNot published and unable to calculate from data used in Brose et al. (2006).
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in a further change in all intercepts compared to the original 
models (Figure 3A,B). Phylogenetic models of metabolic rate 
resulted in higher estimates for endotherms: 54.8% of the pos-
terior distribution was above the current value. Ectothermic 
vertebrates and invertebrates had lower intercept values, with 
92.6% and 71.4% of the posterior distribution below the cur-
rent values. For production rates, invertebrate and producer 
estimates were higher, with 8.2% and 64.2% of the posterior 
distribution above the current values. The estimates for ecto-
thermic vertebrates and endotherms were lower, with 57.5% 
and 91.1% of the posterior distribution below the current val-
ues, respectively.

Q2: Are estimates of variation (uncertainty) in the coefficients 
derived from these intercepts larger after accounting for phylo-
genetic non- independence? Including any level of taxonomic in-
formation in model structure resulted in an increase in variation 
around median intercept estimates for all rates and metabolic 
categories (Figures  S3 and S4). The largest variation resulted 
from the inclusion of phylogenetic relatedness in addition to tax-
onomic identity via the PGLS (M3).

Leave- one- out cross validation (LOO; Vehtari et  al.  2017) 
showed that the addition of any level of taxonomic information 
improved predictive performance (Table S2). The best model for 

FIGURE 2    |    Intercept estimates to BEFW parameters. Top: Calculating mass and temperature corrected rates used to estimate allometric inter-

cepts (Cc or p) (Figure 1). Equations 1 and 3 show how production (R) and metabolic (X) rate for consumer (c) or producer (p) are temperature corrected 

using environmental (ectotherms and producers) or body temperatures (endotherms) (T), calculated with body mass (M), Boltzmann constant (k), 

activation energy (Ea = 0.63) (Brown et al. 2004), allometric exponent (b) and allometric coefficient (ar and ax, respectively). Equations 2 and 4 are 

converting these rates to also be mass specific. Middle: Intercepts (Cc or p) generated using equations 1 and 3, new data and PGLS model were used to 

calculate allometric coefficients in the form used in BEFW modelling (equations 6 and 7). To calculate these for the mass and temperature corrected 

metabolism (xi) a conversion factor (Cfac = 51.7) (Brose et al. 2006) is required, along with multiplying by 3 to convert from BMR to field metabolic 

rate (FMR) (Nagy 1987). Production and metabolic rates used in the BEFW model are normalised by the basal producer's production rate (Rp) to infer 

a timescale (equations 8 and 9). One unit of time is defined as the inverse of the smallest primary producer's growth rate. This normalisation process 

assumes the critical temperature (Tcritical) at which models are run is the temperature at which the basal producer's mass and temperature corrected 

production rate is theoretically 1 (ri = 1, equation 5, calculated by rearranging equation 6) (Delmas et al. 2017; Williams et al. 2007). For BEFW model 

simulation runs in subsequent sections, a Tcritical of 34.6°C is used. To be consistent with the previous historical coefficient calculations, when re- 

calculating the currently accepted coefficients with the original data and comparable ANCOVA model an Ea = 0.6 eV and Tcritical = 24.883°C are used 

(Brose et al. 2006). Bottom: Simple schematic of a black box model of the BEFW.
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both rates varied between taxonomy (M2) and PGLS (M3) de-
pending on the metabolic category examined. On average across 
metabolic categories, M3 had the best fit for production and M2 
for metabolic rate.

As there was little difference in performance for M2 or M3 
and both showed significant phylogenetic signal (metabolism 
λ: 0.58 to 0.87, production λ: 0.69 to 0.91, Table S3), we used 
the PGLS and the new data set to determine allometric inter-
cepts and subsequent BEFW model coefficients. All models 
and convergence assessments are provided in Table  S1 and 
Figures  S1–S4. The increased variance can be further illus-
trated by the fact that all of the original 95% CI estimates 
(except for ectothermic vertebrate's metabolic rate) fell well 
within the 95% CRI produced by our new data and PGLS 
model (Table 1).

Q3: Is there variation in intercept estimates within and between 
metabolic categories? Figure  4 highlights the distribution of 
intercept estimates from our PGLS model (M3) within and be-
tween metabolic groups in relation to phylogeny (Figure 4A) and 
each other (Figure 4B).

The largest variation of intercepts within a specific metabolic 
group belonged to ectothermic invertebrates' metabolism, with 
values from 19.18 ln(W) for a genus within Insecta to 15.4 ln(W) 
for a genus within Hydrozoa. This range was over 3 times larger 
than that found within endothermic vertebrates.

Whilst some metabolic groups are distinct from each other, the 
increase in intercept variation captured using the PGLS reduced 
the distinctions among metabolic groups overall. For production, 
endothermic vertebrates and ectothermic invertebrates' 95% CRI 
were distinct from each other but still overlapped with ectothermic 
vertebrates and producers. For metabolism, the endothermic ver-
tebrates were the only metabolic group where the 95% CRI did not 
overlap at all with another group (Figure 4B, Table 1).

Q4: Do these new coefficient estimates change predictions about 
final biomass, species persistence and stability when used in a 
bioenergetic model?

This study produced new parameter values of ax = 0.13 versus 
0.314 for invertebrates, ax = 0.274 versus 0.88 for ectothermic 
vertebrates and ax = 2.27 versus 3.22 for endotherms (Table 1). 
When compared to BEFW outputs using Brose et al. (2006) val-
ues, these new coefficients altered outputs and predictions about 
the effects of species richness (diversity), connectance and the 
predator–prey mass ratio on biodiversity, biomass and popula-
tion and community stability (Figure 5A–D, Table S4).

Interactions between structural (SR, C and Z) and allome-
tric (Blyth or Brose) parameters on outputs resulted in either 
small or very small effect sizes (Table  S4). The main effect of 
altering the coefficient resulted in a large effect size on species 
persistence (F = 282, p < 0.0001, η2 = 0.151) and total biomass 
(F = 997, p < 0.0001, η2 = 0.386), and a very small effect size on 

FIGURE 3    |    Comparison of Intercept value estimated from the PGLS model and new data to the currently accepted intercepts for (A) Metabolic 

rate and (B) Production rate. Posterior distribution around median intercept estimations (black dots) from PGLS (M3) shown for each metabolic 

category. No difference with previous intercept estimates for each metabolic category are shown by the dashed line with the x- axis representing the 

difference in values of our new estimates relative to the previous estimates (Brose et al. 2006) for these graphs. Metabolism intercepts are calculated 

in ln(W), whilst production intercepts are (log10(kg/yr)). The credible intervals of our posterior distribution are represented by level, for example, 

0.95 shows the 95% CRI.
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population (F = 6.97, p < 0.01, η2 = 0.00437) and community level 
stability (F = 1.83, p = 0.177, η2 = 0.00115).

4   |   Discussion

Here, we provide a comprehensive re- estimation of allometric 
coefficients for metabolism (X) and biomass production (R). 
We present new coefficients with updated estimates of uncer-
tainty derived from Bayesian hierarchical models accounting 
for phylogenetic relatedness. These parameters are vital for top-
ics as wide ranging as differences in metabolic rates of fish at 
various organisational scales (Barneche et al. 2014; Norin and 

Gamperl 2018), the effects of temperature on carbon cycling in 
ecological networks (Yvon- Durocher et al. 2010) and the impact 
of invasive species (Lurgi et al. 2014).

These coefficients often represent deep level assumptions about 
variation in biological rates among habitats, taxonomic, func-
tional and metabolic groups in models of biodiversity dynamics. 
Ensuring their accuracy and estimating their precision (i.e., uncer-
tainty) is therefore important to ensure that any inference gained is 
biologically realistic and precise. Estimating these intercepts with 
their uncertainty (here from posterior distributions) further offers 
opportunity for making more nuanced predictions of biomass, bio-
diversity and stability in a system and species- specific manner.

FIGURE 4    |    Variation within and between metabolic categories for intercept estimates of the allometric relationships for metabolic rate (top row) 

and production rate (bottom row). Intercepts for metabolism are measured in ln(W) and production in log10(kg/yr). (A) Cladograms displaying phy-

logenetic relatedness between genera used for Metabolic and production rate data. The inner band shows how the data is split between metabolic 

categories; endothermic vertebrates (red), ectothermic vertebrates (orange), invertebrates (blue) and producer (green). The outer band shows varia-

tion in genus level intercept estimate from phylogeny model (purple). (B) Cloud plot showing the distribution of genus level intercept values within 

each metabolic grouping.
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4.1   |   Data Volume, Phylogeny and Diversity

The coefficients for metabolism and production have long been 
based on small sample sizes, low taxonomic and body- size vari-
ation, and methods that omit phylogenetic information (Brose 
et al. 2006; Ernest et al. 2003; Gillooly et al. 2001). This com-
bination of features provides limited insight into coefficient 
variation, restricting opportunities to evaluate the impact of 
metabolic and taxonomic variation on outputs from the models 
in which they were embedded.

It is important to consider the volume and taxonomic repre-
sentation of data because it can increase the accuracy of mean 
estimates. Despite the increase in data here, further work is 
still needed to fill remaining gaps in order to improve future 

coefficient estimates. The proportion of mammal (61.6%) and 
bird (38.4%) genera within the Endothermic Vertebrate metabolic 
group is greatly different to the relative richness of these groups 
(Burgin et al. 2018; IOC, Gill et al. 2024). PGLS modelling, in 
part, helps account for the over-  and under- representation of cer-
tain groups, that is, phylogenetic non- independence (Freckleton 
et al. 2002; Freckleton and Rees 2019; Johnson et al. 2024).

When there is phylogenetic structure in the residuals (a form of 
non- independence in the sample data) estimates controlling for 
this typically lead to an increase in variation around the over-
all model parameters. However, by specifying the structure of 
the residuals (adding phylogenetic terms to the model), our pre-
diction accuracy at the observation level increases. So, whilst 
a strong phylogenetic signal can increase uncertainty at the 

FIGURE 5    |    Effects of varying the allometric coefficients of metabolism of Invertebrates and Ectothermic Vertebrates on Bioenergetic Food Web 

(BEFW) model simulation outputs; (A) Mean Species Persistence, (B) Total Biomass, (C) Population level stability and (D) Community level stabili-

ty.100 food webs were generated for each combination of High or Low values of connectance (C = 0.2 or 0.05), species richness (SR = 100 or 40) and 

predator prey body size ratio (Z = 100 or 10). The BEFW was run on each of these food webs, once using the currently accepted allometric coefficients 

(Brose, blue) and once with the new coefficients (Blyth, red) for a total of 1600 simulations. Error bars represent 95% confidence intervals.
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intercept, it can also improve predictability at the observation 
level (Johnson et al. 2021, 2024).

Introducing taxonomic information into our models increased 
the variance recorded around estimates (Figures S3 and S4). 
The 95% Credible Intervals from the Bayesian PGLS model 
represent a probability distribution that accounts for genus 
identity and metabolic classes. Capturing this variation is 
crucial for generating representative intercepts and the sub-
sequent coefficients used to accurately predict changes in 
biomass, biodiversity and stability under climate change and 
multiple stressors.

4.2   |   Challenges and Opportunities Afforded by 
Bayesian PGLS

Current estimates of coefficients have been in use for two de-
cades in the bioenergetic framework to run simulations on large 
food webs without the need for a fully resolved species list. 
This reduces data collection and computational time by run-
ning simpler models with fewer parameters and aims to avoid 
the over- complication of models whilst still being able to rec-
reate empirical dynamic patterns (Boit et al. 2012; Hudson and 
Reuman 2013). However, when such allometric relationships are 
derived from high volumes of data with taxonomic, metabolic 
and habitat representation, biodiversity modelling can advance 
from revealing general relationships between, for example, sta-
bility and complexity (Brose et al. 2006), to much more nuanced 
or focused questions about specific communities or habitats fac-
ing multiple threats.

4.2.1   |   Opportunities

The increased range of sizes and taxonomic representation in 
our methodology allows for the estimation, with quantified un-
certainty, of coefficients at the scale of the genus. These results 
can then be subset to genera that are present in a food web, rep-
resenting real communities at the genus level. For example, the 
posterior distributions might allow longstanding questions about 
differences among marine, terrestrial and freshwater commu-
nities to be addressed by sampling from appropriate taxonomic 
and body size distributions (Brose et al. 2019; Digel et al. 2011; 
Valdovinos et al. 2023; Xiong et al. 2024), thus increasing preci-
sion in the use of the models for predicting impacts on biomass 
dynamics. Our new data and estimates facilitate this kind of in-
ference, leveraging the Bayesian phylogenetic least squares es-
timation of posterior distributions. One might also use the data 
to simulate scenarios of spatial variation (Jordán et  al.  2024; 
Galiana et al. 2021; Tekwa et al. 2022; Ryser et al. 2021) in biodi-
versity based on subsets of species embedding additional model-
ling of turnover and nestedness among species (e.g., β diversity) 
or temporal variation in species composition. Or as a foundation 
for also exploring evolutionary and life history related questions 
in dynamic, multi- species systems where body size is the key 
trait (Loeuille and Loreau  2005; Luhring and DeLong  2020; 
Naisbit et al. 2012).

Beyond opportunities to leverage these data on dynamic food web 
models, such data will support continued work on the Metabolic 

Theory of Ecology (MTE) and an associated range of compara-
tive trait analyses (e.g., functional traits (Messier et al. 2010) and 
behavioural traits (Nakagawa and Schielzeth 2012)) that explore 
the importance of variation, because a wider array of body sizes, 
taxonomy and ecosystems are represented (Brown et al. 2004; 
Isaac and Carbone 2010; Norin and Gamperl 2018; Peters 1986).

Furthermore, along with increasing the resolution of tax-
onomic information on which estimates are based (genus 
level), the PGLS model increases the potential future uses of 
biodiversity modelling across taxonomically unresolved data. 
Phylogenetic covariance in residual errors of the PGLS model 
on the data was recorded using Pagel's lambda (λ) (Freckleton 
et al. 2002; Pearse et al. 2025; Symonds and Blomberg 2014). 
Our models showed a strong phylogenetic signal opening up 
the possibility of imputation to infer coefficient estimates for 
the missing taxa, including those that are underreported (rare 
species), hard to measure or potentially newly discovered 
(Johnson et  al.  2021; Riek and Bruggeman  2013). To assist 
with both of these points, our data and genus level intercepts 
are available in Appendix S2.

4.2.2   |   Challenges

Despite these opportunities, we note that distinctions among 
metabolic groups have decreased. Using our PGLS approach, we 
observed a large amount of within- group variation (Figure 4), 
resulting in overlap between some groups. Our data reveal a 
higher level of variability than has been assumed in the past. 
Endothermic vertebrates are often described as simply birds and 
mammals; however, some species of fish have been recorded 
to have either whole- body endothermy such as Opah (Lampris 

guttatus) (Wegner et  al.  2015) or regional endothermy (ability 
to maintain heat above ambient temperature in some but not 
all tissues) such as White Sharks (Carcharodon carcharias) 
and Atlantic Bluefin Tuna (Thunnus thynnus; Dickson and 
Graham  2004). As endothermy is associated with increased 
metabolic rates, inclusion of these ‘intermediate’ or regional 
endotherms into ectothermic vertebrates (which currently in-
cludes all other fishes) would falsely inflate their ax value. As in 
the opportunities section above, the data actually allow a more 
nuanced and possibly accurate representation of biodiversity in 
specific communities.

4.3   |   Impacts of New Estimates on Biodiversity 
and Biomass Dynamics

The allometric relationships in the bioenergetic model define 
rates of biomass production (growth), loss (metabolism) and 
transfer among species (consumption), thus underpinning the 
dynamics that lead to patterns of persistence, biomass accu-
mulation/loss and stability under different conditions (Brose 
et  al.  2006; Delmas et  al.  2017). They further allow research-
ers to resolve differences among metabolic groups and relate 
basic rates driving the model dynamics to groups of organisms/
communities organised by body size. Increases/decreases in 
metabolic rate, for example, will lead to less/more biomass loss 
on average among species. The relationships deliver a differ-
ent baseline of energy availability to a community defined by 
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complex patterns of direct and indirect effects underpinned by 
production rates and foraging rates.

Most studies to date examining changes in population dynam-
ics of a food web focus on the effect of functional response 
(Brose 2010; Kalinkat et al. 2013; Martinez et al. 2006), interac-
tion strengths (Brose et al. 2019; Emmerson and Raffaelli 2004; 
Kartascheff et  al.  2010; Tang et  al.  2014), and trophic levels 
(Plitzko et  al.  2012). Whilst some incorporate the allometry 
of metabolic rate (Brose et  al.  2006; Heckmann et  al.  2012; 
Kartascheff et al. 2010), there has to date been no opportunity 
to evaluate the effects of the coefficient values mapping through 
structural network characteristics (SR, C and Z) on bioenergetic 
output metrics (e.g., Blyth vs. Brose; Figure 5). This is critical to 
understand if we want to use the BEFW on as many different 
networks and ecosystem types as possible as no networks will be 
the same. Our study showed that altering allometric coefficients 
only had small or very small effects on the way structural met-
rics impacted species persistence and total biomass, and little to 
no impact on stability. We do note that estimates of both species 
persistence and total biomass do increase when the bioenergetic 
food web models were run using our new, lower ax. This may 
be due to lower ax values reducing mass- specific metabolic rate 
for each organism, decreasing consumer energy loss (e.g., from 
respiration), retaining more energy (biomass) in the system and 
reducing the pressure across trophic levels so fewer species are 
lost (Delmas 2020; Quévreux and Brose 2019). Yet overall, we 
conclude that whilst there are changes, they do not appear to 
alter the foundation for the last two decades worth of bioener-
getic food web model studies and the qualitative insights (e.g., 
Gauzens et al. 2020; Miele et al. 2019; Schneider et al. 2016) are 
unlikely to be different. This is particularly important given 
the connected nature and sheer scope of works that use allo-
metrically scaled metabolic rates (Schmitz and Leroux  2020; 
Schramski et al. 2015).

5   |   Conclusion

Our analysis has addressed a longstanding deficiency in data 
and modelling of key assumptions linking allometry of biolog-
ical rates to the dynamics of biomass, biodiversity and stability. 
We highlight historic overestimation of intercepts, underes-
timation of variance and potential phylogenetic bias towards 
easy to study species. Our analysis also delivered novel inter-
cepts for endothermic vertebrates that were previously not 
included at all for certain ecological models. Using our new 
allometric coefficients led to quantitative changes in biomass 
and persistence derived from bioenergetic food web models, 
but with limited impact on the qualitative role of structural 
parameters.

Perhaps the most important contribution of this work is the esti-
mates of uncertainty which provide model coefficients that can 
define diversity in numerous ways—from metabolic groups to 
habitats to taxonomic levels as low as genus. We expect these 
new values and estimates of uncertainty will lead to a re- 
assessment of previous work and opportunities for making bio-
diversity models more representative of the real- world scenarios 
where climate change and multiple stressors are impacting eco-
logical communities.
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