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The Volterra series has been used in nonlinear
system identification (NLSI) for decades; its frequency‑
domain counterpart allows a generalization of ’reso‑
nance curves’ for nonlinear systems—so‑called higher‑
order frequency‑response functions (HFRFs). Estimat‑
ing the terms in the series has often proved to be a
challenge; however, the (comparatively) recent uptake
of machine‑learning technology into engineering dy‑
namics has led to advances in the identification of
the series—both for the Volterra kernels themselves
and for the HFRFs. The current paper provides an
overview of a number of approaches based on neural
networks, Gaussian processes (GPs) and reproducing
kernel Hilbert spaces (RKHSs), and presents new
results for multi‑input multi‑output (MIMO) systems
based on neural networks.
This article is part of the theme issue ‘Frontiers of

applied inverse problems in science and engineering’.

1. Introduction
One of the most important inverse problems in structural
dynamics is system identification (SI); this is the problem
of fitting a mathematical model of a system to measured
data. Even for linear systems, this is an inverse problem
of the second kind and is very often ill‑posed [1]. For
nonlinear systems, the problem is much more difficult, as
there are essentially an infinity of possible model forms
to choose from. In general, there is no ‘one‑size‑fits‑all’
solution to problems in nonlinear SI (NLSI), and the prac‑
titioner must often rely on a ‘toolbox’ approach, where
different methods suit different problems [1]. In its most
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abstract framing, the system can be regarded mathematically as a functional Swhich maps an in‑
put or stimulus function of time x(t), into an output or response function y(t); e.g. y(t) = S[x(t)]. In
most cases, the functional is only given implicitly by an ‘equation ofmotion’; for example, Newto‑
nian physics of mechanical/structural systems often leads to second‑order differential equations
like,

mÿ + cẏ + ky + k3y3 = x(t), (1.1)

which is a form ofDuffing’s equation,which is of fundamental importance in nonlinear dynamics.
If the form of themodel is known, the identification problem is reduced to that of parameter estima‑
tion; i.e. the determination of some ‘best’ set of values for the parameters {m, c, k, k3}. The problem
thus becomes one of regression [2]. For many years, problems of this kind were approached using
least‑squares‑error approaches of varying levels of sophistication. If the form of the model is not
known a priori, the problem becomes much more difficult, as NLSI then requires a structure detec‑
tion step before parameters can be estimated. A powerful alternative to parametric identification
has emerged in the last few decades, based on ideas from the discipline of machine learning [2].
This approach is based on the idea of fitting a non‑parametric or ‘black‑box’ model to data.1 Usu‑
ally, the idea is to specify some mathematical basis of functions—which need not carry any clear
physicalmeaning—which can serve as a universal approximator. One essentially fits a superposition
of these basis functions to data from the system of interest to minimize an error function of some
sort; the universal approximation property then ensures that models of arbitrarily high fidelity
can be obtained, assuming that enough basis functions are used (this leaves aside the problem of
noise on the data for the moment). One of the most well‑known non‑parametric model bases is
provided by the artificial neural network paradigm [2], but there are many alternatives. In fact, non‑
parametric models have been around for a very long time, one of the earliest being the Volterra
series [1,4,5].
The eponymous Volterra series was first proposed in 1887 [6]. Volterra’s intention in the paper

was to extend the theory of analytic functions to functionals; this he did by proposing a type of
Taylor series appropriate to the more general object.2 Despite its origins in pure mathematics, the
Volterra series has proved to be useful in applied analysis. Although one of the main applica‑
tions of the series was in the modelling of physiological systems [7], there was also substantial
work in the non‑parametric identification and modelling of nonlinear dynamic systems—which
started earlier—largely with the seminal work of Barrett [8,9]. Barrett’s work mainly found inter‑
est in the electrical and control engineering communities until it was adopted for structural SI in
the work of Gifford and Tomlinson [10]. Apart from its potential for non‑parametric identifica‑
tion, the Volterra approach generated interest in the structural dynamics community because of
its ability to form nonlinear extensions of ‘resonance curves’. These higher‑order frequency‑response
functions (HFRFs) [1,11] can provide visual and interpretable representations of nonlinear dy‑
namic systems and explain how input frequencies might combine to create nonlinear analogues
of resonance conditions under conditions of weak nonlinearity.
Throughout the history of the Volterra series, one of the main problems has been that of com‑

puting or estimating the terms of the series. (It will soon become clear how demanding this prob‑
lem is.) Various ingenious (direct) approaches have been proposed over the years [1]; however,
the demands of algebra or data meant that any analysis was always confined to the lower‑order
terms of the series—usually the first three. More recently, approaches have arrived based on non‑
parametric machine learning. The first of these developments was that of Wray & Green [12],
who proposed a means of estimating the series using a time‑delay neural network. The method
of Wray & Green provided a means of finding the kernels for a discrete Volterra series in terms of
the network weights; this was followed by the study in [13] which, in contrast, used neural net‑
work weights to directly find the kernel transforms or HFRFs. A more recent development was
the formulation of a reproducing kernel Hilbert space (RKHS) approach to the series, which in prin‑
ciple can estimate the entire series in one go [14–16]. Even more recently, a Gaussian process (GP)
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approach was presented in [17,18], which simplified and extended the work [13], but also pro‑
vided a means or characterizing the uncertainty in HFRF estimates. The current paper takes the
viewpoint that a modern perspective on the Volterra series is one in which one can exploit modern
machine‑learning methods to determine the series for a given system of interest; as such, it pro‑
vides illustrations of the artificial neural network, RKHS andGP approaches to estimating kernels
and kernel transforms. The aim of the paper is not to provide a survey or overview of methods;
instead, it rather shamelessly draws on examples from the authors’ previous work, together with
some new results.
The layout of the paper is as follows. In §2, we introduce the main terminology and offer a

demonstration that the Volterra series is indeed a functional Taylor series. In §3, we present the
RKHS formulation of the series, which reduces the estimation of kernels to a type of regularized
least‑squares problem. In §4, we show how one can estimate HFRFs directly from nonlinear au‑
toregressive exogenous (NARX) models and illustrate the idea using GP‑NARX models, which
also have the advantage of a Bayesian formulation. The NARX approach is extended to multi‑
input multi‑output (MIMO) models in §5; this time using a neural network as the basis for the
model. Some conclusions are drawn in the final section.

2. The Volterra series
It is basic knowledge in structural/engineering dynamics that linear systems admit dual time and
frequency‑ domain characterizations,

y(t) =∫
∞

−∞

d𝜏 h(𝜏)x(t − 𝜏) (2.1)

and,

Y(𝜔) =H(𝜔)X(𝜔). (2.2)

All information about a single‑input‑single‑output system is encoded in either the impulse response
function h(t) or the frequency‑response function (FRF)H(𝜔). The best representation for a given situ‑
ation will be often be problem‑specific. For vibration problems, the frequency‑domain approach
is usually adopted; displaying the FRFH(𝜔) shows immediately those frequencies at which large
outputs can be expected, i.e. peaks in H(𝜔) corresponding to the system resonances.
Equations (2.1) and (2.2) aremanifestly linear and therefore cannot hold for arbitrary nonlinear

systems; however, both admit a generalization based on the (infinite) Volterra series,

y(t) = y1(t) + y2(t) + y3(t) + … , (2.3)

where,

y1(t) =∫
+∞

−∞

d𝜏h1(𝜏)x(t − 𝜏), (2.4)

y2(t) =∫
+∞

−∞

∫
+∞

−∞

d𝜏1d𝜏2h2(𝜏1, 𝜏2)x(t − 𝜏1)x(t − 𝜏2), (2.5)

and so on; the form of the general term follows directly from the above. The functions h1(𝜏),
h2(𝜏1, 𝜏2), h3(𝜏1, 𝜏2, 𝜏3), …, hn(𝜏1,… , 𝜏n), … are generalizations of the linear impulse response func‑
tion and are usually referred to as Volterra kernels; one can also think of them as the analogue of
coefficients in a standard Taylor series. The series allows a representation of a functional,3

y(t) =V[x(t)]. (2.6)

It is straightforward to show that the Volterra kernels can be taken to be completely symmetric
in their arguments [1]. In this paper, the methods of extracting the kernels and their transforms
directly will automatically select the symmetric kernels.
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Now, the Volterra series has been referred to as a functional Taylor series; while it is clearly a
power series in the x(t), the term ‘Taylor series’ arguably requires further justification. In fact, al‑
though this justification is the object of the first Volterra paper [6], it is very rarely given, so it is
interesting to provide it here. Of course, this is not a modern perspective by any means; however,
it can be given a modern slant. An important tool can be applied which was unknown at the time
of Volterra’s; this is the functional derivative, defined as [20]:

𝛿

𝛿f(y)
F(f) = lim

h→0

1
h
(F[f(x) + h𝛿(x − y)] − F[f(x)]), (2.7)

where 𝛿(x) is the Dirac delta‑function. For the discussion here, it will be sufficient to consider the
truncated functional

V[x(t)] =∫
+∞

−∞

d𝜏h1(𝜏)x(t − 𝜏) +∫
+∞

−∞

∫
+∞

−∞

d𝜏1d𝜏2h2(𝜏1, 𝜏2)x(t − 𝜏1)x(t − 𝜏2). (2.8)

Consider the first term, and make a simple change of variables, so that

y1[x(t)] =∫
+∞

−∞

d𝜏h1(t − 𝜏)x(𝜏). (2.9)

On applying equation (2.7) and forming the first functional derivative, one sees that

𝛿

𝛿x(T)
y1[x(t)] = limh→0

1
h
{
y1[x(t) + h𝛿(t − T)] − y1[x(t)]

}
(2.10)

and substituting the form of y1[x(t)] from equation (2.9) gives,

𝛿

𝛿x(T)
y1[x(t)] = limh→0

1
h
{∫+∞

−∞

d𝜏h1(t − 𝜏)[x(𝜏) + h𝛿(𝜏 − T)],

𝛿

𝛿x(T)
y1[x(t)] = limh→0

1
h
{∫+∞

−∞

d𝜏h1(t − 𝜏)[x(𝜏) + h𝛿(𝜏 − T)] −∫
+∞

−∞

d𝜏h1(t − 𝜏)x(𝜏)} . (2.11)

The only awkward term in this expression is the one involving the delta function, as the other two
cancel. Concentrating on the ‘delta’ term, one sees that,

lim
h→0

1
h
∫

+∞

−∞

d𝜏h1(t − 𝜏)h𝛿(𝜏 − T),

∫
+∞

−∞

d𝜏h1(t − 𝜏)𝛿(𝜏 − T) = h1(t − T) =
𝛿y1[x(t)]
𝛿x(T)

, (2.12)

after observing that the h cancels, so that the limit goes away, and then using the projection
property of the delta function. The end result is,

y1[x(t)] =∫
+∞

−∞

d𝜏
𝛿y1[x(t)]
𝛿x(T)

||||||||T=𝜏 x(𝜏). (2.13)

So, to the first order of truncation only,

y1[x(t)] =∫
+∞

−∞

d𝜏
𝛿V[x(t)]
𝛿x(T)

|||||||T=𝜏 x(𝜏). (2.14)

This is now suggestive of a Taylor series; there is a single power of x(t), multiplied by the deriva‑
tive of the functional V with respect to x(t). The other thing to note is that the evaluation at T= 𝜏

for the derivative is not quite correct; the functional does not depend on T or 𝜏, it depends on the
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whole function x(𝜏). In fact, the functional derivative in equation (2.12) does not depend on x(𝜏) at
all, so it does not matter where one evaluates it. This point will be important shortly.
The second integral in equation (2.8) requires a little more effort; one begins by taking a first

functional derivative,

𝛿y2[x(t)]
𝛿x(T1)

= lim
h→0

1
h
{∫+∞

−∞

∫
+∞

−∞

d𝜏1d𝜏2h2(t − 𝜏1, t − 𝜏2)[x(𝜏1) + h𝛿(𝜏1 − T1)][x(𝜏2) + h𝛿(𝜏2 − T1)]

−∫
+∞

−∞

∫
+∞

−∞

d𝜏1d𝜏2h2(t − 𝜏1, t − 𝜏2)x(𝜏1)x(𝜏2)} .
(2.15)

As before, the product of x’s in the first term cancels with the last term. A further simplification
comes from the fact that theO(h2) term arising from a product [h𝛿(𝜏1 − T1)][h𝛿(𝜏2 − T1)] vanishes
in the limit that h⟶ 0. Finally, the O(h) terms are multiplied by 1∕h, and the limit goes away as
before. All that remains is

𝛿y2[x(t)]
𝛿x(T1)

=∫
+∞

−∞

∫
+∞

−∞

d𝜏1d𝜏2h2(t − 𝜏1, t − 𝜏2) {x(𝜏1)𝛿(𝜏2 − T1) + x(𝜏2)𝛿(𝜏1 − T1)}

=∫
+∞

−∞

d𝜏1h2(t − 𝜏1, t − T1)x(𝜏1) +∫
+∞

−∞

d𝜏2h2(t − T1, t − 𝜏2)x(𝜏2).

(2.16)

Finally, changing the ‘dummy’ variable 𝜏2 in the second integral to 𝜏1 and using the symmetry of
the h2 gives

𝛿y2[x(t)]
𝛿x(T1)

= 2∫
+∞

−∞

d𝜏1h2(t − 𝜏1, t − T1)x(𝜏1). (2.17)

Now, taking the second derivative is basically the same as taking the first derivative of y1[x(t)],
and the result is,

𝛿

𝛿x(T2)
𝛿y2[x(t)]
𝛿x(T1)

=
1
2h2(t − T2, t − T1), (2.18)

so the corresponding term in the Taylor series for V[x(t)] is

∫
+∞

−∞

∫
+∞

−∞

d𝜏1d𝜏2
1
2!

𝛿2V[x(t)]
𝛿x(T2)𝛿x(T1)

||||||||? x(𝜏1)x(𝜏2), (2.19)

which has exactly the form onemight expect for the second term of a functional Taylor series. The
only outstanding question is of where the functional derivative should be evaluated. This can
now be established. The analysis of the second‑order term has shown that the nice clean result
obtained for equation (2.13) was just because the derivative was only of y1[x(t)]; in fact taking the
first derivative of V[x(t)] ≈ y1[x(t)] + y2[x(t)] yields,

𝛿V[x(t)]
𝛿x(T)

= h1(t − T) + 2∫
+∞

−∞

d𝜏h2(t − 𝜏, t − T)x(𝜏), (2.20)

and the second term is unwanted.However, it can be removed by simply evaluating the functional
at the zero‑function x(t) = 0 for all t, so,

𝛿V[x(t)]
𝛿x(T)

|||||||x(T)=0 = h1(t − T), (2.21)

and this is clearly the correct prescription for a Taylor‑type series (strictly aMaclaurin‑type series).
Continuing the analysis of the second derivative to y3[x(t)]would also yield a linear functional in
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x(t), so a clean result for the second derivative requires that it too is evaluated at x(t) = 0, and so
on. To second order, the final result is,

V[x(t)] =∫
+∞

−∞

d𝜏
𝛿V[x(t)]
𝛿x(T)

|||||||x(T)=0 x(𝜏)+
∫

+∞

−∞

∫
+∞

−∞

d𝜏1d𝜏2
1
2!

𝛿2V[x(t)]
𝛿x(T2)𝛿x(T1)

||||||||x(T)=0 x(𝜏1)x(𝜏2) +O(x3),
(2.22)

and it is shown that the Volterra series is indeed a functional Taylor series with ‘coefficients’ equal
to the Volterra kernels. Furthermore, the analysis shows—in a non‑rigorous fashion admittedly—
that the existence of the Volterra series is conditional on the existence of the functional derivatives
of all orders; this shows that the series is only defined for ‘smooth’ functionals. A more rigorous
discussion of validity of the series can be found in [19].
The analysis so far has been confined to the time domain; in fact, as stated above, there exists a

dual frequency‑domain representation for nonlinear systems. The higher‑order FRFs orVolterra ker‑
nel transforms Hn(𝜔1,… , 𝜔n), n= 1,… ,∞ are defined as the multidimensional Fourier transforms
of the time‑domain kernels, i.e.,

Hn(𝜔1,… , 𝜔n) =∫
+∞

−∞

…∫
+∞

−∞

d𝜏1 …d𝜏nhn(𝜏1,… , 𝜏n)e−i(𝜔1𝜏1+…+𝜔n𝜏n) (2.23)

,

hn(𝜏1,… , 𝜏n) =
1

(2𝜋)n
∫

+∞

−∞

…∫
+∞

−∞

d𝜔1 …d𝜔nHn(𝜔1,… , 𝜔n)e+i(𝜔1𝜏1+…+𝜔n𝜏n) (2.24)

.
It is a simple matter to show that symmetry of the kernels implies symmetry of the kernel
transforms; so for example, H2(𝜔1, 𝜔2) =H2(𝜔2, 𝜔1).
The analysis to obtain the frequency‑domain dual of equation (2.3) is quite straightforward [1];

the result is

Y(𝜔) =Y1(𝜔) + Y2(𝜔) + Y3(𝜔) +⋯ , (2.25)

where,

Y1(𝜔) =H1(𝜔)X(𝜔), (2.26)

Y2(𝜔) =
1
2𝜋

∫
+∞

−∞

d𝜔1H2(𝜔1, 𝜔 − 𝜔1)X(𝜔1)X(𝜔 − 𝜔1), (2.27)

and so on. As mentioned earlier, the fundamental problem associated with the Volterra series is
the determination of either the kernels or the kernel transforms. This process must be done an‑
alytically, if the equations of motion are known, or numerically, if time‑series are given for the
input and output processes. In the next section, analysis using RKHS ideas will be discussed.

3. The reproducing kernel Hilbert space Volterra series
The analysis here will follow the original work in [14–16]; for brevity, a great deal of the basic
theory of RKHSs will be omitted, the reader should consult [21,22].
The first step in constructing a kernel version of the Volterra series is tomove to a discrete form

of the expansion; the argument here will proceed via a discussion of time‑series models, as other
forms of such models will be considered in detail later. As above, the input signal for the model
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will be denoted by x(t) and the output by y(t). The relevant time‑series form for the Volterra series
is

yi = f(xi, xi−1, xi−2,…), (3.1)

where the xi and yi are values of x(t) and y(t) sampled at a discrete set of times {ti}. It will be as‑
sumed that the sample times are equally spaced, with the sampling interval denoted by 𝛥t. Thus,
xi = x(t0 + i𝛥t), and similarly for yi; for simplicity and without loss of generality, the start time t0
will be taken as t0 = 0. With these conventions, the lagged variables are given by xi−n = x(ti − n𝛥t)
etc. One then sees that the model form in equation (3.1) simply regresses the current output on
past values of the input, where f is some nonlinear multivariate function of choice. In the time‑
series literature, a model of this form is called an NX‑model (nonlinear with exogenous inputs).
Now, as long as f is reasonably well‑behaved, one can expand it as a multivariate Taylor series
with polymonial terms. The result is then an infinite series,

yi = h0 +
∞∑
j=0
hj1xi−j +

∞∑
j1=0

∞∑
j2=0

hj1j22 xi−j1xi−j2 + … , (3.2)

and this is the discrete Volterra series. The ‘kernels’ in this expansion are not functions, but vec‑
tors, matrices, and so on, hj1, h

j1,j2
2 , indexed by the order of nonlinearity and the relevant lag values.

Note that forward ‘lags’ are ruled out by the demands of causality in the NX model—the output
cannot depend on inputs in the future.
In the discrete case, the coefficients in the expansion are ordinary partial derivatives rather

than functional derivatives, i.e.

hj1 =
𝜕f

𝜕xi−j
(3.3)

and so on. By the same argument as in the previous section, one can assume that the discrete
kernels hj1,…,jnn are totally symmetric on their indices.
Formally, equation (3.2) is an infinite series; however, the identification problem has become

that of determining the series coefficients, so these will need to be reduced to a finite set. The full
series is usually truncated in two ways. In the first place, the polynomial order of the expansion is
bounded at some value L; i.e. only the first L discrete kernels are estimated. Second, a maximum
lagM is fixed; one can think of this as the memory of the series. With these constraints, the series
becomes,

yi = h0 +
M−1∑
j=0

hj1xi−j +
M−1∑
j1=0

M−1∑
j2=0

hj1j22 xi−j1xi−j2 + … +
M−1∑
j1=0

…
M−1∑
jL=0

hj1,…,jLL xi−j1 … xi−jL , (3.4)

or, in a much more compact (but less transparent) form,

yi = h0 +
L∑
l=1

⎧
⎨⎩
M−1∑
j1=0

…
M−1∑
jl=0

hlj1,…,jl

l∏
k=1

xi−jk
⎫
⎬⎭
. (3.5)

Assuming enough training data (there are potentially many coefficients here), one could frame
the identification as a (potentially very large), least‑squares estimation problem for the param‑
eters hj1, h

j1j2
2 etc. However, the analysis will proceed here based on Dodd & Harrison’s elegant

RKHS approach [14–16].
The first step will be to construct an RKHS appropriate to the problem. It will be necessary to

develop a little more notation.
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First, one defines an input vector z=(xi, xi−1,… , xi−M+1). To avoid a multiplicity of indices, this
vector will usually be taken to refer to the current instant ti, so that,

yi = h0 +
L∑
l=1

⎧
⎨⎩
M−1∑
j1=0

…
M−1∑
jl=0

hlj1,…,jl

l∏
k=1

zk
⎫
⎬⎭
. (3.6)

This form is just a large polynomial expansion in zk; for example, if L= 2 andM= 2, the expansion
basis for the model is simply 𝜙(z) = (1, z1, z2, z1z2, z21, z

2
2) = (1, xi, xi−1, xixi−1, x2i , x

2
i−1). Here, 𝜙(z)

represent the expansion in terms of feature‑space embedding; this is the first hint of the RKHS
approach. It is fairly straightforward to show that the number of terms in the expansion, and thus
the dimension of the embedding space is Vn = (L +M)!∕L!M!.
After a certain amount of straightforward but tedious algebra,4 the model form equation (3.6)

is converted to

yi =
Vn∑
k=1
wk𝜙k(z), (3.7)

where wk are just the various Volterra coefficients in appropriate order, starting from w1 = h0.
Note that this is a standard RKHS embedding via 𝜙, from the measured‑data space into a

high‑dimensional feature space, which is going to be the RKHS space: i.e., 𝜙∶ℝM⟶H. For the
example immediately above, one hasM= 2 and Vn = 6. Of course, one needs to be sure thatH is
indeed a complete inner‑product space.
For general L,M, and thus Vn, one definesH to be the space of functions of the form

yi =
Vn∑
k=1
wk𝜙k(z) =<w,𝜙>ℝVn (3.8)

for arbitrary wk ∈ℝ, and formally allow Vn to be infinite if necessary.
Now, one defines the inner product onH to be

⟨ Vn∑
k=1
wk𝜙k(z),

Vn∑
k=1
vk𝜙k(z)

⟩
H

=
Vn∑
k=1

wkvk
𝜆k

, (3.9)

where the 𝜆k are chosen so that the series on the r.h.s. converges. (Of course, convergence is not
an issue if Vn is finite.)
This prescription, the expansion in equation (3.8), together with the inner product in equation

(3.9) specifies a Hilbert spaceH. However, it is still not an RKHS. First, one needs a kernel; this is
defined here as

k(z,z′) =
Vn∑
k=1

𝜆k𝜙k(z)𝜙k(z′). (3.10)

The question now is whether the Hilbert space H is an RKHS; one must check two important
technical properties.

(1) First, that for a fixed z, one has k(z,.) ∈H. This is clear as,

k(z,.) =
Vn∑
k=1

𝜆k𝜙k(z)𝜙k(.), (3.11)

and for a given z, the 𝜆k𝜙k(z) are just numbers, say w′k. One thus has,

k(z,.) =
Vn∑
k=1
w′k𝜙k(.) ∈H, (3.12)

which has the required form from equation (3.8).
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(2) Second, one must have the reproducing property. For a given y∈H, one requires [23],

< y, k(z,.)>= y(z). (3.13)

This is immediate as,

y=
Vn∑
k=1
wk𝜙k(.), (3.14)

so that,

< y, k(z,.)>=
Vn∑
k=1

wkw′k
𝜆k

=
Vn∑
k=1

wk𝜆k𝜙(z)
𝜆k

=
Vn∑
k=1
wk𝜙k(z) = y(z). (3.15)

The point now is that expansions such as

y(z) =
Vn∑
k=1
wk𝜙k(z), (3.16)

which might involve a very large (or even infinite) sum, can be expressed in terms of the kernel
instead—this is the so‑called kernel trick.
TheRKHSH is just the space corresponding tomultinomial expansions; the only novelty is that

the expansion coefficients are basically the (reordered) Volterra coefficients in this framework.
The idea is simply to fit to training data {y,X}, the best function of the form,

yi = f(xi, xi−1, xi−2,… , xi−M+1), (3.17)

where the memoryM is now treated as a hyperparameter. Then for the instant i, corresponding
to time t, one has z(t) = zi = (xi, xi−1, xi−2,… , xi−M+1)with xi = x(t), so that y(t) = yi = f(z).
As the problem has been framed, with f∈H, one sees that

f(.) =
Vn∑
k=1
wk𝜙k(.) (3.18)

and,

y(t) = yi = f(z) =
Vn∑
k=1
wk𝜙k(z). (3.19)

If the training data are {yi, zi} ∶ i= 1,… ,D, the usual RKHS approximation gives,

yi = f(zi) =
D∑
j=1
𝛼jk(zi, zj). (3.20)

To stress what has been gained, suppose one has specified a polynomial kernel

k(z,z′) = (1+< z,z′ >)L (3.21)

or a squared‑exponential kernel,

k(z,z′) = exp (− 1
l2
< z,z′ >) . (3.22)

Function evaluations for the direct expansion equation (3.8) involve a scalar product with (L +
M)!∕L!M! multiplications and evaluation of the same number of basis functions. In contrast, for
the expansion equation (3.20) with either of the kernels equations (3.21) or (3.20), one has Dmul‑
tiplications and function evaluations, where each of the latter involves a scalar product with M
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multiplications; the overall computational cost is D(1 +M) in terms of multiplications. As a con‑
crete example, consider the case where one requires M= 30 lags and a fifth‑order nonlinearity,
L= 5. In this case, the number of multiplications in the direct expansion is 35!∕30!5! = 324 632.
Supposing that one has 1000 points of training data, the number of multiplications in the kernel
expansion is 36 000—an order of magnitude smaller.5 More interestingly perhaps, one should
note that the expansion with the squared‑exponential kernel—because it generates an expansion
basis with polynomial terms of all orders—actually corresponds to an infinite Volterra expansion!
For a specific discrete Volterra modelling problem then, the kernel form is preferred on the

grounds of computational expense and the problem becomes that of finding the coefficients 𝛼i
that give the best representation. Clearly, the best representation will require that one uses all the
available training data, so that,

ŷi = f̂(z) =
D∑
i=1
𝛼̂ik(z,zi), (3.23)

where the carets indicate estimated/predicted quantities.
As is usual in problems of this type, the estimation will be framed as an optimization,

f̂(z) = argmin
f∈H

D∑
i=1
L
(
yi − f (zi)

)
, (3.24)

where L is some convex loss function.
One mitigates against the effects of ill‑conditioning or overtraining by adding a regularization

term, so the problems becomes

f̂(z) = argmin
f∈H

⎛⎜⎝
D∑
i=1
L
(
yi − f (zi)

)
+
𝜌

2 ‖f‖2H⎞⎟⎠ , (3.25)

where 𝜌≥ 0 is a regularization (hyper) parameter.
In terms of the expansion equation (3.20), the minimization becomes,

𝛼̂ = argmin
𝛼∈ℝD

⎛⎜⎝
D∑
i=1
L
⎛⎜⎝yi −

D∑
j=1

𝛼jk
(
zi, z

)⎞⎟⎠ +
𝜌

2 ‖f‖2H⎞⎟⎠ , (3.26)

now in terms of 𝛼. Of course, now the regularization term must also be expressed in terms of 𝛼.
Using the properties of the RKHS, one sees that,

𝜌

2 ||f||2H =
𝜌

2

⟨ D∑
i=1
𝛼ik(zi, .),

D∑
j=1
𝛼jk(zj, .)

⟩

=
𝜌

2

D∑
i=1

D∑
j=1
𝛼i𝛼jk(zi, zj) =

𝜌

2𝛼
TK𝛼, (3.27)

and the regularization term is rather neatly revealed to be a (weighted) weight‑decay term [2], in
the parameters 𝛼i.
The main optimization problem is thus,

𝛼̂ = argmin
𝛼∈ℝD

⎛⎜⎝
D∑
i=1
L(yi −

D∑
j=1

𝛼jk(zi, z)) +
𝜌

2𝛼
TK𝛼

⎞⎟⎠ , (3.28)

and if one adopts the standard least‑squares cost function, this becomes

𝛼̂ = argmin
𝛼∈ℝD

((y − K𝛼)T(y − K𝛼) + 𝜌

2𝛼
TK𝛼) , (3.29)
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and this is minimized when 𝜕J(𝛼)∕𝜕𝛼T = 0. Expanding the cost function J(𝛼) gives,

0=
𝜕J
𝜕𝛼T

=
𝜕

𝜕𝛼T
(yTy−𝛼TKTy−yTK𝛼+𝛼TKTK𝛼+𝜌2𝛼TK𝛼) . (3.30)

Now, treating the quantities 𝛼T and 𝛼 as independent in matrix calculus, and using the symmetry
of K, one arrives at,

−KTy+KTK𝛼+
𝜌

2K
T𝛼=0, (3.31)

which—using the symmetry of K and assuming KT invertible—finally yields,

(K + 𝜌

2 I)𝛼=y, (3.32)

with solution,

𝛼̂ = (K + 𝜌

2 I)−1 y (3.33)

.
It is important to note at this point that the vector 𝛼 does not quite contain the Volterra coefficients,
and this was—after all—the point of the exercise; a little more work is needed.
One begins with the fact that the expansion

f(z) =
Vn∑
k=1
wk𝜙k(.z) (3.34)

does contain the Volterra coefficients; so, where is the inconsistency? The answer to that question
requires a closer look at the expansion parameters. To see what is happening, it is enough to con‑
sider a quadratic expansion in two variables; these may represent xi and xi−1, but will be denoted
x1 and x2 here, for simplicity. To get a quadratic expansion in the two variables, the expansion
basis need be 𝜙(x) = (1, x1, x2, x1x2, x1x2, x21, x

2
2)
T; however, any other basis where the terms are

multiplied by scalars would suffice, and in fact, for consistency with the definition of the kernel,
one does need to add scalars. Taking the polynomial kernel equation (3.21) with L= 2, one finds
that,

k(z,z′) = 1 + 2x1x′1 + 2x2x
′
2 + 2x1x

′
1x2x

′
2 + (x1x′1)

2 + (x2x′2)
2, (3.35)

and this needs to be consistent with equation (3.10), which can be conveniently rewritten as

k(z,z′) =
Vn∑
k=1

√
𝜆k𝜙k(z)

√
𝜆k𝜙k(z′). (3.36)

Direct comparison here shows that one needs to define the set of 𝜆k as (1,2,2,2,1,1). The 𝜆k are thus
revealed as the multipliers needed to convert a multinomial basis into the form required for con‑
sistency with the kernel. It now becomes clear why 𝛼i are not the same as the Volterra coefficients
wi; however, it is clear now how to convert from one to the other. One begins with equation (3.23)
and substitutes from equation (3.10) to give

f̂(z) =
D∑
i=1
𝛼ik(z,zi) =

D∑
i=1
𝛼i

Vn∑
k=1

𝜆k𝜙k(z)𝜙k(zi). (3.37)

Now, assuming one can interchange the order of the summations, one finds

f̂(z) =
Vn∑
k=1

𝜆k

D∑
i=1
𝛼i𝜙k(z)𝜙k(zi) =

Vn∑
k=1
wk𝜙k(z), (3.38)
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which identifies wk as

wk = 𝜆k

D∑
i=1
𝛼i𝜙k(zi). (3.39)

In practice, 𝜆i can also involve the hyperparameters of the kernel [15].
At this point all the necessary analysis is complete, and an illustration can be provided. Note

that recent work in [24,25] has also arrived at an efficient means of casting Volterra series esti‑
mation as a regularized least‑squares problem; however, their motivation was not from an RKHS
viewpoint.

(a) Numerical illustration
The algorithm used herewas coded inMATLAB. The RKHSVolterra series coefficients were com‑
puted using equation (3.33); however, the hyperparameters l and 𝜌were optimized byminimizing
the prediction error on the validation set. This optimization made use of the MATLAB function
fmin, which uses a downhill‑simplex algorithm. In this case, the model‑predicted output (MPO)
error was computed, where the predicted outputs are fed back; this is sometimes referred to as the
simulation error in the electrical and control engineering communities, it is amore stringent test of
validity than the one‑step ahead (OSA) error. As an objective metric, the normalizedmean‑square
error (NMSE) was used,

NMSE(y) = 100
D𝜎2y

D∑
i=1
(yi − ŷi)2, (3.40)

where D is the number of training points and 𝜎2y is the variance of the measured displacements.
This cost function has the following useful property; if the mean of the output signal is used as
the model, i.e. ŷi = y for all i, the cost function is 100.0 (and can be thought of as a percentage).
Any score less than 100% is thus evidence of captured correlation with the data; experience with
this metric has shown that an NMSE less than 5% is evidence of a good model, while a score less
than 1% shows an excellent result.
The data are simulated from a continuous‑time Duffing oscillator as in equation (1.1), with

m= 1, c= 20, k= 104 and k3 = 5 × 109. The excitation was chosen to be a zero‑mean white Gaus‑
sian sequence with unit r.m.s. (band‑limited onto the Nyquist interval) and the sampling interval
∆twas set at 0.008 s, corresponding to a sampling frequency of 125 Hz and aNyquist frequency of
62.5 Hz.6 As the undamped natural frequency of the underlying linear system is approximately
16 Hz, this sampling frequency is sufficient to capture the third harmonic in the response. At this
level of excitation, the ‘resonance’ frequency in the naively estimated FRF of the system expe‑
rienced a 6% shift from the underlying linear value and previous experience showed that this
level of forcing excited the nonlinearity sufficiently for good identification results. Eight hundred
points of data were simulated using a fourth‑order Runge–Kutta scheme [26]. The first 200 points
of data were discarded to eliminate transients and then the remaining 600 points were divided
equally into training, validation and testing sets. Zero‑mean Gaussian noise was added to the re‑
sponse data with s.d. of 10% of that of the data; this is a comparatively high level of noise. The
input and output training data are shown in figure 1.
When the RKHS Volterra model was fitted to the data, the minimum validation error was

achieved withM= 19 and L= 3. The other hyperparameters corresponding to these values were
found to be l= 1989.5 and 𝜌= 8.7687 × 10−10.7 Apoint of interest here is the ‘high’ number of lags;
however, this is explainable. For a problem like Duffing’s equation, which represents a single‑
degree‑of‑freedom oscillator, one would expect the number of lags to be related to the length of
time for which the linear impulse response is non‑zero. The reason for this is that the integral
for y1(t) should approximately extend in time over the period for which h1(t) is non‑zero. In this
case, the true linear impulse response can be computed exactly and is shown in figure 2. The
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Figure 1. Input and output training data for case study.

Figure 2. Linear impulse response function h1(t) for the Duffing oscillator of the case study.

figure shows that the impulse is non‑zero up to 0.4 s, which corresponds to 50 lags; this means
that M= 19 is actually quite low. The minimum of the validation error at M= 19 was initially
thought to be because the Volterra series is truncated at third order here, so biased parameter
estimates are produced; furthermore, the training data, and so on are contaminated by quite high
noise.
Further investigation appeared to show some issues with the RKHS approach as implemented

here. To investigate the extent of the bias induced by the truncated series, the first‑order kernel
(impulse response) was computed using equation (3.39), and the results deviated quite signifi‑
cantly from the expected result given in figure 2. The results also proved quite sensitive to the
model hyperparameters. Thus, the coefficients of the RKHS are not in good correspondence with
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Figure 3. Comparison between measured and predicted responses for RKHS Volterra model for case study: training data.

Figure 4. Comparison between measured and predicted responses for RKHS Volterra model for case study: validation data.

the actual kernels; however, the model predictions in the time domain are very respectable.
Figures 3–5 show comparisons between the measured and predicted responses for the train‑
ing, validation and test sets, respectively; the corresponding NMSE values are 4.0994, 5.1359 and
5.3312. These values are not excellent, but the result is to expected given the extent of the noise.
Finally, it must be recognized that the models are very highly parameterized and overtraining

is an issue. The conclusion here is that the RKHS method can give good predictive models, but
these models should probably be regarded as ’black‑box’ learners and the outcome can be system
modelling rather than SI. While it is certainly possible to achieve ’physical results’ as evidenced
by HFRF estimates as in [15], it is also true to say that one can turn to other machine‑learning
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Figure 5. Comparison between measured and predicted responses for RKHS Volterra model for case study: test data.

paradigms to get arguably more robust methods. In the next section, the Volterra series will ap‑
pear in the context of a newmachine‑learningmodel classwhich allowsmuchmore parsimonious
and accurate models.

4. Gaussian process NARX models

(a) Gaussian processes
The basic premise of GPs is to perform inference over functions directly, as opposed to inference
over parameters of functions. In short, a GP is a distribution over functions, which is conditioned
on training data so that the most probable functions are the best fits to the data.
Let X= [x1, x2 … xD]T denote a matrix of multivariate training inputs, and y denote the cor‑

responding vector of training outputs. The input vector for a testing point will be denoted by
the column vector x∗ and the corresponding (unknown) output by y∗. A GP prior is formed by
assuming a (Gaussian) distribution over functions

f(x) ∼ GP
(
m(x), k(x,x)

)
, (4.1)

where m(x) is the mean function and k(x,x′) is a positive‑definite covariance function. As a re‑
gression model, the GP fits a relationship y= f(x) + 𝜖, where 𝜖 is a noise process drawn from a
univariate zero‑mean Gaussian distribution N(0, 𝜎2n).
One of the defining properties of the GP is that the density of a finite number of outputs from

the process, both observed and unobserved, is multivariate normal. This property, combined
with standard results for Gaussian distributions, can be used to condition unobserved points on
observed training points: this mechanism effectively fits the GP to the training data.
Following a Bayesian approach, the prior mean is assumed to be zero (see [27] for a discus‑

sion). Assuming a Gaussian noise model with variance 𝜎2n, the joint distribution for training and
testing values is

( y
y∗
)
∼N

⎛⎜⎝0,
⎡⎢⎣
K(X,X) + 𝜎2n K

(
X, x∗

)
K
(
x∗,X

)
K
(
x∗, x∗

)
+ 𝜎2n

⎤⎥⎦
⎞⎟⎠ , (4.2)
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where K(X,X) is a matrix whose i, jth element is equal to k(xi, xj). Similarly, K(X, x∗) is a column
vector whose ith element is equal to k(xi, x∗), and K(x∗,X) is the transpose of the same; 𝕀 is the
identity matrix.
To make use of the above, it is necessary to rearrange the joint distribution p(y,y∗) into a con‑

ditional distribution p(y∗|y). Using standard results for the conditional properties of a Gaussian
reveals [27]

y∗ ∼N (m∗(x∗), k∗(x∗, x∗)), (4.3)

where

m∗(x∗) =K(x∗,X)[k(X,X) + 𝜎2n𝕀]
−1y (4.4)

is the posterior mean of the GP and

k∗(x∗, x′) = k(x∗, x′) − K(x∗,X)[K(X,X) + 𝜎2n𝕀]
−1K(X, x′) (4.5)

is the posterior variance.
Thus the GP model provides a full posterior distribution for the unknown quantity y∗. The

posterior mean from equation (4.3) can then be used as a ‘best estimate’ for a regression problem,
and the posterior variance can also be used to define confidence intervals. The covariance function
used here is the squared‑exponential function:

k(x,x′) = 𝜎2f exp (− ||x−x′||22l2
) . (4.6)

The problemnowhas three hyperparameters: l is a characteristic length scale, themultiplier 𝜎2f gives

overall scale and is sometimes called the height parameter, 𝜎2n estimates the noise variance and the
term acts as a regulariser. For considerably more details on GPs than this paper allows, see [27].

(b) GP-NARX models
The GP model above is a static map, learning the relationship between point inputs and point
outputs. However, it is almost trivial to learn dynamical system behaviour, simply by adopting
a NARX framework. Over the last 30 years, one of the most versatile and enduring time‑series
models used for NLSI has been the nonlinear auto‑regressive moving average with exogenous
inputs (NARMAX) model. The NARMAXmodel was introduced in 1985 [28,29] and has been the
subject of constant interest and development since. (A comprehensive monograph on the theory
and applications of the model fairly recently appeared in [30].) The most general model form ac‑
commodates nonlinear discrete‑time process and noise models. However, if the noise process can
be assumed to be white Gaussian, the simpler NARX model can be adopted, and this will be the
focus of this section. The NARX model assumes a form whereby the current value of the system
output is predicted using a nonlinear function F of previous inputs and outputs, i.e.

yi = F(yi−1,… , yi−ny ; xi,… , xi−nx+1) + 𝜖i, (4.7)

where the residual sequence 𝜖i is white Gaussian. The number of output (respectively, input) lags
is denoted ny (respectively, nx). In the analysis here, the functional form in equation (4.7) adopts
a function F learnt from data using a GP. Learning the function is straightforward, the only sub‑
tlety required is that the lagged inputs and outputs need to be assembled into vectors andmatrices
suitable for the application of the GP algorithm as described earlier.
Because the modelling algorithm is being used in ‘anger’ here, it will be important to assess

the validity of the model in a form appropriate to the assessment of time‑series predictions. There
are various tests one can apply to assess the validity of a time‑series model; the most basic option
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is to compute OSA predictions. In this case, using the training data, one computes the predictions
for a given time using observed inputs and outputs up to that time, i.e.

y∗i = F(yi−1,… , yi−ny ; xi,… , xi−nx+1), (4.8)

and compares the predicted and observed outputs.
It is always useful to have an objective measure of comparison, and the one used here will be

the NMSE defined by equation (3.40).
Clearly, the OSA predictions are not a particularly stringent test of the model. A more

demanding test is to compute the MPO defined by,

y∗i = F(y
∗
i−1,… , y

∗
i−ny

; xi,… , xi−nx+1), (4.9)

and this test can be conducted on testing data as well as training data, which is an important
consideration in the more general context of machine learning. Various correlation functions also
provide a stringent means of validating models [11]; however, they are not employed here.
TheGP form for theNARXmodel has its advantages and disadvantages; two of themain issues

are discussed briefly here, with directions to the literature as to their possible means of solution.
The first problem is—as mentioned previously—that the GP algorithm depends on the inver‑
sion of the covariance matrix K; this is an operation which costs O(D3) multiplications, where
D is the number of training points.8 In fact, SI with NARX models has traditionally been car‑
ried out with small training sets with a low number of thousands of data points, and this size
of problem is typically feasible using a standard GP algorithm. However, if one wishes to move
to larger training sets, the costs of computation can become prohibitive. This problem has led
various ideas on reducing the burden, good references are [31,32]. The second problem with the
GP‑NARX formulation relates to noise on the training data. The standard formulation assumes
that the training inputs are noise‑free and that the noise on the outputs is Gaussian with constant
variance as discussed above. This can be an issue if one is attemptingmulti‑step ahead predictions
with a GP‑NARXmodel; because of the feeding back of the output predictions, the outputs become
inputs and carry their predictive uncertainty with them. One of the first comprehensive studies
of this problem appears to have been the work leading to the thesis [33]. Closed‑form approxi‑
mate solutions for the predictive mean and variance in the presence of input noise can be found
in [34]. In the case study presented here (for reasons discussed later), the issues referred to above
have been ignored without (it is believed) damage to the results; however, in other engineering
problems, they will probably need to be addressed.

(i) Case study—an asymmetric duffing oscillator

To illustrate the use of the GP‑NARX formulation, data simulated from a Duffing oscillator
data system are used. In the asymmetric case when a quadratic stiffness is present, the relevant
equation of motion is

mÿ + cẏ + ky + k2y2 + k3y3 = x(t). (4.10)

Data were simulated here by integrating the equation of motion using a fourth‑order fixed‑step
Runge–Kutta algorithm [26]. The parameters adopted were m= 1, c= 20, k= 104, k2 = 107 and
k3 = 5 × 109. The excitation used was a zero‑mean white Gaussian random sequence with a s.d. of
2.0, band‑limited on to the Nyquist interval. The time step used was ∆t= 0.001 s corresponding to
a sampling frequency of 1 kHz. As before, this level of forcing sufficiently excited the nonlinearity.
Gaussian noise of 1% r.m.s. of the signal was added to the response time data. The results pre‑
sented here are for an independent test set of data, also comprising 1000 samples of data from the
system at the same level of excitation as the training data and with the same amplitude of added
noise. The three main hyperparameters for the simple GP formulation with a squared exponen‑
tional kernel used here were determined by using a conjugate‑gradients algorithm to maximize
the log marginal evidence [27]. It was also necessary to establish the number of input and output
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Figure 6. MPO predictions for GP-NARX model of Duffing oscillator data.

lags needed in the model; these numbers are also hyperparameters of the GP‑NARX model. A
quick search using the errors on a validation set gave the values nx = ny = 3. Once the lag num‑
bers were established, the GP‑NARXmodel was fitted and the optimal GP hyperparameters were
found to be: 𝜎2f = 757.4, l= 9.581 and 𝜎

2
n = 3.057 × 10−4. To improve the conditioning of the esti‑

mation process, all data were standardized before the computation, the scales for the data were
reintroduced after predictions were made.
As discussed above, theMPO predictions provide the most stringent test, and these are shown

in figure 6. The corresponding NMSE in this case was 3.44, which still indicates a good fit.
Note that the confidence intervals are very small and do not accommodate the observed pre‑

diction errors; this is because not all of the uncertainty has been accounted for. In the predictions
so far, the predicted outputs have been fed back into the model to form the MPO. This means
that the only uncertainty accounted for in the predictions is the parameter uncertainty. To take a
proper Bayesian viewpoint, one should allow for the fact that each prediction is actually a sample
from a distribution; this distribution being determined by the parameter distribution. To account
for this, during a prediction run, at each instant i, the prediction y∗i was sampled from the distri‑
bution specified by the predictive mean and covariance as specified by equations (4.4) and (4.5).
One such run generates a single realization of the prediction process, to accumulate information
about the distribution of predictions with state estimation taken into account, a Monte Carlo ap‑
proach was adopted here with 25 different runs conducted. Figure 7 shows the 25 realizations of
the predictions.
There is clearly a great deal more uncertainty associated with the predictions now. From the

Monte Carlo realizations, one can estimate a mean prediction and determine ±3𝜎 confidence
bounds, and the result of the analysis for the case here is shown in figure 8. The confidence in‑
tervals are now a more appropriate assessment of the predictive capability of the model. This
exercise shows clearly that the dominant contribution to uncertainty in the predictions is not the
direct component from the parameter uncertainty, but the indirect component because of state
estimation from the uncertain parameters.
Having established a benchmark dataset and illustrated the GP‑NARX performance, it is pos‑

sible to show how GP‑NARX models can be extended in their use to provide a powerful means
of estimating Volterra HFRSs and thus visualizing nonlinear response.
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Figure 7. Monte Carlo realizations of predictions for GP-NARX model of Duffing oscillator data. The black line is the measured
output.

Figure 8. Monte Carlo predictions for GP-NARX model of Duffing oscillator data.

(c) Higher-order FRFs of the GP-NARX model
Given a time‑series model of a system, one can extract the corresponding Volterra FRFs by a pro‑
cess called Harmonic Probing. This algorithm was introduced in [35] for continuous‑time systems
and extended to discrete‑time systems in [11]; only the briefest introduction is given here; more
details and worked examples can be found in [1]. The basic idea is quite simple; for a linear sys‑
tem, if one ‘probes’ the equation of motion with a harmonic input ei𝜔t, the response can be shown
to be H1(𝜔)ei𝜔t. Extraction of H1(𝜔) is a matter of straightforward algebra. The same principle ex‑
tends to nonlinear systems; for example, if the probing input ei𝜔1t + ei𝜔2t is used, the response can
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be shown to be H1(𝜔1)ei𝜔1t +H1(𝜔1)ei𝜔2t + 2H2(𝜔1, 𝜔2)ei(𝜔1+𝜔2)t + higher‑order terms; the algebra
is a little more complicated, but H2 can be extracted. The same principle can be applied for all
HFRFs, although the analysis gets more demanding.
Before proceeding to the GP‑NARX model, it is necessary to determine the explicit form of

the GP‑NARX model on an order‑by‑order basis. First of all, one observes that the GP can be ex‑
pressed as an expansion in terms of basis functions fixed by the covariance kernel and the training
data [17], the predicted output y∗ corresponding to a new input x∗ is given by

y∗ =
N∑
i=1
aik(x∗, xi), (4.11)

where,

a=[k(X,X) + 𝜎2nI]−1y, (4.12)

and this is fixed by the training data.9 If one adopts the squared exponential covariance function,
one arrives at the GP‑NARX form,

yi = 𝜎2f

N∑
j=1
aj exp

⎧
⎨⎩
−
1
2l2

⎡⎢⎣
ny∑
k=1

(yi−k − vjk)2 +
nx∑
m=0

(xi−m − ujm)2
⎤⎥⎦
⎫
⎬⎭
, (4.13)

where the matrix V= {vij} is formed from the first ny columns of the matrix X and U= {uij} is
formed from the remaining nx + 1 columns of X. Note that the notation adopted means that an
input vector x will have components which are lagged system inputs and outputs.
Note too that this expression is essentially that of the radial‑basis function neural network con‑

sidered in [13]; this means that the HFRFs derived in that paper are applicable here. However, the
analysis here presents a more direct approach in terms of homogeneous autoregressive exoge‑
nous (ARX) and NARX model coefficients at each polynomial order; the expressions here also
correct some typographical errors in [13].
The first issue which arises is that the function in equation (4.13) must be expanded as a poly‑

nomial to apply harmonic probing. As observed in [13], direct expansion means that the term of
order nwill contain powers of all orders up to n and thismakes it impossible to group linear terms
etc. The solution is simple, a trivial rearrangement yields the more amenable form:

yi = 𝜎2f

N−p∑
j=1

aj𝛾j exp
⎧
⎨⎩
−
1
2l2

⎡⎢⎣
ny∑
k=1

(y2i−k − 2vjkyi−k) +
nx∑
m=0

(x2i−m − 2ujmxi−m)
⎤⎥⎦
⎫
⎬⎭
, (4.14)

where

𝛾j = exp
⎧
⎨⎩
−
1
2l2

⎡⎢⎣
ny∑
k=1

v2jk +
nx∑
m=0

u2jm
⎤⎥⎦
⎫
⎬⎭
. (4.15)

As discussed above, to identify H1(𝜔), the system is ‘probed’ with the expression

xpi = e
i𝛺t (4.16)

and this yields a response

ypi =H1(𝛺)e
i𝛺t +H2(𝛺,𝛺)e2i𝛺t +H3(𝛺,𝛺,𝛺)e3i𝛺t +⋯ . (4.17)

If the coefficient of ei𝛺t is extracted from the expression, for ypi , the only HFRFwhich can appear is
H1(𝛺); thus the expression can be rearranged to give an analytical expression for H1. In fact, one
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need only consider the linear terms in the expansion to extract H1, so one essentially considers
the ARX model,

yi = 𝜎2f

D−p∑
j=1

aj𝛾j
l2

⎧
⎨⎩
ny∑
k=1

vjkyi−k +
nx∑
m=0

ujmxi−m
⎫
⎬⎭
. (4.18)

Changing the order of summation here results in the standard ARX form:

yi =
ny∑
j=1

𝛼jyi−j +
nx∑
j=0

𝛽jxi−j, (4.19)

where,

𝛼j =
𝜎2f

l2

D−p∑
i=1

ai𝛾ivij, (4.20)

𝛽j =
𝜎2f

l2

D−p∑
i=1

ai𝛾iuij. (4.21)

Harmonic probing of this expression is straightforward; one substitutes the probing expressions
equation (4.16) and (4.17) into equation (4.19) and collects together all the coefficients of ei𝛺t. In
doing this, account must be taken of the effect of time delays on the harmonic signals, this is
straightforward to compute as

xi−k = Bkxi = Bkei𝛺t = e−ki𝛺𝛥tei𝛺t, (4.22)

yi−k = Bkyi = BkH1(𝛺)ei𝛺t = e−ki𝛺𝛥tH1(𝛺)ei𝛺t, (4.23)

where B is the backward shift operator. The result of the calculation is,

H1(𝛺) =

∑nx
j=0 𝛽je

−ij𝛥t𝛺

1 −
∑ny
j=1 𝛼je

−ij𝛥t𝛺
, (4.24)

with 𝛼j and 𝛽j as defined in equations (4.20) and (4.21).
The extraction of H2 is a little more complicated; as mentioned above, this requires prob‑

ing with two independent harmonics, so one applies xpi = e
i𝛺1t + ei𝛺2t, which results in ypi =

H1(𝛺1)ei𝛺1t +H1(𝛺2)ei𝛺2t + 2H2(𝛺1, 𝛺2)ei(𝛺1+𝛺2)t + …. If these expressions are substituted into the
GP function equation (4.14), the only HFRFs to appear in the coefficient of the sum harmonic
ei(𝛺1+𝛺2)t, are H1 and H2, where H1 is already known from equation (4.24). As before, the coeffi‑
cient can be rearranged to give an expression for H2 in terms of the GP parameters and H1. The
only terms in the expansion of equation (4.14) which are relevant for the calculation are those at
first and second order. The calculation is straightforward but tedious and yields,

H2(𝛺1, 𝛺2) =
A + B + C

E
, (4.25)

where,

A=
ny∑
k=1

ny∑
l=1

𝛼klH1(𝛺1)H1(𝛺2)
(
e−i𝛺1k𝛥t.e−i𝛺2l𝛥t + e−i𝛺2k𝛥t.e−i𝛺1l𝛥t

)
, (4.26)

B=
ny∑
k=1

nx∑
l=0

𝛽kl
(
H1(𝛺1)e−i𝛺1k𝛥t.e−i𝛺2l𝛥t +H1(𝛺2)e−i𝛺2k𝛥t.e−i𝛺1l𝛥t

)
, (4.27)
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C=
nx∑
k=0

nx∑
l=0

𝛾kl
(
e−i𝛺1k𝛥t.e−i𝛺2l𝛥t + e−i𝛺2k𝛥t.e−i𝛺1l𝛥t

)
(4.28)

and

E= 1 −
ny∑
k=1

𝛼ke−i(𝛺1+𝛺2)k𝛥t. (4.29)

The coefficients in the above expressions are given by

𝛼jm =
𝜎2f

4l4

D−p∑
i=1

ai𝛾ivijvim − 𝛿jm

𝜎2f

2l2

D−p∑
i=1

ai𝛾i, (4.30)

𝛽jm =
𝜎2f

2l4

D−p∑
i=1

ai𝛾ivijuim, (4.31)

𝛾jm =
𝜎2f

4l4

D−p∑
i=1

ai𝛾iuijuim − 𝛿jm

𝜎2f

2l2

D−p∑
i=1

ai𝛾i, (4.32)

where 𝛿jm is the standard Kronecker delta.
Derivation ofH3 is considerably more lengthy and requires probing with three harmonics, the

expression is not given here for reasons of space. The results here will only present examples of
these calculations for H1 and H2.

(d) HFRF results for the duffing oscillator case study system
The HFRFs for the asymmetric Duffing oscillator system of equation (4.10) are estimated from
a GP‑NARX model fitted to the simulated data. As the objective here is to compare the HFRF
estimates with exact forms derived from Duffing’s equation, a dataset was analysed where only
0.001% noise was added to the Duffing response data.
As before, the GP hyperparameters were estimated by maximizing the log marginal evidence,

in this case the results were: 𝜎2f = 129.2, l= 8.027 and 𝜎
2
n = 5.54 × 10−11. The model gave an OSA

error of 9.4 × 10−7 and anMPO error of 0.001. The comparisons between predicted andmeasured
response are not given as the curves are not distinguishable given the accuracy of the predictions.
However, it is meaningful to give comparisons between the exact HFRFs—which can be found
in [1]—and those estimated from the GP. Figure 9 shows a comparison between the exact and
estimated H1(𝜔); it is clear that the estimate is very accurate indeed.
Figures 10 and 11 show comparisons between the exact and estimated H2 functions in terms

of magnitude and phase, respectively. Because a direct visual comparison is subjective when the
surfaces are displayed, the exact and estimated diagonals H2(𝜔,𝜔) are shown in figure 12, the
accuracy of the estimates is clearly excellent.
The work presented so far has shown that models based onmachine learning allow direct esti‑

mation of Volterra kernels and HFRFs with only moderate computational costs. However, all the
results are for single‑input single‑output systems x(t)⟶ y(t). In the final section we present new
results showing that the analysis is extendable to MIMO systems by using an extended harmonic
probing algorithm [36].
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Figure 9. GP estimate of H1(𝜔) compared to exact result.

Figure 10. GP estimate of H2(𝜔1, 𝜔2)magnitude compared to exact result.

5. HFRFs fromMulti-Input Multi-Output (MIMO) systems

(a) The MIMO Volterra series
This section will consider the general case where a systemmay be stimulated atM points and can
respond at N points; in fact, although the algebra can become considerably more complicated, a
great deal of the complexity is a matter of bookkeeping. The extension to the harmonic probing
algorithm is fairly straightforward.
For the purposes of establishing notation, it is simplest to begin with a MIMO linear system.

In the linear case, with inputs {x(i) ∶ i= 1,… ,M} and outputs {y(i) ∶ i= 1,… ,N}, the principle of
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Figure 11. GP estimate of H2(𝜔1, 𝜔2) phase compared to exact result.

Figure 12. GP estimate of H2(𝜔,𝜔)magnitude and phase compared to exact result.

superposition [1], shows that any given response can be expanded as,

y(p)1 (t) =∫
∞

0
h(p∶1)1 (𝜏)x(1)(t − 𝜏)d𝜏 +⋯ +∫

∞

0
h(p∶M)

1 (𝜏)x(n)(t − 𝜏)d𝜏, (5.1)

and the complete system is characterized by anN ×Mmatrix of impulse responses h(i∶j)1 , or alter‑

natively, an N ×M FRF matrix. In the general nonlinear case, the terms y(p)1 will be just the first

terms in a set of infinite series y(p) = y(p)1 + … y(p)n + …. The responses at a specific point will be com‑
posed of a sum of contributions over different inputs and different nonlinear orders. To get an
impression of how this works, it is sufficient to consider the second‑order contribution at a given
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point; for further simplicity, the two‑input case will be considered. In this case, one has

y(p)2 (t) =∫
∞

0
∫

∞

0
h(p∶aa)2 (𝜏1, 𝜏2)x(a)(t − 𝜏1)x(a)(t − 𝜏2)d𝜏1d𝜏2

+∫
∞

0
∫

∞

0
h(p∶ab)2 (𝜏1, 𝜏2)x(a)(t − 𝜏1)x(b)(t − 𝜏2)d𝜏1d𝜏2

+∫
∞

0
∫

∞

0
h(p∶ba)2 (𝜏1, 𝜏2)x(b)(t − 𝜏1)x(a)(t − 𝜏2)d𝜏1d𝜏2

+∫
∞

0
∫

∞

0
h(p∶bb)2 (𝜏1, 𝜏2)x(b)(t − 𝜏1)x(b)(t − 𝜏2)d𝜏1d𝜏2.

(5.2)

For notational simplicity, groups of kernels referring to the same input combinations can be
combined; in this case, one can take,

h(p∶ab)2 (𝜏1, 𝜏2) + h
(p∶ba)
2 (𝜏2, 𝜏1)⟶ 2h(p∶ab)2 (𝜏1, 𝜏2), (5.3)

which simplifies equation (5.2) to

y(p)2 (t) =∫
∞

0
∫

∞

0
h(p∶aa)2 (𝜏1, 𝜏2)x(a)(t − 𝜏1)x(a)(t − 𝜏2)d𝜏1d𝜏2

+ 2∫
∞

0
∫

∞

0
h(p∶ab)2 (𝜏1, 𝜏2)x(a)(t − 𝜏1)x(b)(t − 𝜏2)d𝜏1d𝜏2

+∫
∞

0
∫

∞

0
h(p∶bb)2 (𝜏1, 𝜏2)x(b)(t − 𝜏1)x(b)(t − 𝜏2)d𝜏1d𝜏2.

(5.4)

The combinations become a little more interesting at higher order; for example, in the h3 case with
two different inputs, one has,

3h(p∶aab)3 (𝜏1, 𝜏2, 𝜏3) = h
(p∶aab)
3 (𝜏1, 𝜏2, 𝜏3) + h

(p∶aba)
3 (𝜏1, 𝜏3, 𝜏2) + h

(p∶baa)
3 (𝜏3, 𝜏2, 𝜏1), (5.5)

whereas when a unique excitation is applied at three different points, one has,

6h(p∶abc)3 (𝜏1, 𝜏2, 𝜏3) = h
(p∶abc)
3 (𝜏1, 𝜏2, 𝜏3) + h

(p∶acb)
3 (𝜏1, 𝜏3, 𝜏2) + h

(p∶bac)
3 (𝜏2, 𝜏1, 𝜏3)

+ h(p∶bca)3 (𝜏2, 𝜏3, 𝜏1) + h
(p∶cab)
3 (𝜏3, 𝜏1, 𝜏2) + h

(p∶cba)
3 (𝜏3, 𝜏2, 𝜏1).

(5.6)

Now, under the usual multidimensional Fourier transformation, each of these Volterra ker‑
nels will give a distinct FRF; for example, corresponding to h(p∶abc)3 (𝜏1, 𝜏2, 𝜏3) there will be a

H(p∶abc)
3 (𝜔1, 𝜔2, 𝜔3). In this much more general case, harmonic probing works exactly as before,

except that several different probing expressions are needed at each nonlinear order to single out
specific kernels. The first‑order case is simple, the required expressions are,

x(a)(t) = ei𝛺1t + ei𝛺2t + ei𝛺3t, (5.7)

y(p)(t) =H(p∶a)
1 (𝛺1)ei𝛺1t +H

(p∶a)
1 (𝛺2)ei𝛺2t +H

(p∶a)
1 (𝛺3)ei𝛺3t + 2H

(p∶aa)
2 (𝛺1, 𝛺2)ei(𝛺1+𝛺2)t

+ 2H(p∶aa)
2 (𝛺1, 𝛺3)ei(𝛺1+𝛺3)t + 2H

(p∶aa)
2 (𝛺2, 𝛺3)ei(𝛺2+𝛺3)t

+ 6H(p∶aaa)
3 (𝛺1, 𝛺2, 𝛺3)ei(𝛺1+𝛺2+𝛺3)t +⋯ , (5.8)

and this is sufficient to extract the first‑order HRFs as one progresses over the input points a.
However, it is important to note that probing at a single input point can only generate ‘diagonal’
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H2 combinations; i.e.,H
(p∶aa)
2 . To extract a complete set ofH2 HFRFs, one needs to simultaneously

probe at more than one input point; for example,

x(a)(t) = ei𝛺1t + ei𝛺2t, (5.9)

x(b)(t) = ei𝛺3t, (5.10)

y(p)(t) =H(p∶a)
1 (𝛺1)ei𝛺1t +H

(p∶a)
1 (𝛺2)ei𝛺2t +H

(p∶b)
1 (𝛺3)ei𝛺3t + 2H

(p∶aa)
2 (𝛺1, 𝛺2)ei(𝛺1+𝛺2)t

+ 2H(p∶ab)
2 (𝛺1, 𝛺3)ei(𝛺1+𝛺3)t + 2H

(p∶ab)
2 (𝛺2, 𝛺3)ei(𝛺2+𝛺3)t

+ 6H(p∶aab)
3 (𝛺1, 𝛺2, 𝛺3)ei(𝛺1+𝛺2+𝛺3)t +⋯ . (5.11)

A much more detailed discussion of MIMO harmonic probing can be found in [36].

(b) Multi-degree-of-freedom NARX neural network structure
The MIMO case also requires an extension of the NARXmodel structure from equation (4.7); one
needs a structure which regresses each output on multiple inputs; that is,

y(p)t = F(p)(y(1)t−1,⋯ , y(1)t−ny , x
(1)
t ,⋯ , x(1)t−(nx−1),⋯ , y(n)t−1,⋯ , y(n)t−ny , x

(n)
t ,⋯ , x(n)t−(nx−1)). (5.12)

Although this expression looks more complex, it is simply a multivariate function as before, just
with more arguments. Assuming that one attempts to fit the output variables one at a time, one
could use the GP formulation as before; however, machine‑learning models exist which can learn
full MIMO systems. Because the multi‑output GP is a little more demanding, the model used here
is the standard multi‑layer perceptron (MLP) neural network [2].In fact, the first paper on HFRFs
from machine learning [13] used an MLP structure.
Harmonic probing on the NARX model structure can recover all the different HFRFs between

different points and at different nonlinear orders; however, it is necessary to establish the correct
notation for the task. Assuming a sigmoidal neural network, the MLP outputs can be expanded
as polynomials in the inputs; for output p, over nonlinear orders i, one has,

y(p)t =
nh∑
j=0

w(p)j tanh(bj)
(i)

i!
⎛⎜⎝
nx−1∑
m=0

u(1)jm x
(1)
t−m +⋯ +

nx−1∑
m
u(n)jm x

(n)
t−m +

ny∑
k=1

v(1)jk y
(1)
t−k +⋯ +

ny∑
k=1

v(n)jk y
(n)
t−k

⎞⎟⎠
i

,

(5.13)
where the weights w(p)j connect the MLP hidden layer to output node p, and the weights between
inputs and hidden layer are grouped into the u and v variables; the weights bj connect the hidden
units to a bias node and 𝜎 is a standard sigmoid activation function. The general positions of the
various weights are presented in the schematic in figure 13.
The number of lags for each input and output lagwas set to a common value; this simplified the

lag selection optimization considerably and did not substantially degrade the results in this case.

(c) A MIMO case study
To illustrate the MIMO approach here in the simplest situation, a two degree‑of‑freedom (2DOF)
nonlinear lumped‑mass system was chosen, as shown in figure 14, with equations of motion:

mÿ1 + cẏ1 + c(ẏ1 − ẏ2) + ky1 + k(y1 − y2) + k2y12 + k3y13 = x1(t), (5.14)

mÿ2 + cẏ2 + c(ẏ2 − ẏ1) + ky2 + k(y2 − y1) + k2y22 + k3y23 = x2(t). (5.15)

As a sanity check, one can apply harmonic probing to these equations directly; for the first‑
order kernel, the probing inputs required are x(p)(t) = ei𝛺t, x(q) = 0, leading to outputs of y(p)(t) =
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Figure 13. MIMO NARX MLP neural network structure.

Figure 14. 2DOF case study system.

H(p∶p)
1 (𝛺)ei𝛺t and y(q)(t) =H(q∶p)

1 (𝛺)ei𝛺t. Substituting into equation (5.15), one arrives at the linear
FRF matrix,

H1
(2)
(𝛺) =

⎡⎢⎣
H(1∶1)
1 (𝛺) H(1∶2)

1 (𝛺)

H(2∶1)
1 (𝛺) H(2∶2)

1 (𝛺)

⎤⎥⎦=
⎡⎢⎢⎣
−m𝛺2 + 2k + 2ci𝛺 −ci𝛺 − k

−ci𝛺 − k −m𝛺2 + 2k + 2ci𝛺

⎤⎥⎥⎦
−1

, (5.16)

as expected.
In practice, the objective is to fit a MIMO NARX model to system data and probe the NARX

model to estimate the HFRFs. The harmonic probing expressions for the full MIMO are very large
and complicated; their forms are not given here, but will be postponed to a future publication.
However, the results of that process for data simulated from the 2DOF case study, are given.
The parameters for simulation were chosen as m= 1kg, c= 5Ns−1, k= 1 × 104, k2 = 1 × 107 and

k3 = 5 × 109. To train the NARX neural network, output data were generated over 20 s with time
step 0.0005 s using a fourth‑order Runge–Kutta integration scheme [26]. The data were then sub‑
sampled to a time step of 0.0025 s (sampling frequency of 400Hz). The system was forced using a
multisine input with r.m.s. 2N with a bandwidth of (0−50Hz) to replicate Gaussian white noise.
In the 2DOF system chosen there are certain symmetries, so there are relations between the ker‑
nels; for example, at first‑order H(1∶1)

1 =H(2∶2)
1 and H(1∶2)

1 =H(2∶1)
1 . For ease of visualization, these

repeating kernels are not displayed here.
The data were then fitted by the MIMO MLP model using Pytorch. Adam gradient was used

with learning rate = 1 × 10−2and a single hidden layerwith 60 neurons. Four lagswere taken for all
input and output variables. Using the weights from the trained model, the HFRFs were extracted
using MIMO harmonic probing. As the continuous‑time equations of motion were known, they
could be used a ground truth for comparison. The exercise conducted here used a noise‑free train‑
ing set of input and output data, theNARXmodel gavemodel‑predictedNMSE values of 0.02 and
0.04 on validation and testing sets, respectively; this shows an excellent fit. Figures 15 and 16 show
the comparisons between the HFRFs and ground truth (the H2 diagonals are shown); the results
are very good, as one might expect given the model fit.

Downloaded from http://royalsocietypublishing.org/rsta/article-pdf/doi/10.1098/rsta.2024.0053/2819514/rsta.2024.0053.pdf
by University of Sheffield user
on 10 February 2026



28

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240053

.........................................................................................................................

Figure 15. Comparison of H1 kernel predictions with ground truth for 2DOF system.

Figure 16. Comparison of H2 kernel predictions diagonal with ground truth for 2DOF system.

6. Conclusions
Long conclusions are not warranted here. The aim of the paper has been to show that devel‑
opments in machine learning over the last two or three decades have proved very effective in
Volterra‑series estimation, both for kernels themselves and for the HFRFs. A number of technolo‑
gies are presented here; in the first case, an RKHS approach is shown, which estimates discrete
kernels directly from a form of regularised least‑squares analysis. Second, a GP‑NARX approach
is presented, which allows direct estimation of HFRFs. Finally a neural network NARX model is
shown to be effective in estimating HFRFs for MIMO systems. In some ways, the exact machine‑
learning algorithms are not so important; in each case, the main objective is to fit a predictive
time‑series model. However, in the case of HFRFs for example, one would need to perform a
harmonic probing calculation appropriate to whatever model basis is chosen. The ones shown
here have been calculated for a Gaussian basis—appropriate to a GP or a radial‑basis function
network—and for a sigmoidal neural network structure; these are arguably the most common
bases. The idea here has been to provide an overview of the main ideas, although some new re‑
sults have been included here in terms of the MIMO results and also a ‘simple’ demonstration
that the Volterra series is a functional Taylor series.

Data accessibility. Supplementary material is available online [37].
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Endnotes
1Unfortunately, the term ‘non‑parametric’ can be used in different ways; the sense here is from the structural
dynamics community, regarding lack of physical meaning of the parameters. This use is not so far from
the usual sense in machine learning. However, one should note that some machine learning users refer to a
model as non‑parametric if it predicts using the training data [3].
2Apart from being an outstanding mathematician, Volterra appears to have been a man of principle; in 1931,
at the end of a distinguished career, he refused to take an oath of loyalty to the fascist government; as a result,
he was removed from his university chair and expelled from the Italian scientific academies.
3Note that there are restrictions on the type of functionals which admit a Volterra representation. In partic‑
ular, the functionals of interest must be single‑valued; this means that systems which bifurcate under certain
conditions—like the Duffing oscillator of equation (1.1)—do not have a Volterra series for the system under
those conditions. More generally, it is often said that the Volterra series does not exist if a system exhibits
strong nonlinearity. The qualifier ’strong’ is rarely precisely defined, but one operational definition would be
to say that this means that bifurcations are excluded, along with associated behaviour like subharmonics or
chaos; one might say that a system is weakly nonlinear if only superharmonics can appear in the response.
A more detailed discussion of the requirements for a Volterra series to exist can be found in [19]. A more
difficult problem arises when one asks questions of whether the series converges. This is a very difficult ques‑
tion, as concepts like ‘radius of convergence’ need to extend to function spaces. In fact, there are very few
convincing studies of convergence, mostly these are restricted to specific systems and specific inputs and are
simply observational. Perhaps one of the most convincing analyses was provided by Barrett, early in the ap‑
plications to engineering [9]. Again, as an observation, it is noted in [1], that a truncated Volterra expansion
begins to lose accuracy as the system approaches a bifurcation; the context there is where the frequency of a
harmonic input approaches a jump frequency in the FRF of a Duffing oscillator. Of course, this often limits
the use of the Volterra series to qualitative analysis, but this can be valuable in itself.
4The tedious part is the bookkeeping; i.e. keeping track of the order of the Volterra coefficients in the
parameters wk.
5Note that this is a speed‑up in prediction on new points; as will be shown later, estimating the coefficients
is an O(D3) problem.
6In fact, the data for this section and the following were simulated with a time step of 0.001 s and then down‑
sampled. This idea balanced the accuracy of the simulation with the number of points of training data.
Previous experience with many parametric identification methods showed that this sampling frequency
gives good results for the systems of interest.
7At first glance, this looks like a very small number; however, consider the following approximate argument.
The regularization constant can be regarded as an estimate of the noise variance 𝜎2n (see next section). In
this case, 𝜎n = 0.1𝜎y, where 𝜎y is the s.d. of the response. Now, very approximately 𝜎y ≈ 𝜎x∕k, so in this case
𝜎n ≈ 10−5.
8In fact, this is an issue also faced by the RKHS approach.
9The reader will have noticed that equations (4.11) and (4.12) bear a striking resemblance to equations (3.20)
and (3.33) from the RKHS treatment in the previous section. In fact, one can show that the GP and RKHS
approaches are very closely related, as discussed in chapter 6 of [27].
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