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A coupled system composed of a Newtonian fluid

located on a sinusoidally forced elastic solid is

studied analytically and numerically. The focus is

on the transient evolution from the beginning of

the forced oscillations and on the periodic behaviour

established once the transient has vanished. The

analytical solution is expressed as series summations

that elucidate the propagation and reflections of

elastic transverse waves through the solid layer and

the viscous dissipation of oscillations in the fluid

layer. Short-term transients in both the fluid and the

solid form at every interaction between an elastic

wave and a solid boundary. The long-term transient,

quantified by the power balance in the fluid layer,

instead pertains to the formation of all the elastic

waves in the solid layer. The system can be viewed

as a generalized transient Stokes layer generated

by the elastic waves or as a damped resonant

oscillator when the velocity at the fluid–solid interface

increases significantly with respect to the forcing

amplitude. A parametric study is carried out for three

applications of technological interest, i.e. the indirect

measurement of fluid viscosity, the turbulent drag

reduction by travelling shear waves and the sensing

and manipulation of biological flows.

1. Introduction
Shear-driven fluid systems are found in a wide range

of engineering and industrial applications. Shear waves,

with or without the presence of a bulk flow, may

be generated by piezoelectric transducers or electro-

osmosis and have been used for sensing, fluid mixing

and flow control, particularly at microfluidic scales [1].

2026 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

Downloaded from http://royalsocietypublishing.org/rspa/article-pdf/doi/10.1098/rspa.2025.0616/5683054/rspa.2025.0616.pdf
by University of Sheffield user
on 10 February 2026

https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2025.0616&domain=pdf&date_stamp=2026-02-04
mailto:adcruz1413@gmail.com
http://orcid.org/0009-0006-7087-2594
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

482:20250616
..........................................................

Sensing and manipulation of proteins in biochemical flows can be performed via surface

acoustic waves (SAWs) with frequencies of the order of GHz, travelling in piezoelectric substrates

immersed in a fluid. The interaction between molecules immobilized on the substrate and those

suspended in the fluid results in a measurable modification of the SAWs and in an indirect

detection of the suspended molecules [2]. On other SAW devices, standing waves have been used

to transport proteins over a few millimetres [3].

Whilst other types of SAWs, such as Rayleigh waves, have also been used in biochemical

flows, pure-horizontal waves are favoured owing to the lack of attenuation. The strong interaction

between the waves and the bulk fluid may be desirable to drive recirculation effects and favour

mixing, concentration and separation in microfluidic ‘lab-on-a-chip’ devices [4,5]. Ultrasound

shear waves are routinely used for laboratory and in situ monitoring of tribological systems. As

lubricating oils in industrial machines experience shear rates as high as 107 s−1, well beyond the

range of conventional viscometers, measurements of reflected ultrasonic shear waves are used to

investigate the shear rate and temperature dependence of these oils [6,7]. Owing to the impedance

mismatch between the tested oil and the adjacent solid, a thin matching layer is sometimes used

to improve sensitivity [8,9]. Shear-wave methods have also been used to measure the mechanical

properties of soft tissues and stresses in railroad steel [10,11].

Wall-shear waves have also been utilized to alter turbulent boundary layers and achieve

friction drag reduction [12–14]. The modification of wall-bounded turbulent flows by surface

waves has been reported to reduce skin friction by up to 45%, although the wall-shear forcing

must be specified carefully to avoid drag increase [15–17].

Some of these applications involve wave transmission through multiple material layers.

Mathematical studies of these engineering systems often employ empirical models fitted to

experimental data or derived from analogous systems, which necessitate assumptions about

the material layers and the geometry of the apparatus [18,19]. Some of these models, although

derived from simple definitions, become lengthy and complicated for even a few layers of

different materials. Such empirical and analogous models are unlikely to be efficient for complex

geometries consisting of many layers.

The fundamental mathematical treatment of shear wave propagation through multiple layers

is typically focused on the periodic behaviour [20–23]. In several applications, however, the

dynamics over very short time scales is of interest, particularly for real-time monitoring of

machinery and for materials with long relaxation times. The initial transient response of a single

shear-driven fluid layer to imposed shear wall motion has been investigated [24], the motion

eventually developing into the classical periodic ‘Stokes layer’ [25]. More recently, the initial

transient response has been studied for a system of two fluid layers with different viscosities [26].

Transient shear wave propagation through multiple solid layers is well documented [27,28], but

existing transient studies of shear-driven fluids have not considered interactions with adjacent

solid layers. In addition, these studies only describe the initial transient behaviour owing to the

start of shear forcing, whereas in applications where the forcing is pulsed over short intervals the

transient dynamics following the end of the forcing should also be considered.

To the best of our knowledge, a fundamental study that considers the transient response of

a coupled solid–fluid system at both the start and end of an interval of shear forcing has not yet

been carried out. We therefore present an analytical and numerical investigation of a shear-driven

solid layer underneath an unbounded fluid. Although our system is idealized in its geometry, the

inclusion of a solid layer through which the fluid is indirectly driven renders this configuration

representative of several real set-ups. We solve the system analytically, arriving at closed-form

solutions for the transient and periodic motions of the two layers. The analytical approach leads

to insight into the underlying physics that would not be possible with a purely numerical study.

Since our focus is on the physics of the solid–fluid interaction and on technological applications

where the viscous penetration depth is thin compared to the distance to the solid boundaries

confining the fluid, we consider the fluid to be bounded by the moving boundary only. In other

problems where a fluid is forced in oscillatory motion, the fluid is confined between two plates,

so that no-slip boundary conditions are imposed at both solid boundaries. The solution to that
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confined-fluid problem would simplify to our unbounded-fluid solution in the limit of large

distance between the solid boundaries [26,29].

In §2, we present the problem in mathematical form using the elastic continuum equation

and the Navier–Stokes equation. In §3, we solve the system to find closed-form solutions for

the transient and periodic problems and, in §4, we solve the equations numerically to verify the

accuracy of the analytical solution. In §5, we discuss the physics that can be extracted from the

analytical solution and explore the behaviour of the system for a range of experimentally inspired

parameters. We also quantify the time scales over which the transient phenomena evolve into the

periodic motion.

2. Mathematical formulation
We consider a two-layer system described by Cartesian spatial coordinates x∗, y∗, z∗ and time t∗,

where ∗ denotes dimensional quantities. A homogeneous, isotropic, elastic solid with density ρ∗
s ,

Young’s modulus E∗ and Poisson ratio σ exists between y∗ = 0 and y∗ = h∗. An incompressible

Newtonian fluid with constant kinematic viscosity ν∗ and density ρ∗
f sits on top of the solid

layer and is unbounded for y∗ > h∗. This system is shown in figure 1. The motion of the solid

is described by the elastic continuum equation:

ρ∗
s
∂2

ϕ
∗

∂t∗2
= (Λ∗ + µ∗

s )∇(∇ · ϕ
∗) + µ∗

s ∇2
ϕ

∗, (2.1)

where ϕ
∗(x∗, y∗, z∗, t∗) is the solid displacement and Λ∗ = E∗σ/(1 + σ )(1 − 2σ ) and µ∗

s = E∗/2(1 + σ )

are the Lamé parameters. The velocity u
∗(x∗, y∗, z∗, t∗) of the fluid is described by the Navier–

Stokes equation:
∂u

∗

∂t
+ (u∗ · ∇)u∗ = −∇p∗

ρ∗
f

+ ν∗∇2
u

∗, (2.2)

where p∗ is the pressure. The system is uniform in the x∗ and z∗ directions, and driven by an

imposed shear displacement along the z∗ direction at the lower boundary y∗ = 0. As the solid

displacement varies only along a direction normal to the shear deformation, the divergence ∇ · ϕ
∗

is zero. We assume that there is no pressure gradient in the fluid. Equations (2.1) and (2.2) thus

reduce to a pair of partial differential equations for the shear solid displacement ϕ∗ and the shear

fluid velocity u∗ along z∗, as functions of the wall-normal coordinate y∗ and time t∗:

ρ∗
s
∂2ϕ∗

∂t∗2
= µ∗

s
∂2ϕ∗

∂y∗2
(2.3)

and
∂u∗

∂t∗
= ν∗ ∂2u∗

∂y∗2
. (2.4)

The boundary conditions are obtained for the forcing of the solid,

ϕ∗(y∗ = 0) =

⎧

⎨

⎩

ϕ∗
0 sin

(
2π t∗

T∗
0

)

0 ≤ t∗ < τ∗,

0 t∗ ≥ τ∗,

(2.5)

the continuity of shear velocity and shear stress at the solid–fluid interface,

u∗(y∗ = h∗) = ∂ϕ∗

∂t∗

∣
∣
∣
∣
y∗=h∗

(2.6)

and

µ∗
f

∂u∗

∂y∗

∣
∣
∣
∣
y∗=h∗

= µ∗
s

∂ϕ∗

∂y∗

∣
∣
∣
∣
y∗=h∗

, (2.7)

(where µ∗
f is the dynamic viscosity of the fluid) and the vanishing fluid velocity far from the

interface,
lim

y∗→∞
u∗ = 0. (2.8)
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Figure 1. Schematic of the solid–fluid system.

We impose stationary initial conditions for the solid and the fluid:

ϕ∗(t∗ = 0) = 0,
∂ϕ∗

∂t∗

∣
∣
∣
∣
t∗=0

= 0, u∗(t∗ = 0) = 0. (2.9)

In non-dimensional form, the system reads

∂2ϕ

∂t2
= ∂2ϕ

∂yλ
2

, (2.10)

∂u

∂t
= ∂2u

∂yδ
2

, (2.11)

ϕ(yλ = 0) =
{

sin(ωt) 0 ≤ t < τ ,

0 t ≥ τ ,
(2.12)

u(yδ = hδ) = ∂ϕ

∂t

∣
∣
∣
∣
yλ=hλ

, (2.13)

∂u

∂yδ

∣
∣
∣
∣
yδ=hδ

= ρL
∂ϕ

∂yλ

∣
∣
∣
∣
yλ=hλ

, (2.14)

lim
yδ→∞

u = 0 (2.15)

and ϕ(t = 0) = 0,
∂ϕ

∂t

∣
∣
∣
∣
t=0

= 0, u(t = 0) = 0, (2.16)

in terms of the quantities listed in table 1. The coordinate y∗ is scaled differently in the two

layers. In the solid, y∗ is scaled by the transverse elastic wavelength λ∗ = T∗
0

√

µ∗
s /ρ

∗
s [30]. In the

fluid, y∗ is scaled by the thickness δ∗ =
√

ν∗T∗
0 of the Stokes layer generated by a sinusoidal wall

motion below a still fluid [25] since we expect the viscous effects in our case to penetrate to

a comparable distance from the solid–fluid interface. The assumption of an unbounded fluid

leading to equation (2.15) is valid if the thickness of the fluid layer is much larger than this

Stokes-layer thickness.
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Table 1. Scaled variables of the coupled system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shear solid displacement ϕ = ϕ∗/ϕ∗
0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shear fluid velocity u= u∗T∗0 /ϕ
∗
0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

time t = t∗/T∗0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

angular frequency of sinusoidal forcing ω = 2π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

duration of sinusoidal forcing τ = τ ∗/T∗0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wall-normal coordinate in solid yλ = y∗/λ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

maximum location in solid hλ = h∗/λ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wall-normal coordinate in fluid yδ = y∗/δ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

minimum location in fluid hδ = h∗/δ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ratio of densities ρ = ρ∗
s /ρ

∗
f. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ratio of length scales L= λ∗/δ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Analytical results
We first solve equations (2.10)–(2.16) analytically in §3a using Laplace transforms to obtain the

transient evolution of the two-layer system. At large times, the motion becomes periodic. The

solution in this case is obtained in §3b using Fourier modes. In §3c, we find the solution for the

fluid motion without the solid layer underneath.

(a) Transient solution by Laplace transforms

The initial value problem equations (2.10)–(2.16) is solved by using the Laplace transform L : t →
s:

q̂(s) =L[q(t)] =
∫ ∞

0
q(t) e−st dt. (3.1)

The system equations (2.10)–(2.16) is reduced to a system of ordinary differential equations

(ODEs) in ϕ̂ and û:

s2ϕ̂ = d2ϕ̂

dyλ
2

, (3.2)

sû = d2û

dyδ
2

, (3.3)

ϕ̂(yλ = 0) = ω(1 − e−τ s(cos (ωτ ) + (s/ω) sin (ωτ )))

s2 + ω2
, (3.4)

û(yδ = hδ) = sϕ̂(yλ = hλ), (3.5)

dû

dyδ

∣
∣
∣
∣
yδ=hδ

= ρL
dϕ̂

dyλ

∣
∣
∣
∣
yλ=hλ

(3.6)

and lim
yδ→∞

û = 0. (3.7)

The solution to equations (3.2)–(3.7) is

ϕ̂ = ω(ρL cosh ((hλ − yλ)s) +
√

s sinh ((hλ − yλ)s))T̂(s)

(s2 + ω2)(ρL cosh (hλs) +
√

s sinh (hλs))
(3.8)

and

û = ρLsω e
√

s(hδ−yδ )T̂(s)

(s2 + ω2)(ρL cosh (hλs) +
√

s sinh (hλs))
, (3.9)
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where we have defined

T̂(s) = 1 − e−τ s(cos (ωτ ) + s

ω
sin (ωτ )).

The exponentially growing term arising in the solution to equation (3.3) is zero owing to the

fluid being unbounded, as given by equation (2.15). If the fluid were confined, this exponential

term would be non-zero and the fluid-layer solution would involve hyperbolic functions at the

numerator, as in the solid-layer solution equation (3.8). In order to recover the physical solutions

ϕ(yλ, t) and u(yδ , t), the inverse Laplace transform L−1 is applied. First, we write the hyperbolic

functions in equations (3.8) and (3.9) as exponentials and divide the numerator and denominator

by ehλs, obtaining a common denominator expressed as a geometric ray series [31]:

B̂(s) =
(

1 + ρL −
√

s

ρL +
√

s
e−2hλs

)−1

=
∞
∑

n=0

(−1)n

(
ρL −

√
s

ρL +
√

s

)n

e−2nhλs. (3.10)

The convergence of the series in equation (3.10) is justified since hλ > 0 and Re[s] > 0 for the

inverse Laplace transform. We obtain

ϕ̂ = e−syλωT̂(s)B̂(s)

s2 + ω2
+ es(yλ−2hλ)(ρL −

√
s)ωT̂(s)B̂(s)

(s2 + ω2)(ρL +
√

s)
(3.11)

and

û = 2ρLse
√

s(hδ−yδ )−shλωT̂(s)B̂(s)

(s2 + ω2)(ρL +
√

s)
. (3.12)

Since 0 ≤ yλ ≤ hλ, we use the time shifting property of the Laplace transform to replace the

exponents involving −s in equations (3.11) and (3.12) with Heaviside step functions H:

ϕ(yλ, t) =L
−1[ϕ̂(yλ, s)] =L

−1

[

e−syλωT̂(s)B̂(s)

s2 + ω2
+ es(yλ−2hλ)(ρL −

√
s)ωT̂(s)B̂(s)

(s2 + ω2)(ρL +
√

s)

]

= H(t − yλ)L−1

[

ωT̂(s)B̂(s)

s2 + ω2

]

t→t−yλ

+ H(t + yλ − 2hλ)L−1

[

(ρL −
√

s)ωT̂(s)B̂(s)

(s2 + ω2)(ρL +
√

s)

]

t→t+yλ−2hλ

and

u(yδ , t) =L
−1[û(yδ , s)] =L

−1

[

2ρLs e
√

s(hδ−yδ )−shλωT̂(s)B̂(s)

(s2 + ω2)(ρL +
√

s)

]

= H(t − hλ)L−1

[

2ρLse
√

s(hδ−yδ )ωT̂(s)B̂(s)

(s2 + ω2)(ρL +
√

s)

]

t→t−hλ

.

By further application of the time shifting property, the exponents in B̂(s) may be replaced

using another time-coordinate shift:

ϕ =
∞
∑

n=0

(−1)nH(t − yλ − 2nhλ)L−1

[
(

ρL −
√

s

ρL +
√

s

)n
ωT̂(s)

s2 + ω2

]

t→t−yλ−2nhλ

+
∞
∑

n=0

(−1)nH(t + yλ − 2(n + 1)hλ)L−1

[
(

ρL −
√

s

ρL +
√

s

)n+1
ωT̂(s)

s2 + ω2

]

t→t+yλ−2(n+1)hλ

and

u =
∞
∑

n=0

(−1)nH(t − (2n + 1)hλ)L−1

[

2ρLsω(ρL −
√

s)n e
√

s(hδ−yδ )T̂(s)

(s2 + ω2)(ρL +
√

s)n+1

]

t→t−(2n+1)hλ.

The introduction of the summations, with each term shifted in time by 2nhλ, clarifies the

physical interpretation of the solid and fluid solutions as series of superposed reflections evolving
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in time. Applying the time shifting property once more to the exponents in T̂(s), we obtain

ϕ =
∞
∑

n=0

(−1)nH(t − yλ − 2nhλ)L−1

[
(

ρL −
√

s

ρL +
√

s

)n
ω

s2 + ω2

]

t→t−yλ−2nhλ

− cos (ωτ )
∞
∑

n=0

(−1)nH(t − yλ − 2nhλ − τ )L−1

[
(

ρL −
√

s

ρL +
√

s

)n
ω

s2 + ω2

]

t→t−yλ−2nhλ−τ

− sin (ωτ )
∞
∑

n=0

(−1)nH(t − yλ − 2nhλ − τ )L−1

[
(

ρL −
√

s

ρL +
√

s

)n
s

s2 + ω2

]

t→t−yλ−2nhλ−τ

+
∞
∑

n=0

(−1)nH(t + yλ − 2(n + 1)hλ)L−1

[
(

ρL −
√

s

ρL +
√

s

)n+1
ω

s2 + ω2

]

t→t+yλ

−2(n+1)hλ

− cos (ωτ )
∞
∑

n=0

(−1)nH(t + yλ − 2(n + 1)hλ − τ )L−1

[
(

ρL −
√

s

ρL +
√

s

)n+1
ω

s2 + ω2

]

t→t+yλ

−2(n+1)hλ−τ

− sin (ωτ )
∞
∑

n=0

(−1)nH(t + yλ − 2(n + 1)hλ − τ )L−1

[
(

ρL −
√

s

ρL +
√

s

)n+1
s

s2 + ω2

]

t→t+yλ

−2(n+1)hλ−τ

and

u =
∞
∑

n=0

(−1)nH(t − (2n + 1)hλ)L−1

[

2ρLsω(ρL −
√

s)n e
√

s(hδ−yδ )

(s2 + ω2)(ρL +
√

s)n+1

]

t→t−(2n+1)hλ

− cos (ωτ )
∞
∑

n=0

(−1)nH(t − (2n + 1)hλ − τ )L−1

[

2ρLsω(ρL −
√

s)n e
√

s(hδ−yδ )

(s2 + ω2)(ρL +
√

s)n+1

]

t→t−(2n+1)hλ−τ

− sin (ωτ )
∞
∑

n=0

(−1)nH(t − (2n + 1)hλ − τ )L−1

[

2ρLs2(ρL −
√

s)n e
√

s(hδ−yδ )

(s2 + ω2)(ρL +
√

s)n+1

]

t→t−(2n+1)hλ−τ

.

Although the summation index of the series goes from 0 to ∞, for a large enough n and given

t and yλ, only a finite number of terms are required for the solutions to be exact because of the

presence of the Heaviside functions. The remaining inverse Laplace transforms may be grouped

and rewritten as families of functions GS,m,n(t) and GF ,m,n(yδ , t):

GS,m,n(t) =L
−1

[

smω1−m

s2 + ω2

(
ρL −

√
s

ρL +
√

s

)n
]

(3.13)

and

GF ,m,n(yδ , t) =L
−1

[

2ρLs1+mω1−m(ρL −
√

s)ne
√

s(hδ−yδ )

(s2 + ω2)(ρL +
√

s)n+1

]

, (3.14)

with integer indices m = 0, 1, and n ≥ 0. Using these functions, the solutions ϕ and u may be

written in terms of GS,0,n, GS,1,n, GF ,0,n and GF ,1,n:

ϕ =
∞
∑

n=0

(−1)nH(t − yλ − 2nhλ)GS,0,n(t − yλ − 2nhλ)

− cos (ωτ )
∞
∑

n=0

(−1)nH(t − yλ − 2nhλ − τ )GS,0,n(t − yλ − 2nhλ − τ )

− sin (ωτ )
∞
∑

n=0

(−1)nH(t − yλ − 2nhλ − τ )GS,1,n(t − yλ − 2nhλ − τ )

Downloaded from http://royalsocietypublishing.org/rspa/article-pdf/doi/10.1098/rspa.2025.0616/5683054/rspa.2025.0616.pdf
by University of Sheffield user
on 10 February 2026



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

482:20250616
..........................................................

+
∞
∑

n=0

(−1)nH(t + yλ − 2(n + 1)hλ)GS,0,n+1(t + yλ − 2(n + 1)hλ)

− cos (ωτ )
∞
∑

n=0

(−1)nH(t + yλ − 2(n + 1)hλ − τ )GS,0,n+1(t + yλ − 2(n + 1)hλ − τ )

− sin (ωτ )
∞
∑

n=0

(−1)nH(t + yλ − 2(n + 1)hλ − τ )GS,1,n+1(t + yλ − 2(n + 1)hλ − τ ) (3.15)

and

u =
∞
∑

n=0

(−1)nH(t − (2n + 1)hλ)GF ,0,n(yδ , t − (2n + 1)hλ)

− cos (ωτ )
∞
∑

n=0

(−1)nH(t − (2n + 1)hλ − τ )GF ,0,n(yδ , t − (2n + 1)hλ − τ )

− sin (ωτ )
∞
∑

n=0

(−1)nH(t − (2n + 1)hλ − τ )GF ,1,n(yδ , t − (2n + 1)hλ − τ ). (3.16)

GS,0,n, GS,1,n, GF ,0,n and GF ,1,n are found by integration in the complex plane along a Bromwich

contour (the detailed derivation is given in appendix A). These functions are expressed in physical

space in terms of parameters K0−7:

GS,0,n = K1

Kn
0

sin (ωt) + K2

Kn
0

cos (ωt) − 1

π

∫ ∞

0
K3

ωe−Rt

R2 + ω2
dR, (3.17)

GS,1,n = K1

Kn
0

cos (ωt) − K2

Kn
0

sin (ωt) + 1

π

∫ ∞

0
K3

R e−Rt

R2 + ω2
dR, (3.18)

GF ,0,n = 2ρLω e(hδ−yδ )
√

ω/2

K
n+1
0

(

K4 cos
(

(hδ − yδ)
√

(ω/2) + ωt
)

+ K5 sin
(

(hδ − yδ)
√

(ω/2) + ωt
))

+ 1

π

∫ ∞

0

2ρLωRe−Rt

(R2 + ω2)(ρ2L2 + R)
(K6 sin ((hδ − yδ)

√
R) + K7 cos ((hδ − yδ)

√
R)) dR (3.19)

and GF ,1,n = 2ρLω e(hδ−yδ )
√

ω/2

K
n+1
0

(

K5 cos
(

(hδ − yδ)
√

(ω/2) + ωt
)

− K4 sin
(

(hδ − yδ)
√

(ω/2) + ωt
))

− 1

π

∫ ∞

0

2ρLωR2e−Rt

(R2 + ω2)(ρ2L2 + R)
(K6 sin ((hδ − yδ)

√
R) + K7 cos ((hδ − yδ)

√
R)) dR, (3.20)

where

K0 =
(

ρL +
√

ω

2

)2

+ ω

2
, K1 = Re

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

,

K2 = Im

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

, K3(R) = Im

[(

(ρL − i
√

R)2

ρ2L2 + R

)n]

,

K4 =
(

ρL +
√

ω

2

)

K1 +
√

ω

2
K2, K5 =

√

ω

2
2K1 −

(

ρL +
√

ω

2

)

K2,

K6(R) = ρLRe

[(

ρL − i
√

R

ρL + i
√

R

)n]

+
√

RIm

[(

ρL − i
√

R

ρL + i
√

R

)n]

and K7(R) = ρLIm

[(

ρL − i
√

R

ρL + i
√

R

)n]

−
√

RRe

[(

ρL − i
√

R

ρL + i
√

R

)n]

.
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GS,0,n, GS,1,n, GF ,0,n and GF ,1,n consist of time-periodic terms involving sin (ωt) and cos (ωt),

plus terms decaying exponentially in time. Two transient contributions to the solutions therefore

exist: the summation of terms in equations (3.15) and (3.16) where the number of contributing

terms depends on t through the Heaviside functions, and the exponential terms inside GS,0,n,

GS,1,n, GF ,0,n and GF ,1,n. At large times, the system approaches a periodic state given by the full

summations in equations (3.15) and (3.16) and the periodic terms in GS,0,n, GS,1,n, GF ,0,n and

GF ,1,n. A detailed discussion on the physical interpretation of the analytical solutions is given in

§5a.

(b) Periodic solution by Fourier modes

As τ → ∞, the terms involving τ in the transient solutions equations (3.15) and (3.16) vanish

owing to their multiplying Heaviside functions having negative arguments for all t ≥ 0. In this

simplification, which may also be obtained by setting T̂(s) = 1 in equations (3.8) and (3.9), the

forcing in equation (2.12) is sinusoidal for t ≥ 0. Furthermore, for sufficiently large values of t, the

motion becomes independent from the initial conditions and the expressions equations (3.15) and

(3.16) become periodic in time, i.e. when all the transient phenomena have decayed. Therefore,

assuming time-periodic solutions:

ϕP(yλ, t) = Im
[

ϕ̃(yλ)eiωt
]

and uP(yδ , t) = Im
[

ũ(yδ) eiωt
]

, (3.21)

Equations (2.10)–equation (2.15) are rewritten as a system of ODEs for ϕ̃ and ũ:

iωũ = d2ũ

dyδ
2

, (3.22)

− ω2ϕ̃ = d2ϕ̃

dyλ
2

, (3.23)

ϕ̃(yλ = 0) = 1, (3.24)

ũ(yδ = hδ) = iωϕ̃

∣
∣
∣
∣
yλ=hλ

, (3.25)

dũ

dyδ

∣
∣
∣
∣
yδ=hδ

= ρL
dϕ̃

dyλ

∣
∣
∣
∣
yλ=hλ

(3.26)

and lim
yδ→∞

ũ = 0. (3.27)

The solution to equations (3.22)–equation (3.27) is

ϕ̃ = ρL cos (ω(hλ − yλ)) + i
√

iω sin (ω(hλ − yλ))

ρL cos (ωhλ) + i
√

iω sin (ωhλ)
(3.28)

and

ũ = iρLω e(hδ−yδ )
√

iω

ρL cos (ωhλ) + i
√

iω sin (ωhλ)
. (3.29)

The solutions ϕP and uP are expressed in terms of parameters P1−5:

ϕP = Im
[

ϕ̃ eiωt
]

= P1(yλ)

P5
sin (ωt) + P2(yλ)

P5
cos (ωt), (3.30)

uP = Im
[

ũ eiωt
]

= P3

P5
e(hδ−yδ )

√
ω/2 sin

(

(hδ − yδ)

√

ω

2
+ ωt

)

+ P4

P5
e(hδ−yδ )

√
ω/2 cos

(

(hδ − yδ)

√

ω

2
+ ωt

)

, (3.31)
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where

P1(yλ) = ρ2L2 cos (ωhλ) cos (ω(hλ − yλ)) − ρL

√

ω

2
[sin (ωhλ) cos (ω(hλ − yλ))

+ cos (ωhλ) sin (ω(hλ − yλ))] + ω sin (ωhλ) sin (ω(hλ − yλ)),

P2(yλ) = ρL

√

ω

2
(cos (ωhλ) sin (ω(hλ − yλ)) − sin (ωhλ) cos (ω(hλ − yλ))),

P3 = ρLω

√

ω

2
sin (ωhλ), P4 = ρLω

(

ρL cos (ωhλ) −
√

ω

2
sin (ωhλ)

)

and P5 =
(

ρL cos (ωhλ) −
√

ω

2
sin (ωhλ)

)2

+ ω

2
sin(ωhλ)2.

The two terms in uP can be combined by assuming a solution of the form

uP =A e(hδ−yδ )
√

ω/2 sin

(

(hδ − yδ)

√

ω

2
+ ω(t + T )

)

(3.32)

and then expanding and matching coefficients with those in equation (3.31). The periodic fluid

solution equation (3.32) is in the form of a Stokes layer with a time offset T and amplitude A:

T = 1

ω
arctan

(√

2

ω
ρL cot (ωhλ) − 1

)

and A= P3

P5
sec (ωT ). (3.33)

The maximum velocity A is the same as the maximum velocity in the solid at yλ = hλ, obtained

by differentiating equation (3.30) with respect to time, and depends on hλ and ρL. The periodic

motion of the fluid in the two-layer system therefore has the same functional form as that of a

fluid driven directly at its lower boundary, with the solid layer underneath serving only to vary

the amplitude and phase of the Stokes layer. The value of A can be positive or negative owing

to the sign of P3, so the overall phase difference between the material interface and the lower

boundary of the solid depends on both T and the sign of A.

(c) Fluid-only solution

We now consider the case of a vanishingly small solid layer, where the fluid is forced directly at

its lower boundary. A simplified Laplace-space solution ûF is obtained for the fluid by setting

hλ = hδ = 0 in equation (3.9):

ûF = sω e−yδ

√
s(1 − e−τ s(cos (ωτ ) + (s/ω) sin (ωτ )))

s2 + ω2
. (3.34)

Applying the inverse Laplace transform to equation (3.34) and using the same method given

in appendix A for GS,m,n and GF ,m,n, we obtain the corresponding solution in physical space:

uF = ωe−yδ

√
ω/2 cos

(

ωt − yδ

√

ω

2

)

− ω

π

∫ ∞

0

R

R2 + ω2
e−Rt sin (yδ

√
R) dR

− H[t − τ ] cos (ωτ )

(

ω e−yδ

√
ω/2 cos

(

ω(t − τ ) − yδ

√

ω

2

)

−ω

π

∫ ∞

0

R

R2 + ω2
e−R(t−τ ) sin (yδ

√
R) dR

)

− H[t − τ ] sin (ωτ )

(

e−yδ

√
ω/2 sin

(

ω(t − τ ) − yδ

√

ω

2

)

+ 1

π

∫ ∞

0

R2

R2 + ω2
e−R(t−τ ) sin (yδ

√
R) dR

)

. (3.35)
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In the limit τ → ∞, only the first two terms in equation (3.35) are non-zero. The solution

matches the solution to the transient extension of the Stokes second problem [24] and the

equivalent heat transfer problem [32]. Similarly, setting hλ = hδ = 0 in equation (3.31) leads to

the first term of equation (3.35), i.e. the periodic Stokes layer [25]. The solution to the two-layer

system therefore reduces as expected to that of a single layer of viscous fluid in both the transient

and periodic cases.

4. Numerical procedures
We solve the system equations (2.10)–(2.16) numerically to verify the accuracy of the analytical

solution. We adapt the method of Cebeci [33] to impose the interface conditions equations (2.13)

and (2.14). The finite-difference discretization of the governing equations is performed by

first reducing the second-order spatial derivatives in equations (2.10) and (2.11) to first-order

derivatives, defining new variables ϕ and u for the shear rates:

∂2ϕ

∂t2
= ∂ϕ

∂yλ

, ϕ = ∂ϕ

∂yλ

(4.1)

and

∂u

∂t
= ∂u

∂yδ

, u = ∂u

∂yδ

. (4.2)

Equations (4.1) and (4.2) are discretized on a fixed grid along the wall-normal direction since

all solid and fluid displacements are planar. The solid–liquid interface remains therefore planar

during the motion and there is no need for numerical Lagrangian tracking of the interface. We use

a backward-difference approximation in time with an index j ≥ 0 and step size 
t, and a centred-

difference approximation in space with an index 0 ≤ k ≤ K, and step sizes 
yλ and 
yδ for the

solid and the fluid, respectively. The top of the solid grid is k = Is and the bottom of the fluid

grid is k = If = Is + 1, these grid positions representing the same point in physical space. For j ≥ 2,

second-order approximations are used for equations (2.10) and (2.11). At the interface (k = Is and

k = If ), first-order spatial derivatives are discretized using a backward-difference approximation

in the solid and a forward-difference approximation in the fluid. For the exterior boundaries of the

grid, first-order approximations for the spatial derivatives are used to discretize equations (2.12)

and (2.15). In order to discretize equations (2.13) and (2.14), both grid points k = Is and k = If are

used:

u
j
If

=
ϕ

j−2
Is

− 4ϕ
j−1
Is

+ 3ϕ
j
Is

2
t
and ū

j
If

= ρLϕ̄
j
Is

. (4.3)

This discretization is given explicitly in appendix B. The system is arranged in a block tri-

diagonal matrix, with values at the previous time steps, j − 1 and j − 2, forming the other side

of a matrix equation. For j = 0, the stationary initial conditions equations (2.16) are imposed.

For j = 1, the discretizations are altered to use first-order approximations for all the first-order

time derivatives. For the second-order time derivatives in equation (4.1), equations (2.16) are

incorporated via a ghost point at j = −1. In order to maintain the tri-diagonal form of the matrix,

the discretization of the spatial derivatives at the material interface is first-order.

Figure 2 shows the numerical solutions and the analytical solutions equations (3.15) and (3.16),

at t = 15, with τ > 15, ρL = 1, hλ = hδ = 10. For small enough numerical step sizes 
t, 
yλ and 
yδ ,

the numerical and analytical solutions overlap. Defining the error to be the absolute difference

between the numerical results and the exact values computed from equations (3.15) and (3.16),

the overall accuracy of the scheme has been found to be between order one and order two with

respect to 
t, 
yλ and 
yδ , for a variety of non-dimensional parameters.
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Figure 2. Comparison between the numerical solutions (circles) and the transient analytical solutions (lines).

5. Physical results
The primary motivation for solving the system equations (2.10)–(2.16) analytically in §3 is to gain

insight into the separate contributions to the transient motion, which would not be possible by use

of the numerical solution only. In §5a, we discuss the physical results obtained from the analytical

solutions equations (3.15) and (3.16). The solutions are investigated graphically in §5b and in the

context of relevant technological applications in §5c. In §5d, we quantify the time scale for the

evolution of the transient profiles into the periodic form found in §3b.

(a) Physical interpretation of the analytical solutions

(i) Classification of summation terms

The solutions equations (3.15) and (3.16) quantitatively describe a set of evolving elastic wave

reflections in the solid layer for 0 ≤ yλ ≤ hλ and a set of damped oscillations in the fluid layer

for yδ ≥ hδ . Successive Heaviside functions become non-zero at different times and locations,

whereby more terms in the series contribute to the summations for ϕ and u and result in a

superposition of oscillatory motions in the layers. For 0 ≤ t < τ , all of the Heaviside functions

involving τ are zero, leaving three distinct types of terms contributing to the summations: those

with Heaviside functions whose arguments contain t − yλ or t + yλ in equation (3.15) for the

solid displacement ϕ, and those with Heaviside functions whose arguments depend only on t

in equation (3.16) for the fluid velocity u, each multiplying a corresponding GS,m,n or GF ,m,n

function. The two types of terms in equation (3.15) involving t − yλ and t + yλ correspond,

respectively, to wavefronts of displacement in the solid travelling upwards from yλ = 0 to yλ =
hλ and wavefronts travelling downwards from yλ = hλ to yλ = 0. The terms in equation (3.16)

correspond to the shear motion transmitted into the fluid by the set of upward travelling waves

in the solid when these elastic waves reach yλ = hλ. These terms depend on yδ only via the GF ,m,n

functions as defined in equation (3.19), rather than via the Heaviside functions. The three types

of profile are depicted qualitatively in figure 1.

(ii) Evolution of reflections and transmissions

The index n denotes the number of partial reflections that occur at the material interface located

at yλ = hλ. The first upward travelling term with n = 0, that is, H(t − yλ)GS,0,0(t − yλ), is equal

to H(t − yλ) sin (ωt). This term is the incident sinusoidal wave owing to the imposed forcing at

yλ = 0. When t = hλ, this wave reaches the interface at yλ = hλ for the first time. For t > hλ, the

first transmission term in equation (3.16) for the fluid and the first downward travelling term

in equation (3.15) for the solid both switch on. At t = 2hλ, the first downward travelling wave
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reaches yλ = 0 and the second upward travelling term, with n = 1, switches on. For t > 2hλ, each

subsequent upward travelling wave switches on at yλ = 0 when t is an even multiple of hλ and

reaches yλ = hλ when t is an odd multiple of hλ. Each downward travelling wave switches on at

yλ = hλ when t is an odd multiple of hλ and reaches yλ = 0 when t is an even multiple of hλ. Each

transmission term in equation (3.16) switches on in the fluid when t is an odd multiple of hλ for

yδ ≥ hδ . As t increases, there are more non-zero terms in the summation, and the amplitudes of

each term generally decrease with increasing n, so that at large t the incremental change given

by each additional term is small. After several reflections, the full superposed solution converges

towards a time-periodic state in both layers.

(iii) Transient properties of the elastic wavefronts and shear-driven fluid layers

For the travelling elastic waves in the solid, the dependence on yλ is contained in the arguments

of the Heaviside functions and in the time-shifted coordinates in the GS,0,n(t) functions. For

a fixed yλ, if the Heaviside function for a particular wave in the summation is non-zero, the

time-dependent shear displacement is thus given in equation (3.17) by GS,0,n(t − yλ − 2nhλ) or

GS,0,n(t + yλ − 2(n + 1)hλ). The first two sinusoidal terms in equation (3.17) are periodic in time,

but the integrand in the last term contains a factor that decays exponentially in time. There is

thus a decaying transient contribution to each solid wave that travels with the advancing wave

owing to the Heaviside functions. An exception is the term with n = 0 because the transient term

is identically zero in that case. This incident wave is a simple translational wave that is solely

periodic in time. The transmitted motion in the fluid, given by the linear superposition of the

GF ,0,n(yδ , t) functions, exhibits a similar separation into periodic and transient terms. Noting that

yδ − hδ is the wall-normal coordinate measured relative to the interface at yδ = hδ , the first term

in equation (3.19) consists of a weighted sum of upward travelling sinusoids, with an amplitude

that decays exponentially with the distance from the interface because of viscous effects. This part

of the solution is similar to the Stokes layer solution for a shear-driven fluid [25]. The second term

in equation (3.19) is transient, containing a term that decays exponentially in time.

(iv) Transient behaviour at the end of the forcing

Our discussion has been confined to t < τ , with all of the terms involving τ in equations (3.15) and

(3.16) remaining zero until the forcing at yλ = 0 ends at t = τ . These terms correspond to the time-

dependent behaviour after the forcing stops. For t > τ , they become non-zero and destructively

interfere with the non-zero terms existing for 0 < t < τ . The factors cos(ωτ ) and sin(ωτ ) determine

which of these new terms contribute the most to the transient behaviour at the end of the forcing,

with a special case occurring when the forcing is switched off after a whole number of periods

(i.e. ωτ is a multiple of 2π ). In this case, cos (ωτ ) = 1 and sin (ωτ ) = 0, and the additional terms for

t > τ are identical to those for t > 0, with a time shift τ .

(b) Visualization of the system dynamics

In this section we discuss plots of the analytical solutions equations (3.15), (3.16), (3.30) and (3.31),

in order to establish qualitative transient properties of the solutions over short and long time

scales which cannot be obtained from the analytical solutions only. We first analyse the initial

motion of both layers after the start of the forcing at yλ = 0, consisting of the incident wave, the

first reflection in the solid and the first transmission into the fluid, as discussed in §5a. These three

initial profiles share properties with the three types of profile arising in subsequent reflections.

They are therefore representative of the system dynamics until t = τ .

Figure 3 shows the motion of both layers with hλ = 10, ρL = 1 and t ≪ τ . The fluid layer

remains at rest until t = 10, when the periodic and transient velocity contributions contained in

equation (3.19) both become non-zero for yδ ≥ hδ . As shown in figure 4, the two contributions

cancel completely at t = 10, the instant when the reflection occurs, but as the transient contribution

starts to decay the overall velocity starts to grow near the interface whilst remaining zero farther
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Figure 3. Plots of solid displacement (red) and fluid velocity (blue) for the first transmission and reflection.

away. The periodic contribution quickly begins to dominate and the motion of the fluid layer

becomes periodic with its amplitude decaying away from the interface. This cancellation, with

a transient term receding to reveal a periodic profile, also occurs in the transient extension to

the Stokes second problem [24] and in similar heat transfer problems [32]. The fluid remains

stationary far from the interface at all times, beyond a distance of around yδ − hδ > 3, i.e. y∗ − h∗ >

3δ∗, consistent with the assumption of an unbounded fluid layer in §2.

For t > 10, after the reflection at the interface, the superposed elastic motions of the incident

and reflected waves result in an overall solid displacement that is larger than that of the incident

wave alone. As the first reflected wave travels downwards from yλ = hλ to yλ = 0, for t > 10, the

periodic and transient displacement contributions contained in equation (3.17) both become non-

zero. The transient contribution is largest at the front of the wave, whilst the area behind the

advancing wave is dominated by the periodic contribution. Unlike the transient contributions to

the fluid velocity, the solid transient contribution does not have an oscillatory shape. As shown

in figure 5, the transient contribution appears steady in a frame of reference moving with the

reflected wavefront, so that its shape remains unchanged as it travels downwards.

For t > 20, the superposition of further reflected elastic waves in the solid and transmissions

into the fluid results in a second kind of transient evolution. This evolution can be visualized

by the displacement and velocity at the interface, as shown in figure 6. The interface does not

move until t = 10, after which the velocity oscillates owing to the forcing at yλ = 0. At t = 30,
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Figure 4. Comparison of the periodic (solid blue) and transient (solid grey) contributions to the total fluid velocity (dashed

blue), at the start of the first fluid transmission.

Figure 5. Periodic (red) and transient (grey) contributions to the total solid displacement for the first reflected wave (without

the superposed incident wave). (d–e) Show the consistent profile shape in the vicinity of the wavefront.
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Figure 6. Development of the displacement and velocity at the solid–fluid interface.

Figure 7. Development of the transient solid displacement (red) and fluid velocity (blue) towards periodic profiles (black).

when the second reflection occurs, the addition of another transmitted layer causes the velocity to

obtain a larger amplitude. For the third reflection at t = 50, the incremental change to the interface

velocity is smaller and, as more reflections occur, the amplitude approaches that of the solution

equation (3.32) found by assuming periodic motion. Furthermore, by comparing the periodic
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Figure 8. Return of the transient solid displacement (red) and fluid velocity (blue) towards the initial conditions, after the

periodic forcing is switched off.

solutions equations (3.30) and (3.31) to the transient solutions equations (3.15) and (3.16), figure 7

shows that the whole two-layer system approaches a periodic state to which the summations in

equations (3.15) and (3.16) have converged. This convergence occurs after approximately eight

reflections when t = 160. The long transient evolution to the periodic state is investigated further

in §5d.

When t ≥ τ , the motion of the two layers is no longer driven by oscillation of the lower

boundary at yλ = 0. Figure 8 shows the dynamics of the same system (h = 10, ρL = 1, τ = 200)

after the oscillation at yλ = 0 stops. The motion of the two layers is periodic at the switch-off time

t = 200 and, for 200 < t < 500, it evolves back to the initial state of the system, i.e. ϕ = 0 and u = 0.

(c) Parameter dependence

The dependence of the displacement and velocity profiles on the physical parameters is studied

for three representative cases related to applications of shear waves in ultrasound viscometry [9],

active methods for turbulent drag reduction [16] and SAW-based biosensors [2]. Although only

sinusoidal forcing is studied herein, the linearity of the system implies that the results can be

applied to more complex forcing patterns. In this section we only consider the periodic solutions

equations (3.30) and (3.31), so that transient effects do not affect the parameter dependence. For
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Figure9. Dependence of solid displacement (red) andfluid velocity (blue) on forcing frequency, for a 6.28 mmaluminiumblock

underneath a layer of 850 kg m−3 oil with viscosity 300 mPa s [9].

a better interpretation of the results in view of the applications, the distance y∗ is scaled herein

with the thickness of the solid h∗, while ϕ∗ and u∗ are scaled with the displacement and velocity

amplitudes of the imposed forcing at y∗ = 0, i.e. ϕ∗
wall = ϕ∗

0 and u∗
wall = 2πϕ∗

0/T∗
0 .

(i) Application 1: viscometry

Ultrasound viscometry set-ups use oils of varying densities and viscosities, and water for

calibration [9]. Forcing frequencies span the 0.5–15 MHz range, using a thin aluminium layer

underneath an oil layer. As shown in figure 9, a higher frequency results in a shorter wavelength

in the solid and in a larger displacement amplitude. In the fluid, higher forcing frequencies result

in a smaller penetration depth, i.e. a fluid motion that is closer to the solid–liquid interface.

For each of the chosen frequencies in figure 9, the maximum velocity at the interface happens

to be close to the forcing amplitude u∗
wall. The maximum wall velocity A∗ can, however, be much

larger than u∗
wall, with finite maximum values occurring around critical resonant frequencies,

as shown in figure 10. This result demonstrates that the solid–fluid system behaves as a forced

resonator that is damped by the fluid viscous effects. The critical resonant frequencies, occurring

when ωhλ is an integer multiple of π , are also the frequencies at which A∗ changes sign, although

|A∗| is plotted for clarity. Using the analytical forms of A and T in equation (3.33), A∗ may be

written as

|A∗| =
ϕ∗

0

T∗
0

ω3/2 ρL| sin (ωhλ)|
√

((ρL/
√

π) cot (ωhλ) − 1)2 + 1

(ρL cos (ωhλ) − √
π sin (ωhλ))2 + π (sin (ωhλ))2

. (5.1)

Noting that both hλ and L depend implicitly on T∗
0 , we may study the behaviour of A∗

asymptotically in the proximity of the minima. Rewriting sin (ωhλ) and cos (ωhλ) as Taylor

series around ωhλ = kπ where k ∈ Z
+ (i.e. where sin (ωhλ) → 0), this expansion leads to a valid

approximation of A∗(T∗
0) around the minima T∗

0 = 2h∗√ρ∗
s /µ∗

s /k. This expansion is shown as a

dashed line in figure 10 for one of the minima.

We now consider the effect of varying ν∗ on the maxima of A∗, since the dependence of A∗

on T∗
0 takes the form of damped resonance. The dynamic viscosity value of 300 mPas used in

figure 10 is reduced and kept within the range expected for test oils used in ultrasound viscometry

applications. As shown in figure 11, for lower viscosity (less damping) the maxima are larger

and occur at a lower value of T∗
0 . The limiting case of undamped resonance may be studied by

considering the behaviour of A∗ as ν∗ → 0, or equivalently L → ∞ in equation (5.1). Analytically,

limL→∞ |A∗| is proportional to sec (ωhλ), confirming that for an undamped system the maxima are

resonant singularities occurring at ωhλ = (2k − 1)π/2, or equivalently T∗
0 = 4h∗√ρ∗

s /µ∗
s /(2k − 1).
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Figure 10. Dependenceof interface velocity amplitudeon T∗0 (solid), compared to T
∗
0,ref = 1MHzwith a series expansionaround

one of the minima (dashed).

Figure 11. Effect of reducing ν∗ on damped resonances around critical forcing frequencies.

Figure 12. Solid displacement (red) and fluid velocity (blue) for a typical drag-reduction laboratory set-up, with 0.35 mm layer

of silicone, 6 Hz forcing and an adjacent layer of air [16].
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Figure 13. Dependence of maximum interface velocity on solid thickness, compared to h∗ref = 0.35 mm for a typical drag-

reduction set-up [16] (black dot).

(ii) Application 2: drag reduction

For the travelling-wave method of turbulent drag reduction studied in [16], a very thin elastic

layer is stretched over a deformable lattice. The wall turbulence flows over the elastic surface.

The low forcing frequencies used in such laboratory set-ups and the small thickness of the

solid layer imply that the transverse elastic wavelength greatly exceeds the latter. This scenario

approaches the behaviour of the fluid-only simplification adopted in §3c. As shown in figure 12,

the solid displacement exhibits a very small linear shear throughout the layer rather than varying

sinusoidally, the interface velocity is the same as that at the wall, and the penetration depth into

the fluid is greater than the solid layer itself. Controlling the fluid penetration depth is important

in active drag-reduction methods in order to ensure optimal interaction between the imposed

shear waves and the turbulent structures. By extending the solid thickness well beyond the

experimental values, the velocity amplitude at the interface grows and eventually approaches

the resonance condition, as shown in figure 13.

(iii) Application 3: biosensors

SAW-based devices used for biological sensing use shear waves in a solid substrate, with relevant

biological material suspended in an adjacent fluid layer [2]. A variety of substrates are utilized,

including lithium tantalate (LiTaO3) and quartz (SiO2), with thicknesses of the order of a few

hundred microns. Forcing frequencies are even higher than in the viscometry case, ranging from

100 MHz to 3 GHz. Owing to these high frequencies, resonance conditions are very closely spaced

and small variations in solid density or shear modulus result in a significant change in the

maximum interface velocity A∗. The penetration depth into the fluid is very small, as shown

in figure 14.

(d) Duration of long-term transients

Owing to the complexity of the fully transient solution, it is not always practical to extract

information about the long-time transient dynamics from graphical analysis. The time scale

on which the transient solutions equations (3.15) and (3.16) approach the periodic solutions

equations (3.30) and (3.31) can be quantified numerically by considering the power balance of

the fluid layer. Multiplying equation (2.11) by the fluid velocity and integrating along the wall-

normal direction, the balance involves the kinetic energy of the fluid, the power input from the
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Figure 14. Solid displacement (red) and fluid velocity (blue) for a two materials used in biosensing applications [2], with a

400 micron solid layer, 1 GHz forcing and an adjacent layer of water.

Figure 15. (a) Percentage difference between periodic and transient dissipation, averaged over each period. (b) Number of

periods to reach≤ 1% agreement between the periodic and the transient solutions, for varying viscosity. Both plots are based

on parameter values from the viscometry case studied in §5c, using a forcing frequency of 5 MHz.

solid layer and the power dissipated owing to viscous effects:

1

2

d

dt

∫ ∞

hδ

u2 dyδ

︸ ︷︷ ︸

time rate of change of kinetic energy

= −u
∂u

∂yδ

∣
∣
∣
∣
yδ=hδ

︸ ︷︷ ︸

power input

−
∫ ∞

hδ

(
∂u

∂yδ

)2

dyδ

︸ ︷︷ ︸

power dissipation

. (5.2)

We monitor the viscous dissipation in the fluid to compute the overall transient evolution

and compare the transient and periodic solutions. This choice is dictated by the dissipation

in the fluid being always positive and relevant to the viscometry case studied in §5c, and by

the absence of dissipation in the elastic layer. The total energy dissipated in the fluid in each

period using the periodic solution equation (3.31) is constant, whereas the dissipation in each

period using the transient solution equation (3.16) varies as the series develops. Figure 15a shows

the difference between the viscous dissipation in periodic conditions and the transient viscous

dissipation averaged over each period for typical values of the viscometry case.

For a range of viscosity values, forced at 5 MHz with a 6.28 mm aluminium layer, the number

of periods required for the maxima of the dissipation difference to decrease below 1% varies from
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4000 to 35 000, with more viscous fluids (therefore more heavily damped systems) reaching a

periodic state quicker, as shown in figure 15b.

For comparison, the drag-reduction case studied in figure 12 requires 169 periods for a 6 Hz

forcing, while the lithium tantalate biosensor studied in figure 14 requires 251 846 periods for a

1 GHz forcing. Typical durations of transients are of the order of 10−3 s for ultrasound viscometry,

10 s for travelling-wave drag-reduction methods and 10−4 s in biosensors. Quantifying the

duration of transient effects will aid in the design of future experiments and will establish whether

periodic motion may be assumed.

6. Conclusion
In this paper, we have studied the dynamics of a coupled system consisting of a Newtonian fluid

located on an elastic solid that is forced sinusoidally. The problem has been solved analytically

and numerically. We have focused on the transient evolution from the beginning of the forced

oscillations, solved by Laplace transforms, and on the periodic behaviour that ensues once

the transient has vanished, solved by Fourier modes, presented in §3a,b. In §3c, we have

demonstrated that these solutions reduce to the classic fluid mechanics results of the transient

and periodic Stokes second problems in the case of a vanishingly thin solid layer. The analytical

transient solution is revelatory of the dynamics because it is expressed as series summations that

elucidate the propagation and reflections of the elastic waves and the viscous dissipation of the

oscillatory motions in the viscous fluid. Integral terms pertain to the non-periodic behaviour in

the solid and in the fluid. The periodic solution highlights that the system can be viewed as

a resonant oscillator that is damped by the fluid viscous effects. The forcing periods at which

resonance occurs are expressed in analytical form in the limit of vanishing fluid viscosity. The

long-term duration of the transient effects has been quantified by considering the power balance

of the fluid layer. These physical results, derived from the exact solutions, have been presented

in §5.

The interaction between shear-driven solids and viscous fluids is of interest owing to their

uses in engineering applications, including in situ viscometry, turbulent drag reduction and

manipulation of biological flows. We hope that our results will be useful as a theoretical

framework to aid the design of future experiments. The two-layer linear system studied herein

can serve as a limiting case for more complex systems, involving more realistic geometries

featuring two- or three-dimensional effects, non-Newtonian liquids, bounded fluid layers and

multiple solid layers. The problem can also be extended to non-sinusoidal forcing. Future research

aims could be to quantify the duration and magnitude of transient effects in systems with

pulsed forcing and to utilize the resonance effects to amplify the velocity or displacement at the

solid–fluid interface.
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Figure 16. Modified Bromwich contour for evaluating GS ,m,n and GF ,m,n.

Appendix A. Contour integration for transient solution
In this appendix, we present detailed derivations of the functions GS,0,n, GS,1,n, GF ,0,n and GF ,1,n,

found by integration in the complex plane along the contour ABCDEF shown in figure 16. By

applying the definition of the inverse Laplace transform in order to invert equations (3.13) and

(3.14), integration must be performed along the Bromwich contour s = γ ± i∞, where γ is larger

than the real part of any singularities of the integrands:

GS,m,n(t) = 1

2π i

∫ γ+i∞

γ−i∞

smω1−m

s2 + ω2

(
ρL −

√
s

ρL +
√

s

)n

est ds (A 1)

and

GF ,m,n(yδ , t) = 1

2π i

∫ γ+i∞

γ−i∞

2ρLs1+mω1−m e
√

s(hδ−yδ )

(s2 + ω2)(ρL +
√

s)

(
ρL −

√
s

ρL +
√

s

)n

est ds. (A 2)

Calling A the Bromwich contour for the integrals in equations (A 1) and (A 2), the integration

may be performed by closing the contour to the left and by applying the residue theorem [34].

A branch cut is taken around the negative real axis and around the origin, so that
√

s is single-

valued along the whole contour [35]. In the limiting case where the radius R1 of the outer

circular arcs approaches ∞, the radius R2 of the circle around the origin approaches 0, and the

complex argument of the branch cut approaches ±π , i.e. θ1 approaches 0, the Bromwich contour

is recovered. The integrands for both GS,m,n and GF ,m,n contain poles at s = ±iω. By the residue

theorem, the integral along the contour ABCDEF is equal to the sum of the residues of all poles.

Allowing IA to denote the integral along contour ABCDEF, and Res(s0) to denote the residue at

s = s0, the residue theorem may be rearranged to find IA:

IA + IB + IC + ID + IE + IF = 2π i(Res(iω) + Res(−iω))

and
IA

2π i
= Res(iω) + Res(−iω) − 1

2π i
(IB + IC + ID + IE + IF).

The contributions to IA from IB and IF tend to zero by Jordan’s lemma as R1 → ∞, for both GS,m,n

and GF ,m,n. The residues and the contributions from IC, ID and IE must be calculated explicitly

for each integrand.
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(a) Contour integrals for GS ,m,n

On C, s = Reiθ as θ → π . Hence, s = −R,
√

s = i
√

R and ds = −dR:

IC =
∫ 0

∞

(−R)mω1−m

R2 + ω2

(

ρL − i
√

R

ρL + i
√

R

)n

e−Rt(−dR).

On E, s = Reiθ as θ → −π . Hence, s = −R,
√

s = −i
√

R and ds = −dR:

IE =
∫ ∞

0

(−R)mω1−m

R2 + ω2

(

ρL + i
√

R

ρL − i
√

R

)n

e−Rt(−dR)

and

∴ IC + IE =
∫ ∞

0

(−R)mω1−m

R2 + ω2

((

ρL − i
√

R

ρL + i
√

R

)n

−
(

ρL + i
√

R

ρL − i
√

R

)n)

e−Rt dR.

On D, s = R2 eiθ . Hence
√

s = eiθ/2
√

R2 and ds = iR2 eiθ dθ :

ID =
∫ −π

π

Rm
2 emiθω1−m

ω2 + R2
2 e2iθ

(

ρL − eiθ/2
√

R2

ρL + eiθ/2
√

R2

)n

eR2 eiθ tiR2 eiθ dθ .

When constructing the solution GS,m,n, either m = 0 or m = 1. Hence, ID → 0 as R2 → 0. We

compute the residues at the two poles s = ±iω:

Res(iω) =
(

smω1−m

s + iω

(
ρL −

√
s

ρL +
√

s

)n

est

)

s→iω

= im−1

2

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt

and

Res(−iω) =
(

smω1−m

s − iω

(
ρL −

√
s

ρL +
√

s

)n

est

)

s→−iω

= (−i)m−1

2

(

ρL −
√

−iω

ρL +
√

−iω

)n

e−iωt.

The solutions are

GS,0,n = 1

2i

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt − 1

2i

(

ρL −
√

−iω

ρL +
√

−iω

)n

e−iωt

− 1

2π i

∫ ∞

0

ω

R2 + ω2

((

ρL − i
√

R

ρL + i
√

R

)n

−
(

ρL + i
√

R

ρL − i
√

R

)n)

e−Rt dR

and

GS,1,n = 1

2

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt + 1

2

(

ρL −
√

−iω

ρL +
√

−iω

)n

e−iωt

− 1

2π i

∫ ∞

0

−R

R2 + ω2

((

ρL − i
√

R

ρL + i
√

R

)n

−
(

ρL + i
√

R

ρL − i
√

R

)n)

e−Rt dR.

As complex conjugates appear, the solutions are written as

GS,0,n = 2Re

[

− i

2

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt

]

− 1

2π i

∫ ∞

0
2iIm

[

ω

R2 + ω2

(

ρL − i
√

R

ρL + i
√

R

)n]

e−Rt dR

and

GS,1,n = 2Re

[

1

2

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt

]

+ 1

2π i

∫ ∞

0
2iIm

[

R

R2 + ω2

(

ρL − i
√

R

ρL + i
√

R

)n]

e−Rt dR.
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We rewrite the denominators of the complex fractions to isolate the overall real and imaginary

components:

GS,0,n = Re

[(

ρ2L2 − ω − 2iρL
√

ω/2

(ρL +
√

ω/2)2 + ω/2

)n

(−i eiωt)

]

− 1

π

∫ ∞

0
Im

⎡

⎢
⎣

ω

(

ρL − i
√

R
)2n

(R2 + ω2)(ρ2L2 + R)n

⎤

⎥
⎦ e−Rt dR

and

GS,1,n = Re

[(

ρ2L2 − ω − 2iρL
√

ω/2

(ρL +
√

ω/2)2 + ω/2

)n

eiωt

]

+ 1

π

∫ ∞

0
Im

[

R(ρL − i
√

R)2n

(R2 + ω2)(ρ2L2 + R)n

]

e−Rt dR.

We introduce parameters K0−3 and separate the real and imaginary parts of the complex

exponentials and the numerators in each term:

GS,0,n = K1

Kn
0

sin (ωt) + K2

Kn
0

cos (ωt) − 1

π

∫ ∞

0
K3

ω e−Rt

R2 + ω2
dR

and

GS,1,n = K1

Kn
0

cos (ωt) − K2

Kn
0

sin (ωt) + 1

π

∫ ∞

0
K3

R e−Rt

R2 + ω2
dR,

where

K0 =
(

ρL +
√

ω

2

)2

+ ω

2
, K1 = Re

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

and

K2 = Im

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

, K3(R) = Im

[

(ρL − i
√

R)2n

(ρ2L2 + R)n

]

.

It is clear that the enclosed residues at s = ±iω correspond to the time-periodic terms in GS,m,n

and the integrals IC and IE along either side of the branch cut correspond to the transient terms.

(b) Contour integrals for GF ,m,n

On C, s = Reiθ as θ → π . Hence, s = −R,
√

s = i
√

R and ds = −dR:

IC =
∫ 0

∞

2ρL(−R)1+mω1−m ei
√

R(hδ−yδ )

(R2 + ω2)(ρL + i
√

R)

(

ρL − i
√

R

ρL + i
√

R

)n

e−Rt(−dR).

On E, s = Reiθ as θ → −π . Hence, s = −R,
√

s = −i
√

R and ds = −dR:

IE =
∫ ∞

0

2ρL(−R)1+mω1−m e−i
√

R(hδ−yδ )

(R2 + ω2)(ρL − i
√

R)

(

ρL + i
√

R

ρL − i
√

R

)n

e−Rt(−dR)

and

∴ IC + IE =
∫ ∞

0

2ρL(−R)1+mω1−m

R2 + ω2

((

ρL − i
√

R

ρL + i
√

R

)n
ei(hδ−yδ )

√
R

ρL + i
√

R

−
(

ρL + i
√

R

ρL − i
√

R

)n
e−i(hδ−yδ )

√
R

ρL − i
√

R

)

e−Rt dR.

On D, s = R2 eiθ . Hence
√

s = eiθ/2
√

R2 and ds = iR2 eiθ dθ :

ID =
∫ −π

π

2ρLR1+m
2 e(1+m)iθω1−m eeiθ/2

√
R2(hδ−yδ )

(R2
2 e2iθ + ω2)(ρL + eiθ/2

√
R2)

(

ρL − eiθ/2
√

R2

ρL + eiθ/2
√

R2

)n

eR2 eiθ tiR2 eiθ dθ .
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When constructing the solution GF ,m,n, either m = 0 or m = 1. Hence, ID → 0 as R2 → 0. We

compute the residues at the two poles s = ±iω:

Res(iω) =
(

2ρLs1+mω1−m e
√

s(hδ−yδ )

(s + iω)(ρL +
√

s)

(
ρL −

√
s

ρL +
√

s

)n

est

)

s→iω

= ρLimω e
√

iω(hδ−yδ )

ρL +
√

iω

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt

and

Res(−iω) =
(

2ρLs1+mω1−m e
√

s(hδ−yδ )

(s − iω)(ρL +
√

s)

(
ρL −

√
s

ρL +
√

s

)n

est

)

s→−iω

= ρL(−i)mω e
√

−iω(hδ−yδ )

ρL +
√

−iω

(

ρL −
√

−iω

ρL +
√

−iω

)n

e−iωt.

The solutions are

GF ,0,n = ρLω e(hδ−yδ )
√

iω

ρL +
√

iω

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt + ρLω e(hδ−yδ )
√

−iω

ρL +
√

−iω

(

ρL −
√

−iω

ρL +
√

−iω

)n

e−iωt

+ 1

2π i

∫ ∞

0

2ρLRω

R2 + ω2

((

ρL − i
√

R

ρL + i
√

R

)n
ei(hδ−yδ )

√
R

ρL + i
√

R
−

(

ρL + i
√

R

ρL − i
√

R

)n
e−i(hδ−yδ )

√
R

ρL − i
√

R

)

e−Rt dR

and

GF ,1,n = ρLiω e(hδ−yδ )
√

iω

ρL +
√

iω

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt − ρLiω e(hδ−yδ )
√

−iω

ρL +
√

−iω

(

ρL −
√

−iω

ρL +
√

−iω

)n

e−iωt

− 1

2π i

∫ ∞

0

2ρLR2

R2 + ω2

((

ρL − i
√

R

ρL + i
√

R

)n
ei(hδ−yδ )

√
R

ρL + i
√

R
−

(

ρL + i
√

R

ρL − i
√

R

)n
e−i(hδ−yδ )

√
R

ρL − i
√

R

)

e−Rt dR.

As complex conjugates appear, the solutions are written as

GF ,0,n = 2Re

[

ρLω e(hδ−yδ )
√

iω

ρL +
√

iω

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt

]

+ 1

2π i

∫ ∞

0
i

4ρLRω

R2 + ω2
Im

[(

ρL − i
√

R

ρL + i
√

R

)n
ei(hδ−yδ )

√
R

ρL + i
√

R

]

e−Rt dR

and

GF ,1,n = 2Re

[

ρLiω e(hδ−yδ )
√

iω

ρL +
√

iω

(

ρL −
√

iω

ρL +
√

iω

)n

eiωt

]

− 1

2π i

∫ ∞

0
i

4ρLR2

R2 + ω2
Im

[(

ρL − i
√

R

ρL + i
√

R

)n
ei(hδ−yδ )

√
R

ρL + i
√

R

]

e−Rt dR.

We rewrite the denominators of the complex fractions to isolate the overall real and imaginary

components:

GF ,0,n = 2Re

[

ρLω e(hδ−yδ )
√

ω/2(ρ2L2 − ω − 2iρL
√

ω/2)n

((ρL +
√

ω/2)2 + ω/2)n+1
(ρL +

√

−iω) ei(
√

ω/2(hδ−yδ )+ωt)

]

+ 1

π

∫ ∞

0

2ρLRω

R2 + ω2
Im

[(

ρL − i
√

R

ρL + i
√

R

)n
ei(hδ−yδ )

√
R

ρ2L2 + R
(ρL − i

√
R)

]

e−Rt dR
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and

GF ,1,n = 2Re

[

ρLiω e(hδ−yδ )
√

ω/2(ρ2L2 − ω − 2iρL
√

ω/2)n

((ρL +
√

ω/2)2 + ω/2)n+1
(ρL +

√

−iω) ei(
√

ω/2(hδ−yδ )+ωt)

]

− 1

π

∫ ∞

0

2ρLR2

R2 + ω2
Im

[(

ρL − i
√

R

ρL + i
√

R

)n
ei(hδ−yδ )

√
R

ρ2L2 + R
(ρL − i

√
R)

]

e−Rt dR.

We introduce parameters K4−7 and separate the real and imaginary parts of the complex

exponentials and the numerators in each term:

GF ,0,n = 2ρLω e(hδ−yδ )
√

ω/2

K
n+1
0

(

K4 cos

(

(hδ − yδ)

√

ω

2
+ ωt

)

+ K5 sin

(

(hδ − yδ)

√

ω

2
+ ωt

))

+ 1

π

∫ ∞

0

2ρLωR e−Rt

(R2 + ω2)(ρ2L2 + R)
(K6 sin ((hδ − yδ)

√
R) + K7 cos ((hδ − yδ)

√
R)) dR

and

GF ,1,n = 2ρLω e(hδ−yδ )
√

ω/2

K
n+1
0

(

K5 cos

(

(hδ − yδ)

√

ω

2
+ ωt

)

− K4 sin

(

(hδ − yδ)

√

ω

2
+ ωt

))

− 1

π

∫ ∞

0

2ρLR2 e−Rt

(R2 + ω2)(ρ2L2 + R)
(K6 sin ((hδ − yδ)

√
R) + K7 cos ((hδ − yδ)

√
R)) dR,

where

K4 =
(

ρL +
√

ω

2

)

Re

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

+
√

ω

2
Im

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

,

K5 =
√

ω

2
Re

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

−
(

ρL +
√

ω

2

)

Im

[
(

ρ2L2 − ω − 2iρL

√

ω

2

)n
]

,

K6 = ρLRe

[(

ρL − i
√

R

ρL + i
√

R

)n]

+
√

RIm

[(

ρL − i
√

R

ρL + i
√

R

)n]

and K7 = ρLIm

[(

ρL − i
√

R

ρL + i
√

R

)n]

−
√

RRe

[(

ρL − i
√

R

ρL + i
√

R

)n]

.

As with the solid-layer solution, the enclosed residues at s = ±iω correspond to the time-

periodic terms in GF ,m,n and the integrals IC and IE along either side of the branch cut correspond

to the transient terms.

Appendix B. Numerical procedures
In order to compute the numerical solution used in figure 2, equations (4.1) and (4.2) are

discretized in time with an index j ≥ 0 and step size 
t, and in space with an index 0 ≤ k ≤ K and

step sizes 
yλ and 
yδ for the solid and fluid, respectively. The interface is characterized by k = Is

and k = If = Is + 1. For j ≥ 2, the following approximations are used for equations (2.10)–(2.15):

k = 0 :

ϕ
j
0 = sin(ω j
t) and ϕ̄

j
0 =

ϕ
j
1 − ϕ

j
0


yλ

.

1 ≤ k < Is :

ϕ
j
k+1 − 2ϕ

j
k + ϕ

j
k−1

2(
yλ)2
+

ϕ
j−2
k+1 − 2ϕ

j−2
k + ϕ

j−2
k−1

2(
yλ)2
=

ϕ
j−2
k − 2ϕ

j−1
k + ϕ

j
k

(
t)2
, ϕ̄

j
k =

ϕ
j
k+1 − ϕ

j
k−1

2
yλ
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If < k < K :

ū
j
k+1 − ū

j
k−1

2
yδ

=
u

j−2
k − 4u

j−1
k + 3u

j
k

2
t
, ū

j
k =

u
j
k+1 − u

j
k−1

2
yδ

.

k = Is and k = If :

ϕ̄
j
Is

− ϕ̄
j
Is−1


yλ

=
ϕ

j−2
Is

− 2ϕ
j−1
Is

+ ϕ
j
Is

(
t)2
, ϕ̄

j
Is

=
ϕ

j
Is

− ϕ
j
Is−1


yλ

,

ū
j
If +1 − ū

j
If


yδ

=
u

j−2
If

− 4u
j−1
If

+ 3u
j
If

2
t
, ū

j
If

=
u

j
If +1 − u

j
If


yδ

and u
j
If

=
ϕ

j−2
Is

− 4ϕ
j−1
Is

+ 3ϕ
j
Is

2
t
, ū

j
If

= ρLϕ̄
j
Is

.

k = K :

u
j
K = 0 and ū

j
K =

u
j
K − u

j
K−1


yδ

.
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