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A coupled system composed of a Newtonian fluid
located on a sinusoidally forced elastic solid is
studied analytically and numerically. The focus is
on the transient evolution from the beginning of
the forced oscillations and on the periodic behaviour
established once the transient has vanished. The
analytical solution is expressed as series summations
that elucidate the propagation and reflections of
elastic transverse waves through the solid layer and
the viscous dissipation of oscillations in the fluid
layer. Short-term transients in both the fluid and the
solid form at every interaction between an elastic
wave and a solid boundary. The long-term transient,
quantified by the power balance in the fluid layer,
instead pertains to the formation of all the elastic
waves in the solid layer. The system can be viewed
as a generalized transient Stokes layer generated
by the elastic waves or as a damped resonant
oscillator when the velocity at the fluid—solid interface
increases significantly with respect to the forcing
amplitude. A parametric study is carried out for three
applications of technological interest, i.e. the indirect
measurement of fluid viscosity, the turbulent drag
reduction by travelling shear waves and the sensing
and manipulation of biological flows.

1. Introduction

Shear-driven fluid systems are found in a wide range
of engineering and industrial applications. Shear waves,
with or without the presence of a bulk flow, may
be generated by piezoelectric transducers or electro-
osmosis and have been used for sensing, fluid mixing
and flow control, particularly at microfluidic scales [1].

© 2026 The Authors. Published by the Royal Society under the terms of the
(reative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Sensing and manipulation of proteins in biochemical flows can be performed via surface
acoustic waves (SAWs) with frequencies of the order of GHz, travelling in piezoelectric substrates
immersed in a fluid. The interaction between molecules immobilized on the substrate and those
suspended in the fluid results in a measurable modification of the SAWs and in an indirect
detection of the suspended molecules [2]. On other SAW devices, standing waves have been used
to transport proteins over a few millimetres [3].

Whilst other types of SAWs, such as Rayleigh waves, have also been used in biochemical
flows, pure-horizontal waves are favoured owing to the lack of attenuation. The strong interaction
between the waves and the bulk fluid may be desirable to drive recirculation effects and favour
mixing, concentration and separation in microfluidic ‘lab-on-a-chip” devices [4,5]. Ultrasound
shear waves are routinely used for laboratory and in situ monitoring of tribological systems. As
lubricating oils in industrial machines experience shear rates as high as 107571, well beyond the
range of conventional viscometers, measurements of reflected ultrasonic shear waves are used to
investigate the shear rate and temperature dependence of these oils [6,7]. Owing to the impedance
mismatch between the tested oil and the adjacent solid, a thin matching layer is sometimes used
to improve sensitivity [8,9]. Shear-wave methods have also been used to measure the mechanical
properties of soft tissues and stresses in railroad steel [10,11].

Wall-shear waves have also been utilized to alter turbulent boundary layers and achieve
friction drag reduction [12-14]. The modification of wall-bounded turbulent flows by surface
waves has been reported to reduce skin friction by up to 45%, although the wall-shear forcing
must be specified carefully to avoid drag increase [15-17].

Some of these applications involve wave transmission through multiple material layers.
Mathematical studies of these engineering systems often employ empirical models fitted to
experimental data or derived from analogous systems, which necessitate assumptions about
the material layers and the geometry of the apparatus [18,19]. Some of these models, although
derived from simple definitions, become lengthy and complicated for even a few layers of
different materials. Such empirical and analogous models are unlikely to be efficient for complex
geometries consisting of many layers.

The fundamental mathematical treatment of shear wave propagation through multiple layers
is typically focused on the periodic behaviour [20-23]. In several applications, however, the
dynamics over very short time scales is of interest, particularly for real-time monitoring of
machinery and for materials with long relaxation times. The initial transient response of a single
shear-driven fluid layer to imposed shear wall motion has been investigated [24], the motion
eventually developing into the classical periodic ‘Stokes layer” [25]. More recently, the initial
transient response has been studied for a system of two fluid layers with different viscosities [26].
Transient shear wave propagation through multiple solid layers is well documented [27,28], but
existing transient studies of shear-driven fluids have not considered interactions with adjacent
solid layers. In addition, these studies only describe the initial transient behaviour owing to the
start of shear forcing, whereas in applications where the forcing is pulsed over short intervals the
transient dynamics following the end of the forcing should also be considered.

To the best of our knowledge, a fundamental study that considers the transient response of
a coupled solid—fluid system at both the start and end of an interval of shear forcing has not yet
been carried out. We therefore present an analytical and numerical investigation of a shear-driven
solid layer underneath an unbounded fluid. Although our system is idealized in its geometry, the
inclusion of a solid layer through which the fluid is indirectly driven renders this configuration
representative of several real set-ups. We solve the system analytically, arriving at closed-form
solutions for the transient and periodic motions of the two layers. The analytical approach leads
to insight into the underlying physics that would not be possible with a purely numerical study.

Since our focus is on the physics of the solid—fluid interaction and on technological applications
where the viscous penetration depth is thin compared to the distance to the solid boundaries
confining the fluid, we consider the fluid to be bounded by the moving boundary only. In other
problems where a fluid is forced in oscillatory motion, the fluid is confined between two plates,
so that no-slip boundary conditions are imposed at both solid boundaries. The solution to that
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confined-fluid problem would simplify to our unbounded-fluid solution in the limit of large
distance between the solid boundaries [26,29].

In §2, we present the problem in mathematical form using the elastic continuum equation
and the Navier-Stokes equation. In §3, we solve the system to find closed-form solutions for
the transient and periodic problems and, in §4, we solve the equations numerically to verify the
accuracy of the analytical solution. In §5, we discuss the physics that can be extracted from the
analytical solution and explore the behaviour of the system for a range of experimentally inspired
parameters. We also quantify the time scales over which the transient phenomena evolve into the
periodic motion.

2. Mathematical formulation

We consider a two-layer system described by Cartesian spatial coordinates x*, y*, z* and time t*,
where * denotes dimensional quantities. A homogeneous, isotropic, elastic solid with density pJ,
Young’s modulus E* and Poisson ratio o exists between y* =0 and y* =h*. An incompressible
Newtonian fluid with constant kinematic viscosity v* and density pf sits on top of the solid
layer and is unbounded for y* > I*. This system is shown in figure 1. The motion of the solid
is described by the elastic continuum equation:

2
£ 079"

Ps ot*2
where @*(x*, y*, z*, t*) is the solid displacement and A* = E*o /(1 + o)(1 — 20) and uf = E*/2(1 4+ o)
are the Lamé parameters. The velocity u*(x*,y*,z*,t*) of the fluid is described by the Navier—
Stokes equation:

= (A" + uV(V - %) + ui V29", 2.1)

ou*

ot

Vp*
¢
where p* is the pressure. The system is uniform in the x* and z* directions, and driven by an
imposed shear displacement along the z* direction at the lower boundary y* =0. As the solid
displacement varies only along a direction normal to the shear deformation, the divergence V - ¢*
is zero. We assume that there is no pressure gradient in the fluid. Equations (2.1) and (2.2) thus
reduce to a pair of partial differential equations for the shear solid displacement ¢* and the shear

fluid velocity u* along z*, as functions of the wall-normal coordinate y* and time t*:

+ (U V)ut = -~ 4+ v V2, (2.2)

32(p* az(p*
oS Py ZM:W (2.3)
and 5
ou* 9°u*
Ll (24)
oF* ay*Z
The boundary conditions are obtained for the forcing of the solid,
2 t*
* o3 =t 0 < t* *,
oy =0)= {07 ( T ) osrar @3)
0 > T*,

a *
Wyt =h) = 2 2.6)
8t y*:h*
and - -
u %
g P =u; W , 27)
Y yr=h* y yr=h*

(where M]’f is the dynamic viscosity of the fluid) and the vanishing fluid velocity far from the

interface,
lim u*=0. (2.8)

y*—>o00
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Dal'npe.d transmitted Viscous fluid
oscillations

h*
Elastic solid .
Y *
‘Z
Incident and 2% )
reflected waves
Shear forcing
Figure 1. Schematic of the solid—fluid system.
We impose stationary initial conditions for the solid and the fluid:
P (t*=0)=0, =0, u*(t*=0)=0. (2.9)
At |p_g
In non-dimensional form, the system reads
P’ 9
oY _9¢ , (2.10)
a2 3]/;2
2
o _ o @.11)
at 3y52
o Jsin(wt) 0<t<rt,
0y =0)= { : - 212)
il
u(ys =hs) = B—‘f , (2.13)
ya=hy
Dl e (2.14)
8]/6 Ys=hs 3:1/)” y=h
lim u=0 (2.15)
Ys—>00
dg
and e(t=0)=0, 2 =0, u(t=0)=0, (2.16)
t=0

in terms of the quantities listed in table 1. The coordinate y* is scaled differently in the two
layers. In the solid, y* is scaled by the transverse elastic wavelength 1* = Ta‘\/m [30]. In the
fluid, y* is scaled by the thickness §* = m of the Stokes layer generated by a sinusoidal wall
motion below a still fluid [25] since we expect the viscous effects in our case to penetrate to
a comparable distance from the solid—fluid interface. The assumption of an unbounded fluid

leading to equation (2.15) is valid if the thickness of the fluid layer is much larger than this
Stokes-layer thickness.
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Table 1. Scaled variables of the coupled system.

3. Analytical results

We first solve equations (2.10)—(2.16) analytically in §3a using Laplace transforms to obtain the
transient evolution of the two-layer system. At large times, the motion becomes periodic. The
solution in this case is obtained in §3b using Fourier modes. In §3c, we find the solution for the
fluid motion without the solid layer underneath.

(a) Transient solution by Laplace transforms

The initial value problem equations (2.10)-(2.16) is solved by using the Laplace transform £ :t —
s: ) -
9= Lla(t] = [~ qear (61)

The system equations (2.10)—(2.16) is reduced to a system of ordinary differential equations
(ODEs) in ¢ and ii:

d2¢
25 2
s°¢ day,2 (3.2)
. d2n
SU = @, (33)
. (1 —e™™(cos (wt) + (s/w) sin (w1)))
G =0) = P , (3.4)
u(ys =hs) =sp(ys. =hy), (3.5)
dii =pL do (3.6)
dy‘s ys=hs dy)” yr=h
and lim #=0. 3.7)
y5—>00
The solution to equations (3.2)-(3.7) is
. _ o(pLcosh (1. = y2)s) + v/sinh (1. — y2)s)T(s) 338)
¢ (s + @2)(pL cosh (7125) + /5 sinh (J125)) '
and “
s(hs—Ys)T
I pLswe T(s) (3.9)

(s2 + w?)(pL cosh (h;s) + /5 sinh (hy5))”
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where we have defined s
T(s)=1— e "(cos (wt) + — sin (w1)).
10)

The exponentially growing term arising in the solution to equation (3.3) is zero owing to the
fluid being unbounded, as given by equation (2.15). If the fluid were confined, this exponential
term would be non-zero and the fluid-layer solution would involve hyperbolic functions at the
numerator, as in the solid-layer solution equation (3.8). In order to recover the physical solutions
@y, t) and u(ys,t), the inverse Laplace transform L£71is applied. First, we write the hyperbolic
functions in equations (3.8) and (3.9) as exponentials and divide the numerator and denominator
by e/, obtaining a common denominator expressed as a geometric ray series [31]:

Sy pL — /s —2hys _]_oo o\ pL—/5\" —2nh;s
Bo= (140 ™) =X () e 10

The convergence of the series in equation (3.10) is justified since /1, > 0 and Re[s] > 0 for the
inverse Laplace transform. We obtain

n=0

e VT (5)Bs)  eW=2)(pL — \/5)wT(s)B(s)
$2 4 w? (s*> + w?)(pL + V/5)

o= (3.11)

and o
. ZpLse*/g(hb‘_Vﬁ)_s’“wT(s)B(s)

(82 + w?)(pL + \/5)
Since 0 <y, <h;, we use the time shifting property of the Laplace transform to replace the
exponents involving —s in equations (3.11) and (3.12) with Heaviside step functions H:

=>

(3.12)

oy, b) =5_1[¢>(yx 9] = 1 [esykwT(S)B(s) esWa=2) (o[, — \/g)w'f(s)é(s)i|

s2 + w? (2 4+ w?)(pL + /5)

=H(t —y)L™! {

wT(s)B(s) :|
2 2
s“tw oty

(pL — /5)wT(s)B(s)
(s> + @?)(pL + +/5)

+H(t 4y — 2h;) L7 |: :|
t— 4y, —2h;,

and

u(ys, t) :[:_1[{4(}/5 9)] —r1 |:2,0Ls eﬁ(}1a_y5)_sll’“wT(S)B(S)i|

(52 + 0?)(pL + V/5)
2,0Lse\/§(h5 _ya)wf"(s)g(s)
?+ oML +5) |,

=H(t — )L™ [

By further application of the time shifting property, the exponents in B(s) may be replaced
using another time-coordinate shift:

_Oo NI e | (pL—5)" oT(s)
0= 3P~y - 2 [(;;Lw;) o

j|t—>i.‘—y;~—2nh-A

[(pL—ﬁ)"“ oT(s)

pL + /s s2 + w?

o0
+ Y (D)H(E + i — 200 + D)L }
n=0 t—t4y, —2(n+1)h;,
and
o0
u=>» (=1)"H(t — @n+ D)L~

n=0

|:2pLSw(,0L — o) eVsths=y) T (s)

22 1
(s* + @?)(pL + 5)" i|t4>t(2n+l)h;~.

The introduction of the summations, with each term shifted in time by 2nh;, clarifies the
physical interpretation of the solid and fluid solutions as series of superposed reflections evolving
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in time. Applying the time shifting property once more to the exponents in T(s), we obtain

00 ,OL—\/g n w
= (=1)"H(t — y; — 2nhy) Lt
@ 112:(:)( )'H(t — vy — 2nh;) |:(pL+J§> e

:|t—>t—y~A —2nh;,

o) . B L_ﬁ n
—COS(wT)nZ:O(—l) H(t = ys = 20l — o)L 1[<£L+«/§> szi)a#

j|tety-A —2nhy—1

' o0 B pL _ \/g n s
—sin(wr) Y (=1)"H(t - y5. — 2nhy, — )L {( ) 5 2}
L+ \/§ st t—t—y;, —2nh; —t

n=0

o0 ,OL_«/g n+1 w
+ Y (“)H(E 4y, — 2 + Dhy) LT ( )
;j)( VH(E + 3 = 200+ 1hz) [puﬁ F10? | ot

- —2(n+1)h,

pL_ﬁ)H+1 ©

pL+ \/g s2 + w? t—t+y;

— cos () Y (=1)"H(t + y5. — 2(n + Dy, — 1)L [(
—2(n+1)h;—t

n=0

o0 ,()L—\/g n+1 s
— sin (ot —1)"H(t +yy — 2(n + Dh; — 1)L~ < )
( );)( V'H(t+ya — 2(n + Dy, — 1) i vE) FreR|

- —2(n+1)h,.—t

and

u="y (=1)"H(t — @n + i) L™

n=0

2pLsw(pL — /s)" o535 —ys)
(s? + @?)(pL + /3)"+1

:|tet(2n+1)h,\

— cos (wt) Y (—1)"H(t — 2n + Dhy — 1)L7!

n=0

|:2pst(pL — 5y eVl —ys) }
2 + @? +1
(s? + 0?)(pL 4 /5)" et e

—sin(wr) Y (=1)"H(t — 2n + Dy — 1)L
n=0

|:2pL52(pL — o) eVsths=ys)

SR ) :
(s* + ) (oL + V5)" i|tﬁt(2n+1)h-ht

Although the summation index of the series goes from 0 to oo, for a large enough n and given
t and y;, only a finite number of terms are required for the solutions to be exact because of the
presence of the Heaviside functions. The remaining inverse Laplace transforms may be grouped
and rewritten as families of functions G j,,(t) and Gz ;1 (ys, t):

| st (oL — 5\
G H=L"1 3.13
S,m,n() |:52+w2 (pL-l—\/g) ( )

and

(3.14)

Grmn(ys, 1) L—1[20L5”mw1m(PL—ﬁ)”eﬁ('”y“}
Fmn\Ys,t)= ’

(s + w?)(pL + /5)"

with integer indices m =0,1, and n > 0. Using these functions, the solutions ¢ and u may be
written in terms of Gs 0,1, Gs,1,n, GF0,n and Gz 1 :

o0
@ = Z(_l)nH(t — VY — Znhk)GS,O,n(t —yn — 2nhy)

n=0
o0

— cos (@7) Y _(=1)"H(t — ys — 2nhy — )G ou(t — ys — 2nly, — 1)
n=0

o]
— sin (wT) E (=D)"H(t — yp — 2nhy, — )Gs1,0(t — Yo — 2nhy — 1)
n=0
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o0
+ Y (=IH(E + yi — 21+ Dha)Gs,0ui1(E+ya — 20 + D)

n=0
00
— cos (@) S (—1)"H(t + y5. — 201+ Dhy, — )G 041(t + Y3 — 21 + Dhy, — 1)
n=0

— sin (wrt) Z(—l)"H(t +yr — 2+ Dhy — 1)Gs 11t +yn —2(n+ 1)hy — 1) (3.15)

n=0
and

u=y (=1)'H(t = @n + Dh)Grouys, t — @n + Dhy)
n=0

— cos (1) Y (=1)"H(t — 21 + Dy — 1)Grou(ys, t — 2+ Dy — 1)
n=0

— sin (wt) Z(—l)”H(t —@n+Dhy, —1)Gran(ys, t — 2n+ 1hy — 7). (3.16)
n=0

Gs,0,1, Gs, 1,1, Gron and G 1, are found by integration in the complex plane along a Bromwich
contour (the detailed derivation is given in appendix A). These functions are expressed in physical
space in terms of parameters Ko_7:

K1 . 1o 1 [ we R
Gson= ’C—g sin (wf) + IC(’; cos (wt) — - /(; Kgm dR, (3.17)
K1 K. 1 [  Re R
Gs,l,n = fg Ccos ((L)t) — Fg sim ((L)t) + ; A K:Bm dR, (318)
2oL es—vs)vVw/2 .
Gron= 1= i (Kacos ((hs = ys)/(w/2) + ot) + Kssin (s — ys)V/(@/2) + o))
’CO
1 [ 2pLwRe Rt
- Ke sin ((hs — y5)vR) + K hs —ys)VR)) dR 3.19
. fo R otz sy (Ko sin (0~ y)VR) + K7 cos (s — ys)VR) (3.19)
2oL es—vs)vVw/2 )
and Gry,= MT (1c5 cos <(h,3 — )V (@/2) + a)t) — Kysin ((ha —ys)V(@/2) + wt))
0

o0 2Rt
- % /(; Poloie (Ke sin ((hs — ys)V/R) + K7 cos ((hs — y5)v'R)) dR, (3.20)

(RZ+ (212 + R)
where
2 n
Ko = <,0L + \/%) + %, K1=Re |:(,02L2 —w— ZipL\/g> i| ,
@ n o 2 n

Ko =Im |:<,02L2 —w— ZipL\/;) i| , K3(R)=Im [(M) i| §
Ky= (,OL + \/g) K1+ \/ng, Ks= \/?Kl — (pL + /g) Ko,

_ pL—ivR\" pL—ivR\"
Ke(R) = pLRe [(pL+z\/1?) } + +/RIm [(pL+NK> }

B pL—ivR\"] pL—ivR\"
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Gs,0,1, Gsan, GFon and G 1, consist of time-periodic terms involving sin (wt) and cos (wt),
plus terms decaying exponentially in time. Two transient contributions to the solutions therefore
exist: the summation of terms in equations (3.15) and (3.16) where the number of contributing
terms depends on ¢ through the Heaviside functions, and the exponential terms inside Gs g,
Gs,1n, Gron and Gr 1 . At large times, the system approaches a periodic state given by the full
summations in equations (3.15) and (3.16) and the periodic terms in Gs o, Gs 1., GFo, and
G£,1,n- A detailed discussion on the physical interpretation of the analytical solutions is given in
§5a.

(b) Periodic solution by Fourier modes

As t — o0, the terms involving t in the transient solutions equations (3.15) and (3.16) vanish
owing to their multiplying Heaviside functions having negative arguments for all { > 0. In this
simplification, which may also be obtained by setting T(s) =1 in equations (3.8) and (3.9), the
forcing in equation (2.12) is sinusoidal for ¢ > 0. Furthermore, for sufficiently large values of t, the
motion becomes independent from the initial conditions and the expressions equations (3.15) and
(3.16) become periodic in time, i.e. when all the transient phenomena have decayed. Therefore,
assuming time-periodic solutions:

or(, ) =Im [)e ] and up(ys, ) =Im ii(ys) €], (3.21)
Equations (2.10)—equation (2.15) are rewritten as a system of ODEs for ¢ and ii:
.. d%
lou = m, (3.22)
d%¢
2~
_ = 3.23
@ 7,2 (3.23)
Py =0)=1, (3.24)
i(ys =hs) =iwg , (3.25)
y»\=hx
di| o _ 99 (3.26)
dy‘s ys=hs dy}‘ yr=h
and lim #=0. (3.27)
Ys—> 00
The solution to equations (3.22)—equation (3.27) is
5 PLcos @y — ) + iViosin @l — ) 528)
pL cos (why) + iv/iw sin (why) '
and
i (hs—ys)Vieo
ii= toLwe ™ . (3.29)
pL cos (why) + iv/iw sin (why,)
The solutions ¢p and up are expressed in terms of parameters P;_s:
op =Im [(Z) ei‘”t] = %ZA) sin (wt) + %ZA) cos (wt), (3.30)
up =Im I:ﬂ eiwt] — % e(ha—ys)«/w/z sin <(h5 — y(s)\/g + wt)
+ % s =Yys)N®©/2 g ((h5 — ya)\/g + wt), (3.31)
5
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where

P1(y2) = p*L? cos (why) cos (o, — 1)) — PL\/g [sin (why) cos (w(h — Y1)

+ cos (why) sin (o(h;, — y3))] + @ sin (wh;,) sin (0l — y3)),

Payi) = PL\/g (cos (why) sin (w(hy, — Y1) — sin (why) cos (w(hy — y5.))),

Pz = pr\/g sin (why), Ps=pLw (pL cos (wh;) — \/gsin (whx))

2
and Ps= <pL cos (why,) — \/g sin (whk)) + %sin(whk)z.

The two terms in up can be combined by assuming a solution of the form

up = Aelh=¥)Vel2 gin ((ha - ya)\/g + ot + T)) (3.32)

and then expanding and matching coefficients with those in equation (3.31). The periodic fluid
solution equation (3.32) is in the form of a Stokes layer with a time offset 7 and amplitude .A:

1 2
7T = — arctan <,/ —pLcot(wh)) — l) and A= Ps sec (wT). (3.33)
1) 10) Ps

The maximum velocity A is the same as the maximum velocity in the solid at i, = I, obtained
by differentiating equation (3.30) with respect to time, and depends on 1, and pL. The periodic
motion of the fluid in the two-layer system therefore has the same functional form as that of a
fluid driven directly at its lower boundary, with the solid layer underneath serving only to vary
the amplitude and phase of the Stokes layer. The value of A can be positive or negative owing
to the sign of P3, so the overall phase difference between the material interface and the lower
boundary of the solid depends on both 7" and the sign of A.

(<) Fluid-only solution

We now consider the case of a vanishingly small solid layer, where the fluid is forced directly at
its lower boundary. A simplified Laplace-space solution itz is obtained for the fluid by setting
hy, =hs =0 in equation (3.9):

_sw e*y“/g(l — e~ "(cos (wt) + (s/w) sin (wT)))
B §2 + w? '

iir (3.34)

Applying the inverse Laplace transform to equation (3.34) and using the same method given
in appendix A for Gs ;,» and G £ ,,,, we obtain the corresponding solution in physical space:

vl *© R
ur =we ¥ ®/2 cos (a)t — s %) 2 / ot e Rtsin (ygﬁ) dR
7 Jo w

— H[t — ] cos (wt) (w e ¥Vl oog (w(t —17)— y(;\/g)

o0
_2 / R e RO gin (5 v/R) dR)
0

T R2 4+ ?

— H[t — 7]sin (o1) (e—yam sin (a)(t —-7)— ya\/g>

+1 / R e Rt sin (ys+/R) dR (3.35)
7 Jo R2+w? : .
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In the limit ¢ — oo, only the first two terms in equation (3.35) are non-zero. The solution
matches the solution to the transient extension of the Stokes second problem [24] and the
equivalent heat transfer problem [32]. Similarly, setting hj =hs =0 in equation (3.31) leads to
the first term of equation (3.35), i.e. the periodic Stokes layer [25]. The solution to the two-layer
system therefore reduces as expected to that of a single layer of viscous fluid in both the transient
and periodic cases.

4. Numerical procedures

We solve the system equations (2.10)-(2.16) numerically to verify the accuracy of the analytical
solution. We adapt the method of Cebeci [33] to impose the interface conditions equations (2.13)
and (2.14). The finite-difference discretization of the governing equations is performed by
first reducing the second-order spatial derivatives in equations (2.10) and (2.11) to first-order
derivatives, defining new variables ¢ and 1 for the shear rates:

P g dp
=5, 9= 4.1)
ot oY oy

and
0 u 0
m_M g 4.2)
ot dys aYs

Equations (4.1) and (4.2) are discretized on a fixed grid along the wall-normal direction since
all solid and fluid displacements are planar. The solid-liquid interface remains therefore planar
during the motion and there is no need for numerical Lagrangian tracking of the interface. We use
a backward-difference approximation in time with an index j > 0 and step size At, and a centred-
difference approximation in space with an index 0 <k <K, and step sizes Ay, and Ays for the
solid and the fluid, respectively. The top of the solid grid is k =I5 and the bottom of the fluid
grid is k=1Ir = I + 1, these grid positions representing the same point in physical space. For j > 2,
second-order approximations are used for equations (2.10) and (2.11). At the interface (k=I5 and
k= Ir), first-order spatial derivatives are discretized using a backward-difference approximation
in the solid and a forward-difference approximation in the fluid. For the exterior boundaries of the
grid, first-order approximations for the spatial derivatives are used to discretize equations (2.12)
and (2.15). In order to discretize equations (2.13) and (2.14), both grid points k =I; and k= I; are
used:

j=2 —1 j
W, = (S 4(4“' 3, and i, = oL, (4.3)
= 2At I = PR '

This discretization is given explicitly in appendix B. The system is arranged in a block tri-
diagonal matrix, with values at the previous time steps, j — 1 and j — 2, forming the other side
of a matrix equation. For j=0, the stationary initial conditions equations (2.16) are imposed.
For j=1, the discretizations are altered to use first-order approximations for all the first-order
time derivatives. For the second-order time derivatives in equation (4.1), equations (2.16) are
incorporated via a ghost point at j = —1. In order to maintain the tri-diagonal form of the matrix,
the discretization of the spatial derivatives at the material interface is first-order.

Figure 2 shows the numerical solutions and the analytical solutions equations (3.15) and (3.16),
att=15,with tr > 15, pL =1, h; = hs = 10. For small enough numerical step sizes At, Ay, and Ays,
the numerical and analytical solutions overlap. Defining the error to be the absolute difference
between the numerical results and the exact values computed from equations (3.15) and (3.16),
the overall accuracy of the scheme has been found to be between order one and order two with
respect to At, Ay; and Ays, for a variety of non-dimensional parameters.
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Figure 2. Comparison between the numerical solutions (circles) and the transient analytical solutions (lines).

5. Physical results

The primary motivation for solving the system equations (2.10)—(2.16) analytically in §3 is to gain
insight into the separate contributions to the transient motion, which would not be possible by use
of the numerical solution only. In §5a, we discuss the physical results obtained from the analytical
solutions equations (3.15) and (3.16). The solutions are investigated graphically in §5b and in the
context of relevant technological applications in §5c. In §5d, we quantify the time scale for the
evolution of the transient profiles into the periodic form found in §3b.

(a) Physical interpretation of the analytical solutions

(i) Classification of summation terms

The solutions equations (3.15) and (3.16) quantitatively describe a set of evolving elastic wave
reflections in the solid layer for 0 <y, <h) and a set of damped oscillations in the fluid layer
for ys > hs. Successive Heaviside functions become non-zero at different times and locations,
whereby more terms in the series contribute to the summations for ¢ and u and result in a
superposition of oscillatory motions in the layers. For 0 <t < 7, all of the Heaviside functions
involving t are zero, leaving three distinct types of terms contributing to the summations: those
with Heaviside functions whose arguments contain t —y; or t +y; in equation (3.15) for the
solid displacement ¢, and those with Heaviside functions whose arguments depend only on ¢
in equation (3.16) for the fluid velocity u, each multiplying a corresponding Gs ., or GF mn
function. The two types of terms in equation (3.15) involving t —y; and t +y; correspond,
respectively, to wavefronts of displacement in the solid travelling upwards from y, =0 to vy, =
hy and wavefronts travelling downwards from y; =/, to y) =0. The terms in equation (3.16)
correspond to the shear motion transmitted into the fluid by the set of upward travelling waves
in the solid when these elastic waves reach y; = ;. These terms depend on ys only via the Gz,
functions as defined in equation (3.19), rather than via the Heaviside functions. The three types
of profile are depicted qualitatively in figure 1.

(i) Evolution of reflections and transmissions

The index n denotes the number of partial reflections that occur at the material interface located
at yp = hy. The first upward travelling term with n=0, that is, H(t — y,)Gs,0,0(t — y3), is equal
to H(t — y,) sin (wt). This term is the incident sinusoidal wave owing to the imposed forcing at
y» =0. When t =h;, this wave reaches the interface at y, =h, for the first time. For t > Iy, the
first transmission term in equation (3.16) for the fluid and the first downward travelling term
in equation (3.15) for the solid both switch on. At t =2h,, the first downward travelling wave
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reaches y; =0 and the second upward travelling term, with n =1, switches on. For ¢ > 2k; , each
subsequent upward travelling wave switches on at y; =0 when f is an even multiple of /; and
reaches y; =h; when t is an odd multiple of ;. Each downward travelling wave switches on at
y» =hy, when t is an odd multiple of /1, and reaches i, =0 when t is an even multiple of &;. Each
transmission term in equation (3.16) switches on in the fluid when t is an odd multiple of &, for
Ys = hs. As t increases, there are more non-zero terms in the summation, and the amplitudes of
each term generally decrease with increasing n, so that at large ¢ the incremental change given
by each additional term is small. After several reflections, the full superposed solution converges
towards a time-periodic state in both layers.

(iii) Transient properties of the elastic wavefronts and shear-driven fluid layers

For the travelling elastic waves in the solid, the dependence on y;, is contained in the arguments
of the Heaviside functions and in the time-shifted coordinates in the Gs,(t) functions. For
a fixed y,, if the Heaviside function for a particular wave in the summation is non-zero, the
time-dependent shear displacement is thus given in equation (3.17) by Gs,0,,(t — y5. — 2nh;) or
Gs,0,n(t +yx — 2(n + 1)hy.). The first two sinusoidal terms in equation (3.17) are periodic in time,
but the integrand in the last term contains a factor that decays exponentially in time. There is
thus a decaying transient contribution to each solid wave that travels with the advancing wave
owing to the Heaviside functions. An exception is the term with 7 = 0 because the transient term
is identically zero in that case. This incident wave is a simple translational wave that is solely
periodic in time. The transmitted motion in the fluid, given by the linear superposition of the
G £0,1(ys, t) functions, exhibits a similar separation into periodic and transient terms. Noting that
Ys — hs is the wall-normal coordinate measured relative to the interface at ys = h;, the first term
in equation (3.19) consists of a weighted sum of upward travelling sinusoids, with an amplitude
that decays exponentially with the distance from the interface because of viscous effects. This part
of the solution is similar to the Stokes layer solution for a shear-driven fluid [25]. The second term
in equation (3.19) is transient, containing a term that decays exponentially in time.

(iv) Transient behaviour at the end of the forcing

Our discussion has been confined to t < t, with all of the terms involving t in equations (3.15) and
(3.16) remaining zero until the forcing at y, = 0 ends at t = 7. These terms correspond to the time-
dependent behaviour after the forcing stops. For t > 7, they become non-zero and destructively
interfere with the non-zero terms existing for 0 < t < 7. The factors cos(wt) and sin(wt) determine
which of these new terms contribute the most to the transient behaviour at the end of the forcing,
with a special case occurring when the forcing is switched off after a whole number of periods
(i.e. wt is a multiple of 27). In this case, cos (wt) =1 and sin (wt) = 0, and the additional terms for
t > t are identical to those for t > 0, with a time shift t.

(b) Visualization of the system dynamics

In this section we discuss plots of the analytical solutions equations (3.15), (3.16), (3.30) and (3.31),
in order to establish qualitative transient properties of the solutions over short and long time
scales which cannot be obtained from the analytical solutions only. We first analyse the initial
motion of both layers after the start of the forcing at y, =0, consisting of the incident wave, the
first reflection in the solid and the first transmission into the fluid, as discussed in §5a. These three
initial profiles share properties with the three types of profile arising in subsequent reflections.
They are therefore representative of the system dynamics until t = 7.

Figure 3 shows the motion of both layers with k) =10, pL=1 and ¢t < r. The fluid layer
remains at rest until ¢ =10, when the periodic and transient velocity contributions contained in
equation (3.19) both become non-zero for ys > hs. As shown in figure 4, the two contributions
cancel completely at t = 10, the instant when the reflection occurs, but as the transient contribution
starts to decay the overall velocity starts to grow near the interface whilst remaining zero farther
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Figure 3. Plots of solid displacement (red) and fluid velocity (blue) for the first transmission and reflection.

away. The periodic contribution quickly begins to dominate and the motion of the fluid layer
becomes periodic with its amplitude decaying away from the interface. This cancellation, with
a transient term receding to reveal a periodic profile, also occurs in the transient extension to
the Stokes second problem [24] and in similar heat transfer problems [32]. The fluid remains
stationary far from the interface at all times, beyond a distance of around y5 — hs > 3,i.e.y* — h* >
38*, consistent with the assumption of an unbounded fluid layer in §2.

For t > 10, after the reflection at the interface, the superposed elastic motions of the incident
and reflected waves result in an overall solid displacement that is larger than that of the incident
wave alone. As the first reflected wave travels downwards from y; =h; to y, =0, for t > 10, the
periodic and transient displacement contributions contained in equation (3.17) both become non-
zero. The transient contribution is largest at the front of the wave, whilst the area behind the
advancing wave is dominated by the periodic contribution. Unlike the transient contributions to
the fluid velocity, the solid transient contribution does not have an oscillatory shape. As shown
in figure 5, the transient contribution appears steady in a frame of reference moving with the
reflected wavefront, so that its shape remains unchanged as it travels downwards.

For t > 20, the superposition of further reflected elastic waves in the solid and transmissions
into the fluid results in a second kind of transient evolution. This evolution can be visualized
by the displacement and velocity at the interface, as shown in figure 6. The interface does not
move until t =10, after which the velocity oscillates owing to the forcing at y, =0. At =230,
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Figure 4. Comparison of the periodic (solid blue) and transient (solid grey) contributions to the total fluid velocity (dashed
blue), at the start of the first fluid transmission.
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Figure 5. Periodic (red) and transient (grey) contributions to the total solid displacement for the first reflected wave (without
the superposed incident wave). (d—e) Show the consistent profile shape in the vicinity of the wavefront.
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Figure 7. Development of the transient solid displacement (red) and fluid velocity (blue) towards periodic profiles (black).

when the second reflection occurs, the addition of another transmitted layer causes the velocity to
obtain a larger amplitude. For the third reflection at t = 50, the incremental change to the interface
velocity is smaller and, as more reflections occur, the amplitude approaches that of the solution
equation (3.32) found by assuming periodic motion. Furthermore, by comparing the periodic
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Figure 8. Return of the transient solid displacement (red) and fluid velocity (blue) towards the initial conditions, after the
periodic forcing is switched off.

solutions equations (3.30) and (3.31) to the transient solutions equations (3.15) and (3.16), figure 7
shows that the whole two-layer system approaches a periodic state to which the summations in
equations (3.15) and (3.16) have converged. This convergence occurs after approximately eight
reflections when f = 160. The long transient evolution to the periodic state is investigated further
in §5d.

When t > 7, the motion of the two layers is no longer driven by oscillation of the lower
boundary at y; =0. Figure 8 shows the dynamics of the same system (h =10, pL=1, 7 =200)
after the oscillation at 1, = 0 stops. The motion of the two layers is periodic at the switch-off time
t =200 and, for 200 < f < 500, it evolves back to the initial state of the system, i.e. ¢ =0 and u=0.

(c) Parameter dependence

The dependence of the displacement and velocity profiles on the physical parameters is studied
for three representative cases related to applications of shear waves in ultrasound viscometry [9],
active methods for turbulent drag reduction [16] and SAW-based biosensors [2]. Although only
sinusoidal forcing is studied herein, the linearity of the system implies that the results can be
applied to more complex forcing patterns. In this section we only consider the periodic solutions
equations (3.30) and (3.31), so that transient effects do not affect the parameter dependence. For
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Figure 9. Dependence of solid displacement (red) and fluid velocity (blue) on forcing frequency, for a 6.28 mm aluminium block
underneath a layer of 850 kg m > il with viscosity 300 mPa s [9].

a better interpretation of the results in view of the applications, the distance y* is scaled herein
with the thickness of the solid /¥, while ¢* and u* are scaled with the displacement and velocity
amplitudes of the imposed forcing at y* =0, i.e. ¢ | = ¢5 and u}, ,, =275 /T;-

(i) Application 1: viscometry

Ultrasound viscometry set-ups use oils of varying densities and viscosities, and water for
calibration [9]. Forcing frequencies span the 0.5-15MHz range, using a thin aluminium layer
underneath an oil layer. As shown in figure 9, a higher frequency results in a shorter wavelength
in the solid and in a larger displacement amplitude. In the fluid, higher forcing frequencies result
in a smaller penetration depth, i.e. a fluid motion that is closer to the solid-liquid interface.

For each of the chosen frequencies in figure 9, the maximum velocity at the interface happens
to be close to the forcing amplitude u:‘v e The maximum wall velocity A* can, however, be much
larger than u, ., with finite maximum values occurring around critical resonant frequencies,
as shown in figure 10. This result demonstrates that the solid—fluid system behaves as a forced
resonator that is damped by the fluid viscous effects. The critical resonant frequencies, occurring
when wh;, is an integer multiple of 7, are also the frequencies at which .A* changes sign, although
| A*| is plotted for clarity. Using the analytical forms of A and 7 in equation (3.33), A* may be
written as

A= 95 32 _PLISn (@)Y (pL/y/T) cot () — 1) +1 5.1)
ST (oL cos (why) — /7 sin (why))? + 7 (sin (why))? ’

Noting that both 1, and L depend implicitly on T}, we may study the behaviour of A*
asymptotically in the proximity of the minima. Rewriting sin(wh,) and cos (wh;) as Taylor
series around wh; = kn where k € Z* (i.e. where sin (wh;) — 0), this expansion leads to a valid
approximation of A*(Tj) around the minima Ty = 2h*\/ s /15 /k. This expansion is shown as a
dashed line in figure 10 for one of the minima.

We now consider the effect of varying v* on the maxima of A*, since the dependence of A*
on Tj takes the form of damped resonance. The dynamic viscosity value of 300 mPas used in
figure 10 is reduced and kept within the range expected for test oils used in ultrasound viscometry
applications. As shown in figure 11, for lower viscosity (less damping) the maxima are larger
and occur at a lower value of Tj. The limiting case of undamped resonance may be studied by
considering the behaviour of A* as v* — 0, or equivalently L — oo in equation (5.1). Analytically,
limy _, o |A*| is proportional to sec (wh; ), confirming that for an undamped system the maxima are
resonant singularities occurring at why = (2k — 1)mr/2, or equivalently Tj = 4h*\/pg /s /(2k — 1).
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Figure10. Dependence of interface velocity amplitude on 7" (solid), compared to 7' . = 1MHz with a series expansion around
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Figure 1. Effect of reducing v* on damped resonances around critical forcing frequencies.
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Figure 12. Solid displacement (red) and fluid velocity (blue) for a typical drag-reduction laboratory set-up, with 0.35 mm layer
of silicone, 6 Hz forcing and an adjacent layer of air [16].
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Figure 13. Dependence of maximum interface velocity on solid thickness, compared to A, = 0.35 mm for a typical drag-
reduction set-up [16] (black dot).

(i) Application 2: drag reduction

For the travelling-wave method of turbulent drag reduction studied in [16], a very thin elastic
layer is stretched over a deformable lattice. The wall turbulence flows over the elastic surface.
The low forcing frequencies used in such laboratory set-ups and the small thickness of the
solid layer imply that the transverse elastic wavelength greatly exceeds the latter. This scenario
approaches the behaviour of the fluid-only simplification adopted in §3c. As shown in figure 12,
the solid displacement exhibits a very small linear shear throughout the layer rather than varying
sinusoidally, the interface velocity is the same as that at the wall, and the penetration depth into
the fluid is greater than the solid layer itself. Controlling the fluid penetration depth is important
in active drag-reduction methods in order to ensure optimal interaction between the imposed
shear waves and the turbulent structures. By extending the solid thickness well beyond the
experimental values, the velocity amplitude at the interface grows and eventually approaches
the resonance condition, as shown in figure 13.

(iii) Application 3: biosensors

SAW-based devices used for biological sensing use shear waves in a solid substrate, with relevant
biological material suspended in an adjacent fluid layer [2]. A variety of substrates are utilized,
including lithium tantalate (LiTaOs3) and quartz (SiO,), with thicknesses of the order of a few
hundred microns. Forcing frequencies are even higher than in the viscometry case, ranging from
100 MHz to 3 GHz. Owing to these high frequencies, resonance conditions are very closely spaced
and small variations in solid density or shear modulus result in a significant change in the
maximum interface velocity A*. The penetration depth into the fluid is very small, as shown
in figure 14.

(d) Duration of long-term transients

Owing to the complexity of the fully transient solution, it is not always practical to extract
information about the long-time transient dynamics from graphical analysis. The time scale
on which the transient solutions equations (3.15) and (3.16) approach the periodic solutions
equations (3.30) and (3.31) can be quantified numerically by considering the power balance of
the fluid layer. Multiplying equation (2.11) by the fluid velocity and integrating along the wall-
normal direction, the balance involves the kinetic energy of the fluid, the power input from the
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Figure 14. Solid displacement (red) and fluid velocity (blue) for a two materials used in biosensing applications [2], with a

400 micron solid layer, 1 GHz forcing and an adjacent layer of water.
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Figure 15. (a) Percentage difference between periodic and transient dissipation, averaged over each period. (b) Number of
periods to reach < 1% agreement between the periodic and the transient solutions, for varying viscosity. Both plots are based
on parameter values from the viscometry case studied in §5¢, using a forcing frequency of 5 MHz.

solid layer and the power dissipated owing to viscous effects:

o0 o0 2
12/ u? dys - _ual _/ (al) dys .
2 dt Ys=h; hs aYs

—

(5.2)
hs aYs
power dissipation

time rate of change of kinetic energy power input

We monitor the viscous dissipation in the fluid to compute the overall transient evolution
and compare the transient and periodic solutions. This choice is dictated by the dissipation
in the fluid being always positive and relevant to the viscometry case studied in §5c, and by
the absence of dissipation in the elastic layer. The total energy dissipated in the fluid in each
period using the periodic solution equation (3.31) is constant, whereas the dissipation in each
period using the transient solution equation (3.16) varies as the series develops. Figure 15a shows
the difference between the viscous dissipation in periodic conditions and the transient viscous
dissipation averaged over each period for typical values of the viscometry case.

For a range of viscosity values, forced at 5 MHz with a 6.28 mm aluminium layer, the number

of periods required for the maxima of the dissipation difference to decrease below 1% varies from
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4000 to 35000, with more viscous fluids (therefore more heavily damped systems) reaching a
periodic state quicker, as shown in figure 15b.

For comparison, the drag-reduction case studied in figure 12 requires 169 periods for a 6 Hz
forcing, while the lithium tantalate biosensor studied in figure 14 requires 251 846 periods for a
1 GHz forcing. Typical durations of transients are of the order of 1073 s for ultrasound viscometry,
10s for travelling-wave drag-reduction methods and 10~*s in biosensors. Quantifying the
duration of transient effects will aid in the design of future experiments and will establish whether
periodic motion may be assumed.

6. Conclusion

In this paper, we have studied the dynamics of a coupled system consisting of a Newtonian fluid
located on an elastic solid that is forced sinusoidally. The problem has been solved analytically
and numerically. We have focused on the transient evolution from the beginning of the forced
oscillations, solved by Laplace transforms, and on the periodic behaviour that ensues once
the transient has vanished, solved by Fourier modes, presented in §3ab. In §3c, we have
demonstrated that these solutions reduce to the classic fluid mechanics results of the transient
and periodic Stokes second problems in the case of a vanishingly thin solid layer. The analytical
transient solution is revelatory of the dynamics because it is expressed as series summations that
elucidate the propagation and reflections of the elastic waves and the viscous dissipation of the
oscillatory motions in the viscous fluid. Integral terms pertain to the non-periodic behaviour in
the solid and in the fluid. The periodic solution highlights that the system can be viewed as
a resonant oscillator that is damped by the fluid viscous effects. The forcing periods at which
resonance occurs are expressed in analytical form in the limit of vanishing fluid viscosity. The
long-term duration of the transient effects has been quantified by considering the power balance
of the fluid layer. These physical results, derived from the exact solutions, have been presented
in §5.

The interaction between shear-driven solids and viscous fluids is of interest owing to their
uses in engineering applications, including in situ viscometry, turbulent drag reduction and
manipulation of biological flows. We hope that our results will be useful as a theoretical
framework to aid the design of future experiments. The two-layer linear system studied herein
can serve as a limiting case for more complex systems, involving more realistic geometries
featuring two- or three-dimensional effects, non-Newtonian liquids, bounded fluid layers and
multiple solid layers. The problem can also be extended to non-sinusoidal forcing. Future research
aims could be to quantify the duration and magnitude of transient effects in systems with
pulsed forcing and to utilize the resonance effects to amplify the velocity or displacement at the
solid—fluid interface.
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Appendix A. Contour integration for transient solution

In this appendix, we present detailed derivations of the functions Gs 1, Gs,1,n, GF0n and G 1,
found by integration in the complex plane along the contour ABCDEF shown in figure 16. By
applying the definition of the inverse Laplace transform in order to invert equations (3.13) and
(3.14), integration must be performed along the Bromwich contour s = y & ico, where y is larger
than the real part of any singularities of the integrands:

1 [rticogmgl=-m /o1 Js\"
G a1 std Al
Smn(t) i /)‘/71.00 32 4+ @2 (,oL + ﬁ) © e "y

and

1 y+ico o L51+mw1_me\/§(h57y5) L— . J/s\"
Grmnlys )= 5— / p (" Vs ) el ds. (A2)

y—ico (52 + a)z)(pL +/5) pL+ /s

Calling A the Bromwich contour for the integrals in equations (A 1) and (A 2), the integration
may be performed by closing the contour to the left and by applying the residue theorem [34].
A branch cut is taken around the negative real axis and around the origin, so that /s is single-
valued along the whole contour [35]. In the limiting case where the radius R; of the outer
circular arcs approaches oo, the radius Rj of the circle around the origin approaches 0, and the
complex argument of the branch cut approaches +r, i.e. §; approaches 0, the Bromwich contour
is recovered. The integrands for both Gs ;;» and G, contain poles at s = +iw. By the residue
theorem, the integral along the contour ABCDEF is equal to the sum of the residues of all poles.
Allowing IA to denote the integral along contour ABCDEF, and Res to denote the residue at
s =sp, the residue theorem may be rearranged to find Ia:

Ipn +1Ig +Ic + Ip + Ig + Ir = 27i(Resj,) + Res(_j,))

and

I 1
A —Res(iy) + Res(_ig) — =— (I + Ic +Ip + Ig + Ig).
2mi 2mi

The contributions to I from Ig and I tend to zero by Jordan’s lemma as Ry — oo, for both Gs .,
and Gz . The residues and the contributions from I¢, Ip and Ig must be calculated explicitly
for each integrand.
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(a) Contour integrals for Gs r, ,

OnC,s=Re" as 0 — 7. Hence, s = —R, /s =iv/R and ds = —dR:

_ 0 (—R)"wl™™ ( pL — iR ne_Rt(—dR)
¢ 00 R2+w2 ,OL+Z'\/§ ’

OnE,s=Re? as® — —m. Hence, s = —R, /s =—iv/R and ds = —dR:

. _/-oo (_R)mwlfm pL-I—ZKrR " e_Rt(—dR)
ol TRT¥ W \LL—iVR

| - % (—RY"w!=" ([ pL — iR pL+ivVR —Rt
,,Ic-i—IE—/(; RZ + o2 ((,oL-i—i\/K) (pL—lf) )e dR.

On D, s =Ry e Hence /s = e?/2\/R; and ds = iR, e’ do:

I _‘/.77-[ Rgl "ol pL — ei@/Z\/ Ry ! eRzewtiR ei0 do
R S R3e20 \ pL+e/2{/R, 2 ‘

When constructing the solution Gg , either m=0 or m=1. Hence, Ip — 0 as R — 0. We
compute the residues at the two poles s = +iw:

Resj,) = o <’0L_‘/§>n e’ _i pL= f
(iw) = s+ iw ,OL+\/§ s—>iw_ 2 pL-}—f

Res(_j,) = i ('OL \[) = (=" pL = V=ie ' e it
(=iw) s—iw \pL+./s N 2 oL+ /—iw )

The solutions are

.\ 7 _\n
Gson= 1(pL—Vio ot _ L[ PL= V0N i
20\ pL + Vie 2i\ pL + V—iw

1 /00 w oL —ivR\"  (pL+ivR\"\ _g
N — e ' dR
2ri Jo R2+w? \\ pL+ivR pL —iv/R

GS 1 IOL \/7 e + pPo— v —iw —1wt
" oL+ «/> pL +V—iw

1 [ _R oL —ivR\"  (pL+ivR\"\ _g
= = ) - () ) e Rar
2ni Jo R+ w pL+ivR pL — iR

As complex conjugates appear, the solutions are written as

[iw o0 _ n
Goon=2Re | —+[PEZYI2) o ——1,[ 2im | 2 pL lffR e Rt 4R
oL + Viw 27i Jo R+ ? \ pL +ivR

X n
pL = Vi 1 [ R pL — iR Y
Gs,1,n =2Re et | 4 — 2ilm 5 > - e “dR.
2\ oL + Vio 27i Jo R2+w? \ pL+iVR
Downloaded from http://royalsocietypublishing.org/rspa/article-pdf/doi/10.1098/rspa.2025.0616/5683054/rspa.2025.0616.pdf

by University of Sheffield user
on 10 February 2026

and

and

and

and

91905707 28k ¥ 205 Y 2014 edsi/feuinof BioBuiysijgnd/iaposiefor



We rewrite the denominators of the complex fractions to isolate the overall real and imaginary
components:

2n
0%L* — w = 2ipLJ/w]2 TN w (,oL - i«/ﬁ) .
Coon= |:( (oL + Vw/2)? + /2 ) (e )} T /0 fm R2+ )22+ Ry | € dR

and

Gsin= [(pL —e- ZZPL ) el i|+1/oolm|: R(pL —iVR)" :|ethR.
0

(PL+ Vo 2% + w/2 m (R% + w?)(p?L% + R)"

We introduce parameters Ky_3 and separate the real and imaginary parts of the complex
exponentials and the numerators in each term:

’C —Rt
Gson= ’Co sin (wt) —|— IC” cos (wt) — —/ IC3 2 dR
and
K1 Ko . 1 [  Re X
Gsin= ICi(’)’ cos (wt) — ’C—g sin (wt) + - : K3m dR,
where
w 2 w w "
Y O e @ =R 212 _w-2i L\/j
Ko (p —I—\/;) +2, K1 e|:(p w —2ip 2>:|
and

' o\ (pL — iv/R)*"
Kz =Im {(szz —w- ZIPL\/;) } » Ka(R)=1Im [(pﬂLzﬂLR)”} '

It is clear that the enclosed residues at s = &-iw correspond to the time-periodic terms in Gg 1
and the integrals Ic and Ig along either side of the branch cut correspond to the transient terms.

(b) Contour integrals for G,

OnC, s=Re" as  — 7. Hence, s = —R, /s =iv/R and ds = —dR:

I _/O 2pL(—R)! 7oyt eVRGsw) (o — iR e Ri(—dR)
T T Rt+)pL+ivR) \pL+ivR '

OnE,s=Re” as 0 — —x. Hence, s = —R, /s = —iv/R and ds = —dR:

- /oo 2pL(—R)1+mw17m e~ iVR(ts—ys) pL +ivR ! e_Rt(—dR)
0 (R? 4+ w?)(pL — iv/R) oL —ivR

and

%0 2pL(—R)IHMgl-m oL —i/R n eils—ys)VR
cle+Ig=
0

R? + 2 oL+ivR) pL+ivR
. n — 1 —_
_(PL+ iVR\ e-its—ys)VR Rt 4R,
pL—ivR] pL—ivR

On D, s =Ry e?. Hence /s =e?/2/R; and ds = iR, e’ do:

. /—rr 2pLRé+m o(1Hm)i6 1= &2 /Ra(hs —ys) oL — €2 /Ry n PR W
= - - p e 1 e .
b=/ (R2e2 + w?)(pL + e/2/Ry) oL + e¥/2 /R, 2
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When constructing the solution G, either m =0 or m =1. Hence, Ip — 0 as R, — 0. We
compute the residues at the two poles s = +iw:

2pLsttml=meV/slts=ys) /o1 —  /5\"
Res(jy) = ( ) et
S— 1w

(s +iw)(pL + /5) pL+ /5
B pLima) e\/@(ha—ya) pL — \/5 ! elwt
oL+ iw oL+ Viw

and

(s — iw)(pL + V/5) pL+ /s

L e T (oL T\
pL + v —iw ,oL—|—«/—z ’

2pLsitmel=m ev/sths=ys) oL —  /5\"
Res(_iq) = ( ) et
s—>—iw

The solutions are

pLawelts=vWVio (o1 fin\" pLawels=¥V=i0 (o1 _ /Zip

G = e —iwt
Fon oL+ Vio (,oL—f—\/E) oL+ —iw (pL—I—V—z )
1 [® 2pLRw ( < oL — iﬁ)” elli—y)VR ( pL+i¢1€>" e~ilhs=ys)VR ) R 4R

2niJo R+ 0?2 \\pL+ivR) pL+ivR \pL—iVR) pL—ivR
and
G pLiwels vV [ pl — Viw )" giot _ PLiw el (oL — i\ i,
Fin= - =
! oL+ iw oL+ Viw pL 4+ v —iw pL 4+ V—iw

1™ 2oLR* ((pL—ivR\" elimVR [ pl 4 iyR\" eiliy)VR Rl dR
27i Jo R2+w? \\ pL +ivR pL+zf poL—ivR] pL—iVR

As complex conjugates appear, the solutions are written as

Lo els—vsWio (o1 — Jiw\" .
G op—2Re | PL2C" IV (pL =i\ oy
oL + Vio oL+ Viw
1 [ 4pLRw oL —ivR\" eilts—y)VR .
— i— > Im - - e dR
2ri Jo R*’4w pL+ivR] pL+ivR
and
. i —\ 7
Grin=2Re pLice y,ﬁ (e \/E el!
oL + Viw oL+ Viw
1 [ 4pLR? L- eilts=ys)VR
L L[k [ ol R’
2rni Jo R+ w oL+ivR] pL+ivR
We rewrite the denominators of the complex fractions to isolate the overall real and imaginary
components:
hs— 20,272
Gron=2Re pre( 15—Ys)v/w/ (p°L* — w — 2ipLJ/w/ ( Ly ﬁ) (VT2 =y +ot)
~ (oL + Vo /2)* + w/2)"
noo.
1 [* 2pLR L —ivR i(hs—ys)VR
+f/ o m| (2 Z,f (L —iVR) | e R dR
TJo Ret+w pL+ivR) p?L?+R
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and

. hs—ys)vVo/2( 272 H
Grin=2Re {p LioeW ISR — 0 = 2ipLolD)" ) ei(M(lla—ya)+mt):|

((pL + V@/2)? + w/2)"*1
© 20LR? [ pL—iVR)" el “vs)VR . -
_7/ R2—I—a) [(pL+zf> 2L2+R(pL—z\/§) e REGR.

We introduce parameters K47 and separate the real and imaginary parts of the complex
exponentials and the numerators in each term:

2 oL els—Yys)Vo/2
Gron= P w‘;an (IC4 cos <(h5 ]/5)\/7 + wt) + K5 sin <(h5 y(;)\/7 + wt))

1 /00 2pLwR e Rt
0

) B im (K sin (s — ys)V/R) + K7 cos ((hs — ys)v/R)) dR

and

2 oL elts—ys)vo/2
Grin= P (anJrl (’C5 cos <(h,s y,s)\/> + wt) K4 sin <(h5 y,s)\/> + wt))

1 /00 2pLR? e~ Rt
7 Jo (R2+ 0?)(p2L2+R)

(Ke sin ((hs — ys)¥'R) + K7 cos ((hs — ys)¥R)) dR,

where

N I [ )
O (et S ety
K6=pLRe[(pL+z§) Jrmm|(555) |

n
L—ivR
and K7 =pLIm —ivR)’ — VRRe Q .
pL oL +ivR oL +ivR
As with the solid-layer solution, the enclosed residues at s = +iw correspond to the time-

periodic terms in G £, ,, and the integrals Ic and Ig along either side of the branch cut correspond
to the transient terms.

Appendix B. Numerical procedures

In order to compute the numerical solution used in figure 2, equations (4.1) and (4.2) are
discretized in time with an index j > 0 and step size At, and in space with an index 0 <k < K and
step sizes Ay; and Ay; for the solid and fluid, respectively. The interface is characterized by k =I5
and k= If =I5 + 1. For j > 2, the following approximations are used for equations (2.10)~(2.15):

k=0:
j
Y1~ %

| —sin(wjAl) and @)=
(p{) sin(wjAt) an (p{) A,

1<k<Is:

j i 2, 2 2 j P
1 =29 T Phq | Pr1 — 20, 49, ‘P{c - 2¢, L+ P G = Prt1 ~ Pr—1
2(Ay)? 2(Ay)? (At)2 Lk 2Ay),
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If<k<K:

k=

I = S S B L
ey — Ty _w —dm +3u S My — My
2AyYs 2At Tk 2AyYs

I andk:lf:

V_’i - gz)i—l _ ‘/’é_Z - wal + wi

j _ 7L VL1
N (A1) Tk Ay,

—j —=j j—2 j—1 j
”I/H — ”I, ulf — 4qu + 3qu

7 u - x .
Ays 2At Iy Ays

-2 -1 '
p_ e 3

and Uy, = : i, = qu‘i.

2At T

J j
; P U — U
qu=0 and ﬁ%:w.

Ays
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